
The Decimal Number system: 

The Decimal number system contains ten unique symbols. 0,1,2,3,4,5,6,7,8,9. Since 

Counting in decimal involves ten symbols its base or radix is ten. There is no symbol for its 

base.i.e, for ten .It is a positional weighted system i.e,the value attached  to a symbol  depends on 

its location w.r.t. the decimalpoint.In this system, any no.(integer, fraction or mixed) of any 

magnitude can be rep. by the use of these ten symbols only.Each symbol in the no. is called a 

Digit. The leftmost  digit in any no.rep ,which has the greatest positional weight out of all the 

digits present in that no.is called the MSD (Most Significant Digit) and the right most digit 

which has the least positional weight out of all the digits present in that no. is called the 

LSD(Least Significant Digit).The digits on the left side of the decimal pt. form the integer part of 

a decimal no. & those on the right side form the fractional part.The digits to the right of the 

decimal pt have weights which are negative powers of 10 and the digits to the left of the decimal 

pt have weights are positive powers of 10. The value of a decimal no.is the sum of the products 

of the digit of that no. with their respective column weights. The  weights of each column is 10 

times greater than the weight  of unity or 10
10

.The first digit to the right of the decimal pt. has a 

weight of 1/10 or 10
-1

.for the second 1/100 & for third 1/1000.In general the value of any mixed 

decimal no. is 

 dn dn-1 dn-2  ………d1 d0.d-1 d-2 d-3 …….d-k       is given by 

(dn x10n)+(dn-1 x10 n-1)+ ………(d1 x101)+(d0  x10
1
)+(d-1 x10

2
)(d-2 x10

3
) …….    

9’s  & 10’s  Complements: 

It is the Subtraction of decimal no.s can be accomplished by the 9‘s & 10‘s compliment 

methods similar to the 1‘s & 2‘s compliment methods of binary . the 9‘s compliment of a 

decimal no. is obtained by subtracting  each digit of that decimal no. from  9. The 10‘s 

compliment of a decimal no is obtained  by adding a 1 to its 9‘s compliment. 

Example:  9‘s compliment of 3465  and 782.54 is    

 9999     999.99    

-3465     -782.54   

----------    -----------   

6534     217.45    
 ------------------    --------------------  
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10‘s complement of 4069 is 

  9999 

- 4069 

---------- 

  5930 

     +1 

---------- 

 5931 

----------- 

 

9’s compliment method of subtraction: 

To perform this, obtain the 9‘s compliment of the subtrahend and it to the minuend now 

call this no. the intermediate result .if there is a carry to the LSD of this result to get the answer 

called end around carry.If there is no carry , it indicates that the answer is negative & the 

intermediate result is its 9‘s compliment. 

Example: Subtract using 9‘s comp    

 (1)745.81-436.62      (2)436.62-745.82 

 745.81         436.62 

 -436.62        -745.81 

 ----------        ---------- 

309.19         -309.19 

-----------        --------- 

745.81         436.62 

+563.37     9‘s compliment of 436.62     +254.18 

 ----------              ------------ 

1309.18      Intermediate result     690.80 

  +1      end around carry     

-----------        

 309.19      

-------------       

 If there is ono carry indicating that answer is negative  . so take 9‘s complement of intermesiate 

result & put minus sign (-)   result should ne -309.19 

If carry indicates that the answer is positive   +309.19  

 

10’s compliment method of subtraction: 

 To perform this, obtain the 10‘s compliment of the subtrahend& add it to the minuend. If 

there is a carry ignore it. The presence of the carry indicates that the answer is positive, the result 

is the answer. If there is no carry, it indicates that the answer is negative & the result is its 10‘s 

compliment. Obtain the 10‘s compliment of the result & place  negative sign infront to get the 

answer. 



Example: (a)2928.54-41673    (b)416.73-2928.54 

2928.54        0416.73 

 -0416.73        -2928.54 

 ----------        ---------- 

2511.81        -2511.81 

-----------        --------- 

2928.54        0416.73 

+9583.27    10‘s compliment of 436.62   +7071.46 

 ----------              ------------ 

12511.81 ignore the carry     7488.19   

  

The Binary Number System: 

It is a positional weighted system. The base or radix of this no. system is 2 Hence it has 

two independent symbols. The basic itself can‘t be a symbol. The symbol used are 0 and 1.The 

binary digit is called a bit. A binary no. consist of a sequence of bits each of which is either a 0 

or 1. The binary point seperates the integer and fraction parts. Each digit (bit) carries a weight 

based on its position relative to the binary point. The  weight of each bit position is on power of 

2 greater than the weight of the position to its immediate right. The first bit to the left of the 

binary point has a weight of 2
0 

& that column is called the Units Column.The second bit to the 

left has a weight of 2
1 

& it is in the 2‘s column & the third has weight of 2
2
& so on.The first bit 

to the right of the binary point has a weight of 2
-1 

& it is said  to be  in the ½ ‗s column , next 

right bit with a weight of 2
-2 

 is in ¼‘s column so on..The decimal value of the binary no. is the 

sum of the products of all its bits multiplied by the weight of their respective positions. In 

general , binary no. wioth an integer part of (n+1) bits & a fraction parts of k bits can be 

dn dn-1 dn-2  ………d1 d0.d-1 d-2 d-3 …….d-k 

 

 

In decimal equivalent is 
(dn x2

n
)+(dn-1 x2

n-1
)+ ………(d1 x2

1
)+(d0  x2

0
)+(d-1 x2

-1
)(d-2 x2

-2
) …….    

The decimal equivalent of the no. system  

dn dn-1 dn-2  ………d1 d0.d-1 d-2 d-3 …….d-k       in any system with base b is 

 
(dn xb

n
)+(dn-1 xb

n-1
)+ ………(d1 xb

1
)+(d0  xb

0
)+(d-1 xb

-1
)(d-2 xb

-2
) …….    

 

The binary no. system is used in digital computers because the switching circuits used in 

these computers use two-state devices such as transistors , diodes etc. A transistor can be OFF or 

ON  a switch can be OPEN or CLOSED , a diode can be OFF or ON etc( twopossible states). 

These two states represented by the symbols 0 & 1 respectively. 

 

 



Counting in binary: 

 Easy way to remember to write a binary sequence of n bits is 

   The rightmost column in the binary number begins with a 0 & alternates between 0 & 1. 

 Second column begins with 2(=2
1
) zeros & alternates between the groups of 2 zeros & 2 

ones.  So on 

 

Decmal no.      Binary no.   Decimal no.       Binary no. 

_________________________________________________________________________ 

 0   0   20     10100 

 1     1   21    10101 

 2          10   22    10110 

 3          11   23    10111 

 4        100   24    11000 

 5        101   25    11001 

 6        110   26    11010 

 7        111   27    11010 

 8      1000  

 9       1001 

 10      1010 

 11    1011 

 12    1100 

 13    1101 

 14    1110 

 15    1111 

 16   10000  

 17   10001 

 18   10010 

 19  10011    39    100111 

Binary to Decimal Conversion: 

  It  is  by the positional weights method . In this method,each binary digit of the 

no. is multiplied by its position weight . The product terms are added to obtain  the decimal no. 

 

Example: convert 101012 to decimal 

   Positional weights  2
4     

2
 3   

2
 2     

2
 1     

2
0 

   
Binary no. 101012 =(1x 2

4
)+(0x2

3
)+(1x2

2
)+(0x2

1
)+(1x2

0
) 

      =16+0+4+0+1 

      = 2110 

 

Example: convert 11011.1012 to decimal 

   Positional weights  2
4     

2
 3   

2
 2     

2
 1     

2
0  

2
 -1   

2
 -2     

2
 -3      

       

      =16+8+0+2+1+.5+0+.125 

      = 27.62510 

 

 An  integer binary no. can also converted toa an integer decimal no as follows 



*   Left bit MSB , multipliy this bit by 2 & add the provided to next bit to the right 

* Multiply the  result obtained in the previous step by 2 & add the product to the  

next bit to the right. 

 

Exaple: 10010112 

1  0  0  1  0  1  1 

↓  ↓  ↓  ↓  ↓  ↓  ↓ 

1x2+0  2x2+0  4x2+1  9x2+0  18x2+1     37x2+1 

=2  =4  =9  =18  =37  =75 

 

Result=7510 

 

 

 

Decimal to Binary conversion: 

  Two methods 

  There are reverse processes  of the two methods used to convert a binary no. to a 

decimal no. 

 

I method: is for small no.s The values of various powers of 2 need to be remembered. . for 

conversion of larger no.s have a table of powers of 2 known as the sum of weights method. The 

set of binary weight values  whose sum is equal to the decimal no. is determined. 

 To convert a given decimal integer no. to binary,  

(1). Obtain largest decimal no. which is power of 2 not exceeding the remainder 

& record it 

(2). Subtract this no. from the given no & obtain the remainder 

(3). Once again obtain largest decimal no. which is power of 2 not exceeding this 

remainder & record it. 

(4). Subtract through no. from the remainder to obtain the next remainder. 

(5). Repeat till you get a ―0‖ remainder 

 The sumof these powers of 2 expressed in binary is the binary equivalent of the original 

decimal no. similarly to convert fractions to binary. 

 

II method: It converts decimal integer no. to binary integer no by successive division by 2 & the 

decimal fraction is converted to binary fraction by double –dabble method 

 

  

Example: 163.875
10 

binary 

   Given decimal no. is mixed no. 

   So convert its integer & fraction parts separately. 

   Integer part is 16310 

   The largest no. which is a power of 2, not exceeding 163 is                          

    128. 

   128=2
7
 =100000002 

   remainder is 163-128=35 

   The largest no., apower of 2 , not exceeding 35 is 32. 



   32=2
5
=1000002. 

   remainder is 35-32=3 

   The largest no., apower of 2 , not exceeding 35is 2. 

   2=2
1
 =102 

   Remainder is 

   3-2=1 

   1=2
0
= 12 

16310= 100000002+1000002+102+12= 101000112. 

 

 The  fraction part is 0.87510 

   1.The largest fraction,which is a power of 2 , not exceeding 0.875 is  is 0.5 

  0.5=2
-1

=0.1002 

 Remainder is 0.875-.5=0.3752. 

 2.          0.375 is 0.25 

   0.25 =2
-2

=0.012 

Remainder is 0.375-.25=0.125. 

3.            0.125 is 0.125 itself  

 0.125 =2
-3 

=0.0012 

0.87510=0.1002+0.012+0.0012=0.1112 

final result is 

 163.87510 =10100011.1112. 

  

Example: convert5210 tobinary using double-dabble method      

 

  Divide the given decimal no successively by 2 &read the remainders upwards to 

get the equivalent binary no. 

 

Successive division   remainder 

   2 |   52 

      |______ 

   2 |    26   ---   0 

      |__________ 

   2 |     13   ---   0 

      |__________ 

   2 |       6   ---    1 

      |__________ 

   2 |       3   ---     0                    ↓ 

      |__________                       ↓    = 1101002 

   2 |       1   ---    1                     ↓ 

      |__________ 

   2  |    0    ---   1 

       |__________ 

 

 

 

Example:0.7510 using double – dabble method 



  Multiply give fraction by 2 

  Keep the integer in the product as it is & multiply the new fraction in the product 

by 2 

      0.75 

  Multiply 0.75 by 2  1.50   ↓ 

  Multiply 0.50 by 2  1.00  ↓ =0.112 

         

Binary Addition: 

  Rules: 

   0+0=0 

   0+1=1 

   1+0=1 

   1+1=10      i.e,  0 with a carry of 1. 

 

Example:   add binary no.s  1101.101   & 111.011 

  8421    2
-1

 2
-2

 2
-3 

  
1101.101 

    111.011 

  
_______________ 

  
10101.000 

 

In 2
-3 

column        1+1=0   with a carry of 1 to the 2
-2 

column 

In  2
-2 

column              0+1+1=0   2
-1

 

      1   1+0+1=0               1‘s 

       2   1+1+1=1           2‘s 

        4   0+1+1=0           4‘s 

         8                     1+1+1=1                                          8‘s 

         16                     1+1  =0                                            16‘s 

 

 

Binary Subtraction: 
  

Rules:    0-0=0 

       1-1=0 

        1-0=1 

        0-1=1      with a borrow of 1 

 

 

Example:   subtract binary no.s  111.12& 1010.012 

  8421    2
-1

 2
-2

 2
-3 

  
1010.010 

    111.111 

  
_______________ 

  
0010.011 

 

 

In  2
-3  

column      10-1=1 



      2
-2

   10-1=1 

      2
-1   

1-1=0 

       1‘s  1-1=0 

        2‘s                   10-1=1 

        4‘s  1-1=0 

         8‘s                  0-0=0    result is 0010.0112 

 

 

 

Binary multiplication: 

Two methods: 

  1. paper method 

  2. computer method 

 Rules: 

  0x0=0 

  1x1=0 

  1x0=0 

  0x1=0 

 

Paper method: 

 

  11012  by 1102      1011.1012  by 101.012 

 

 

 

  1101      1011.101 

  X110         x101.01 

 
____________     _______________ 

  
0000       1011101 

          1101      0000000 

         1101              1011101 

 
__________________    

       0000000
 

1001110           1011101 

       
___________________ 

       
   111101.00001 

Computer method: 

 

  11002  by 10012 

 

  MQ reg  10010000   A1 shifted out so add 

 Shifted MQ left        100100000   M to MQ 

                       Add M       1100 

    
_________________ 

 
Partial sum in MQ  00101100   A 0shifted out so add 

  Shift MQ left        001011000   0 to MQ  

                        Add 0                           0000 



__________________ 

 Partial sum in MQ          01011000   A 0shifted out so add 

 Shift MQ left        010110000   0 to MQ 

 Add 0                    0000 

    
___________________ 

 
Partial sum in MQ

  
101100000   A1 shifted out so add 

 Shift MQ left 101100000   M to MQ 

 Add M    1100 

    
_______________________ 

 
Final sum in MQ        01101100 

 

 

Binary Division: 

 

  Two methods: 

   1.paper method 

   2. computer method 

 

Example :  1011012   by 110     

110  )    101101    (  111.1     

      110 

 
______________ 

 
   1010 

                110 

 
______________ 

     1001 

        110 
________________ 

                  110 

                  110 

 
_______________ 

 
000 

 

  Ans:   111.1 

 

Representation of signed no.s binary arithmetic in computers: 

 

 Two ways of rep signed no.s  

1. Sign Magnitude form  

2. Complemented form 

 Two complimented forms 

1. 1‘s compliment form 

2.  2‘s compliment form 

Advantage of performing subtraction by the compliment method is reduction in the hardware.( 

instead of addition & subtraction only adding ckt‘s are needed.) 

i.e, subtraction is also performed by adders only. 



Istead of subtracting one no. from other the compliment of the  subtrahend is added to minuend. 

In sign magnitude form, an additional bit called the sign bit  is placed in front of the no. If the 

sign bit is 0, the no. is +ve, If it is a 1, the no is _ve. 

 

   Ex:    

 0      1  0  1 0  0   1 

 ↓ 

Sign bit   =+41          magnitude 

 ↑ 

1 1 0 1 0 0 1 

   

   = -41 

 Note: manipulation  is necessary to add a +ve no to a –ve no 

 

Representation of signed no.s using 2’s or 1’s complement method: 

 If the no. is +ve, the magnitude is rep in its true binary form & a sign bit 0 is placed in 

front of the MSB.I f the no is _ve , the magnitude is rep in its 2‘s or 1‘s compliment form &a 

sign bit 1 is placed in front of the MSB. 

 

The rep of +51 & -51 is  

             

Sign bit  magnitude 

            ↓        

 In sign magnitude form  

 In sign 2‘s compliment form 

   In sign 1‘s compliment form 

 =+51 

 

In sign magnitude form  

   =-51 

  

In sign 2‘s compliment form 

 

  =-51 

  

In sign 1‘s compliment form 

 

   =-51 

Ex: 

 

Given no. Sign mag form  2‘s comp form  1‘s comp form  

01101 +13 +13 +13 

010111 +23 +23 +23 

10111 -7 -7 -8 

1101010 -42 -22 -21 

Special case in 2’s comp representation: 

0 1  1 0 0 1 1 

1 1 1 0 0 1 1 

1 0 0 1 1 0 1 

1 0 0 1 1 0 0 



 Whenever a signed no. has a 1 in the sign bit & all 0‘s for the magnitude bits, the decimal 

equivalent is -2
n
 , where n is the no of bits in the magnitude . 

Ex: 1000= -8 & 10000=-16 

 

Characteristics of 2’s compliment no.s: 

 Properties: 

1. There is one unique zero 

2.  2‘s comp of 0 is 0 

3. The leftmost bit can‘t be used to express a quantity . it is a 0 no. is +ve. 

4. For an n-bit word which includes the sign bit there are (2
n-1

-1) +ve integers, 

2
n-1

 –ve integers & one 0 , for a total of 2
n 
 unique states. 

5.  Significant information is containd in the 1‘s of the +ve no.s & 0‘s of the _ve 

no.s 

6. A _ve no. may be converted into a +ve no. by finding its 2‘s comp. 

 

 

Signed binary numbers: 

 

 Decimal  Sign 2‘s comp form Sign 1‘s comp form Sign mag form 

+7 0111 0111 0111 

+6 0110 0110 0110 

+5 0101 0101 0101 

+4 0100 0100 0100 

+3 0011 0011 0011 

+2 0010 0010 0010 

+1 0011 0011 0011 

+0 0000 0000 0000 

 

-0 -- 1111 1000 

-1 1111 1110 1001 

-2 1110 1101 1010 

-3 1101 1100 1011 

-4 1100 1011 1100 

-5 1011 1010 1101 

-6 1010 1001 1110 

-7 1001 1000 1111 

8   1000   --   -- 

 

Methods of obtaining 2’s comp of a no: 

 In 3 ways 

1. By obtaining the 1‘s comp of the given no. (by changing  all 0‘s to 1‘s & 1‘s to 0‘s) & 

then adding 1. 

2.  By subtracting the given n bit no N from 2
n
 

3. Starting at the LSB , copying down each bit upto  & including the first 1 bit 

encountered , and complimenting the remaining bits. 

Ex:  Express -45 in 8 bit 2‘s comp form  



 

  +45 in 8 bit form is 00101101 

 

I method: 

 1‘s comp of 00101101 & the add 1 

  00101101 

  11010010 

     +1 
_____________________________________ 

 

  11010011  is 2‘s comp form 

 II method: 

  Subtract the given no. N from 2
n
 

   2
n        

=  100000000 

  Subtract 45= -00101101 

        +1 

    
________________ 

    
11010011   is 2‘s comp  

 

III method: 

   

  Original no:   00101101 

Copy up to First 1 bit          1 

Compliment remaining    : 1101001 

___________ 

bits         11010011 

 

 

Ex:  

 

 -73.75 in 12 bit 2‘s comp form 

 I method  

  01001001.1100 

  10110110.0011 

    +1 

  _____________ 

  10110110.0100   is 2‘s 

 

 II method: 

 2
8 
=   100000000.0000 

Sub 73.75=-01001001.1100 

  ____________ 

  10110110.0100   is 2‘s comp 

 

 III method : 



 

 Orginalno            :    01001001.1100 

 Copy up to 1‘st bit :               100 

 Comp the remaining bits: 10110110.0 

     _____________ 

     10110110.0100 

 

2’s compliment Arithmetic: 

 The 2‘s comp system is used to rep –ve no.s using modulus  arithmetic . The word length 

of a computer is fixed.  i.e, if a 4 bit no. is added to another 4 bit no . the result will be 

only of  4 bits. Carry if any , from the fourth bit will overflow called  the Modulus 

arithmetic.  

Ex:1100+1111=1011 

 In the 2‘s compl subtraction, add the 2‘s comp of the subtrahend to the minuend . If there 

is a carry out , ignore it , look at the sign bit  I,e, MSB of the sum term .If  the MSB is  a 

0,  the result is positive.& it is in true binary form. If the MSB is a ` ( carry in or no carry 

at all) the result is negative.& is in its 2‘s comp form. Take its 2‘s comp to find its 

magnitude in binary. 

 

Ex:Subtract 14 from 46 using 8 bit 2‘s comp arithmetic: 

 

 +14 = 00001110 

 -14  = 11110010   2‘s comp  

 

 +46 = 00101110 

 -14 =+11110010  2‘s comp form of -14 

 ___     ____________ 

 -32  (1)00100000  ignore carry 

  Ignore carry , The MSB is 0 . so the result is +ve. & is in normal binary form. So 

the result is +00100000=+32. 

 

EX: Add -75 to +26 using 8 bit 2‘s comp arithmetic 

 

 +75 = 01001011 

 -75  =10110101   2‘s comp  

 

 +26 = 00011010 

 -75 =+10110101  2‘s comp form of -75 

 ___     ____________ 

 -49   11001111   No carry 

  

No carry , MSB is a  1, result is _ve & is in 2‘s comp. The magnitude is 2‘s comp of 11001111. 

i.e,   00110001 = 49.  so result is -49   

    

Ex:  add -45.75 to +87.5 using 12 bit arithmetic 

 



 +87.5 = 01010111.1000 

 -45.75=+11010010.0100   

 ___     ____________ 

 -41.75      (1)00101001.1100 ignore carry 

  MSB is 0, result is +ve.   =+41.75 

 

1’s compliment of n number: 

 It is obtained by simply complimenting each bit of the no,.& also , 1‘s comp of a no, is 

subtracting each bit of the no. form 1.This complemented value rep the –ve of the 

original no. One of the difficulties of  using 1‘s comp is its rep o f zero.Both 00000000 & 

its 1‘s comp 11111111 rep zero. 

 The 00000000 called +ve zero& 11111111 called –ve zero. 

 

 

Ex:     -99 & -77.25 in 8 bit 1‘s comp  

+99  = 01100011 

  -99  = 10011100 

 

  +77.25 = 01001101.0100 

  -77.25 = 10110010.1011 

 

1’s compliment arithmetic: 

  In  1‘s comp subtraction, add the 1‘s comp of the subtrahend to the minuend. If 

there is a  carryout , bring the carry around & add it to the LSB called the end around carry.     

Look at the sign bit (MSB) . If this is a 0, the result is +ve & is in true binary. If the MSB is a 

1 ( carry or  no carry ), the result is –ve  & is in its is comp form .Take its 1‘s comp to get the 

magnitude inn binary. 

 

 

Ex:   Subtract 14 from 25 using 8 bit 1‘s  EX: ADD -25 to +14 

 25 = 00011001   +14 =00001110 

 -45 = 11110001   -25 =+11100110 

 __  ________   ___ ___________ 

 +11       (1)00001010   -11 11110100 

        +1 

         ____________   No carry    MSB =1 

    00001011    result=-ve=-1110 

  MSB is a 0 so result is +ve (binary ) 

 

   =+1110 

 

Double precision no.s: 

  For any computer the word length is fixed . in a 16 bit computer, i.e., with a 16 bit 

word length, only no.s from +2
16-1

(+32,767) to -2
16-1

(+32,768) can be expressed  in each register. 



If no. is greater than this, two storage locations need to be used. i.e, each such no. has to be 

stored in two registers called Double Precision. 

 Leaving the MSB which is the sign bit, allows a 31 bit no. length with two 16 bit 

registers. If still larger no.s are to be expressed, there registers are used to store each no. called 

Triple Precision. 

 

Floating Point NO.s:  

 In decimal system, very large & very small no.s expressed in scientific notation by 

stating a no. (mantissa) & an exponent of 10. 

Binary no.s can be expressed in same notation by an exponent of 2. 

 

Mantissa Exponent 

0110000000 100101 

 

16 bit word contains two parts:10  bit mantissa , 6 bit exponent.i.e, in 2‘s comp form & in that      

MSB is sign bit. 

 

 

 

 

 

 

 

 

 

Many formats of floating pt.no.s.Someuse 2 words for mantissa, one for exponent .other use 2 & 

half words for mantissa & half for exponent. 

Depending on the accuracy desired. some use  excess n notation for the exponent, some use 2‘s 

comp notation  for mantissa &some use sign magnitude for both mantissa & exponent. 

 

The Octal Number System: 

  It is used by early minicomputers. It is also a positional weights system. Its base 

or radix is 8.It has 8 independent symbols 0, 1,2,3,4,5,6,7. Since its base 8=2
3
, every 3-bit group 

of binary can be rep by an octal digit. An octal no. is, 1/3 rd the length of the corresponding 

binary no. 

 

Octal to Binary conversion: 

  Just replace each octal digit by its 3 bit binary equivalent. 

Ex: 

 367.528 to binary 

 Given octal no is 367.52 

   

3 6 7 . 5 2 

011 110 111  101 010 

 

   = 011110111.1010102 

Mantissa =   +0.110000000 

Exponent=  100101 

Actual exponent         =              100101-

100000=000101 

Entire no. =N= +0.11002x 2
5
 = 110002 =2410 

 



 

Binary to Octal conversion: 

 Starting from the binary pt. make groups of 3 bits each, on either side of the binary 

pt, & replace each 3 bit binary group by the equivalent octal digit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Octal to decimal Conversion: 

Multiply each digit in the octal no by the weight of its position & add all the product terms 

Decimal value of the octal no.  

 

dn dn-1 dn-2  ………d1 d0.d-1 d-2 d-3 …….d-k       is 
(dn x8

n
)+(dn-1 x8

n-1
)+ ………(d1 x8

1
)+(d0  x8

0
)+(d-1 x8

-1
)(d-2 x8

2
) …….    

 

 

 

 

 

Decimal to Octal Conversion: 

 To convert a mixed decimal no.  To a mixed octal no. convert the integer and fraction 

parts separately. To convert decimal integer no. to octal, successively divide the given no by 8 

till the quotient is 0. The last remainder is the MSD .The remainder read upwards give the 

equivalent octal integer no. To convert the given decimal fraction to octal, successively multiply 

the decimal fraction&the subsequent decimal fractions by 8 till the product is 0 or till the 

required accuracy is the MSD. The integers to the left of the octal pt read downwards give the 

octal fraction. 

Ex: convert 4057.068 to octal 

=4x8
3
+0x8

2
+5x8

1
+7x8

0
+0x8

-1
+6x8

-2 

=2048+0+40+7+0+0.0937 

=2095.093710 

 

Ex: 

  Convert 110101.1010102 to octal 

  Group of  3  110 101 . 101 010 

      6   5 .   5   2 

  

    =65.528 

Ex: 

 10101111001.01112 

  

 10  101 111 001 . 011 1 

 010  101 111 001 . 011 100 

  2      5   7    1  .     3    4 

    =2571.348 

 



Ex: convert 378.9310 to octal 

37810 tooctal: Successive division: 

   8 |   378 

      |______ 

   8 |    47  ---   2 

      |__________ 

   8 |     5    ---   7 ↑ 

      |__________ 

             0   ---    5 

    

   =5728 

0.9310 to octal : 

  0.93x8=7.44 

  0.44x8=3.52   ↓ 

  0.53x8=4.16 

  0.16x8=1.28   

     =0.73418 

                378.9310=572.73418  

EX: 549710 to binary 

 8 |   5497 

      |______ 

   8 |    687  ---   1 

      |__________ 

   8 |     85    ---   7 ↑ 

      |__________ 

   8 |   10 ---     5 

      |_________ 

   8 |    1---   2 

      |__________ 

   0 ---   1 ↑ =125718=0010101011110012 

 

Conversion of large deciml no.s to binary & large binary no.s to decimal can be conveniently  & 

quickly performed via octal  

 EX:1011110100012 to decimal 

   1011110100012 = 57218 =5x8
3
+7x8

2
+2x8

1
+1x8

0 

     
=2560+448+16+1=302510 

Octal Arithmetic: 

  The rules are similar to the decimal or binary arithmetic.This no. system used to 

enter long strings of binary data in a digital system like a microcomputer. Arithmetic operations 

canbe performed by converting the octal no.s to binary no.s & then using the rules of binary 

arithmetic. Octal subtraction can be performed using 1‘s compliment method or 2‘s comp 

method & can also be performed directly by 7‘s & 8‘s comp methods of decimal system. 

    

 



 
 

 

 

 

 

Multiplication & division can slso be performed using the binary rep.  of octal  no.s & 

then making use of multiplication & division rules of binary no.s 

The Hexadecimal number system: 

Binary no.s are long  & fine for machines but are too lengthy to be handled by human 

benigs. So rep binary no.s concisely with their objective is the hexadecimal no system( or hex) . 

It is a positional weighted system.The base or radix  of there is 16 i.e, it has 16 independent 

symbols 0,1,2,----9,A,B,C,D,E,F. since its base is 16=2
4
, every 4 binary digit combination can be 

rep by one hexa decimal digit . so a hexadecimal no is ¼ th the length of the corresponding 

binary no..A 4 bit group is nibble. 

Hexadecimal counting system: 

0  1     2    3    4    5    6    7     8      9    A     B      C     D       E     F 

10   11  12   13  14  15  16  17   18    19   1A   1B  1C    1D    1E    1F 

:          ; 

:          : 

:          : 

F0 F1 F2------------------------------------------------------------------------FF 

100 101 -----------------------------------------------------------------------10F 

:          : 

:          : 

1F0 1F1------------------------------------------------------------------------1FF 

 

 

Ex:     Add (27.5)8 (74.4)8    Subtract  458 from 668 

  

 27.58 = 010  111 . 1012  668 =00  110 1102 

 +74.48 = +1111000.1002  -458 =+11 011 0112 

 _____  ____________  ___ ___________ 

 124.18          1010  100. 001   (1)00  010  0012 

        Ignore carry ans:  +ve. 

 



Binary to Hexadecimal conversion: 

   For this make groups of 4 bits each  , on  either  side of the binary pt & 

replace each 4 bit group by the equivalent hexadecimal digit. 

Hexadecimal Binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1010 

B 1011 

C 1100 

D 1101 

E 1110 

F 1111 

EX: 10110110112 

 groups of 4-bits:   0010 1101    1011 

    2      D      B  =2DB16 

 

Hexadecimal to binary conversion: 

  Replace each hex digit by its 4-bit  binary group. 

 Ex: 4BAC10 to binary 

  4  B   A  C 

         0100         1011   1010         1100 

   

  =01001011101011002 

 

Hexadecimal to Decimal conversion: 

  Multiply each dihit in the hex no. by its position weight & add all those product 

terms . 

Hex no is: dn dn-1 dn-2  ………d1 d0.d-1 d-2 d-3 …….d-k 

In  decimal equivalent is given by(dn x16
n
)+(dn-1 x16

n-1
)+ ………(d1 x16

1
)+(d0  x16

0
)+(d-1 x16

-

1
)+(d-2 x16

-2
)   



Ex: 5C716 to decimal 

(5x16
2
)+(C x16

1
)+ (7 x16

0
) 

=1280+192+7. 

=14710 

Decimal to Hexadecimal conversion: 

It is successively divide the given decimal no.  by 16 till the quotient is zero. The last remainder 

is the MSB. The remainder read from bottom to top gives the equivalent hexadecimal integer. To 

convert a decimal fraction to hexadecimal successively multiply the given decimal fraction & 

subsequent decimal fractions by 16, till the product is zero. Or till the required accuracy is 

obtained,and collect all the integers to the left of decimal pt. The first integer is MSB & the 

integer read from top to bottom give the hexadecimal fraction known as the hexadabble 

method. 

 Ex: 2598.67510 

               16 2598 

               16162         -6            

 10      -2 

   =      A26 (16) 

 0.67510=0.675x16 --   10.8 

  =0.800x16 --  12.8 ↓  

  =0.800x16   --   12.8  =0.ACCC16 

  =0.800x16   --   12.8 

 

 2598.67510  = A26.ACCC16 
Ex:     4905610 

         16 |    49056  decimal hexa         binary 

 |______ 

        16  |    3066  ---   0    0  000 

 |__________ 

          16 |    191    ---     10      A  1010 

 |__________ 

        16  |    11       ---    15 ↑     F  1111 

 |__________ 

            0      ---      11     B  1011 

   = BFA016= 1011,1111,1010,00002 



Octal to hexadecimal conversion: 

The simplest way is to first convert the given octal no. to binary & then the binary no. to 

hexadecimal. 

 Ex: 756.6038 

7 5 6 . 6 0 3 

111 101 110 . 110 000 011 

0001 1110 1110 . 1100 0001 1000 

1 E E . C 1 8 

Hexa decimal to octal conversion: 

  First convert the given hexadecimal no. to binary & then the binary no. to  octal . 

Ex: B9F.AE16 

B 9 F . A E 

1011 1001 1111 . 1010 1110 

101 110 011 111 . 101 011 100 

5 6 3 7 . 5 3 4 

           =5637.534 

Hexadecimal Arithmetic: 

 The rules for arithmetic is same as decimal octal & binary. Arithmetic operations are not 

done directly in hex. The hex no.s are first converted into binary & arithmetic operations are 

done in binary. Hex decimal subtraction can be performed using 1‘s compliment method or 2‘s 

compliment methods performed directly by 15‘s & 16‘s compliment methods. Similar to the 9‘s 

& 10‘s compliment of  decimal system.. 

Ex::     Add 6E 16  & C516    Subtract   7B16fromC416 

  6E 16   =0110 11102    C416 =1100 01002 

 C516= +1100 01012    -7B16 =+100001 012 

 _____  ____________  ___ ___________ 

 13316          1010  100. 001  4916 (1)010  010  012 

        Ignore carry ans:  +ve. 

8421 BCD code ( Natural BCD code): 

Each decimal digit 0 through 9 is coded by a 4 bit binary no. called natural binary codes. 

Because of the 8,4,2,1 weights attached to it. It is a weighted code & also sequential . it is useful 

for mathematical operations. The advantage of this code is its case of conversion to & from 

decimal. It is less efficient than the pure binary, it require more bits. 



Ex: 14→1110 in binary 

 But as 0001 0100 in 8421 ode. 

The disadvantage of the BCD code is that , arithmetic operations are more complex than 

they are in pure binary . There are 6 illegal combinations 1010,1011,1100,1101,1110,1111 in 

these codes, they are not part of the 8421 BCD code system . The disadvantage of 8421 code is, 

the rules of binary addition 8421 no, but only to the individual 4 bit groups. 

BCD Addition: 

  It is individually adding the corresponding digits of the decimal no,s expressed in 

4 bit binary groups starting from the LSD . If there is no carry & the sum term is not an illegal 

code , no correction is needed .If there is a carry out of one group to the next group or if the sum 

term is an illegal code then 610(0100) is added to the sum term of that group & the resulting carry 

is added to the next group. 

 

Ex: Perform decimal additions in 8421 code 

 (a)25+13 

 In BCD    25=  0010    0101      

 In BCD +13  =+0001 0011    

  ___ ___________ 

    38  0011   1000   

 No carry , no illegal code  .This is the corrected sum 

(b).   679.6 + 536.8 

679.6      = 0110   0111  1001    .0110 in BCD  

+536.8   = +0101  0011  0010   .1000 in BCD 
_________ ___________________________________________________ 

1216.4  1011  1010  0110  .   1110 illegal codes  

   +0110       +  0011          +0110 .   + 0110 add 0110 to each 

   _________________________________ 

  (1)0001       (1)0000        (1)0101  .   (1)0100 propagate carry 

  /  /   /       / 

    +1    +1     +1  +1 

  ________________________________________ 

  0001  0010  0001  0110 .     0100 

 

   1                   2       1      6     . 4 

 

 



BCD Subtraction: 

Performed by subtracting the digits of each 4 bit group of the subtrahend the digits from 

the corresponding 4- bit group of the  minuend in binary  starting from the LSD . if there is no 

borrow from the next group , then 610(0110)is subtracted from the difference term of this group. 

(a)38-15 

 In BCD    38=  0011 1000      

 In BCD -15  = -0001  0101             

  ___ ___________ 

    23    0010 0011   

 No borrow, so correct difference. 

 .(b) 206.7-147.8 

206.7      = 0010 0000 0110 . 0111   in BCD  

-147.8   = -0001 0100 0111 . 0110   in BCD 
_________ ___________________________________________________ 

58.9  0000 1011 1110 . 1111  borrows are present   

 -0110 -0110 . -0110  subtract 0110 

  ____________________________ 

   0101 1000 . 1001 

BCD Subtraction using 9’s & 10’s compliment methods: 

 Form the 9‘s & 10‘s compliment of the decimal subtrahend & encode that no. in 

the 8421 code . the resulting BCD no.s are then added. 

EX:    305.5 – 168.8 

 305.5 = 305.5 

 -168.8= +83.1   9‘s comp of -168.8 

   
_________ 

   
(1)136.6 

    +1  end around carry 

       136.7  corrected difference 

305.510    =   0011    0000  0101    . 0101  

+831.110   = +1000    0011   0001   .      0001  9‘s comp of 168.8 in BCD 
_________ ___________________________________________________ 

  +1011     0011   0110   .      0110     1011 is illegal code 

  +0110                    add 0110 

  ____________________________ 

        (1)0001     0011     0110    .      0110 

       +1 End around carry 

  ____________________________ 

  0001       0011      0110    .      0111  

     = 136.7  



Excess three(xs-3)code: 

It is a non-weighted BCD code .Each binary codeword is the corresponding 8421 

codeword plus 0011(3).It is a sequential code & therefore , can be used for arithmetic 

operations..It is a self-complementing code.s o the subtraction by the method of compliment 

addition is more direct in xs-3 code than that in 8421 code. The  xs-3 code has six invalid states   

0000,0010,1101,1110,1111.. It has interesting properties when used in addition & subtraction. 

Excess-3 Addition: 

 Add the xs-3 no.s by adding the 4 bit groups in each column starting from the LSD. If  

there is no carry starting from the addition of any of the 4-bit groups , subtract 0011 from the 

sum term of those groups ( because  when 2 decimal digits are added in xs-3 & there is no carry , 

result in xs-6). If there is a carry out, add 0011 to the sum term of those groups( because when 

there is a carry, the invalid states are skipped and the result is normal binary). 

 EX:      37  0110  1010 

  +28         +0101  1011 
  ______  ________________________ 

  
 65  1011         (1)0101 carry generated 

         +1    propagate carry
 

    _________________________ 

    
1100  0101  add 0011 to correct 0101 & 

    -0011  +0011  subtract 0011 to correct 1100 

    
___________________________ 

    
1001  1000  =6510 

Excess -3 (XS-3) Subtraction: 

 Subtract the xs-3 no.s by subtracting each 4 bit group of the subtrahend  from the 

corresponding  4 bit  group of the minuend starting form the LSD .if there is no borrow from the 

next 4-bit group add 0011 to the difference term of such groups (because when decimal digits are 

subtracted in xs-3 & there is no borrow , result is normal binary). I f there is a borrow , subtract 

0011 from the differenceterm(b coz taking a borrow is equivalent to adding six invalid  states , 

result is in xs-6) 

Ex: 267-175 

 267  =   0101   1001   1010 

 -175=   -0100   1010   1000 
  ___________________________ 

  
0000    1111     0010 

  +0011   -0011   +0011 

  __________________ 

     0011   1100     +0011    =9210 

 



Xs-3 subtraction using 9’s & 10’s compliment methods: 

Subtraction is performed by the 9‘s compliment or 10‘s compliment 

Ex:687-348   The subtrahend (348) xs -3 code & its compliment are: 

  9‘s comp of 348 = 651 

  Xs-3 code of 348 = 0110  0111   1011 

  1‘s comp of 348 in xs-3 =   1001   1000   0100 

  Xs=3 code of 348 in xs=3 =  1001   1000   0100 

  

687      687 

         -348   →       +651 9‘s compl of 348 

 
_______  _______ 

 339  (1)338 

          +1 end around carry 
   ________ 

    339  corrected difference in decimal 

 1001  1011  1010  687 in xs-3 

 +1001  1000  0100  1‘s comp 348 in xs-3 

 
________________________________________ 

      (1)0010 (1)0011  1110  carry generated 

⁄⁄   

+1  +1
     

propagate carry
 

________________________________________________-
 

(1)0011           0010  1110   

        +1  end around carry 
_________________________________________________ 

 
0011  0011  1111  (correct 1111 by sub0011 and 

 +0011  +0011  +0011  correct both groups of 0011 by  

 
_________________________________________ 

adding 0011) 

 0110  0110  1100  corrected diff in xs-3 = 33010 

 

The Gray code (reflective –code): 

Gray code is a non-weighted code & is not suitable for arithmetic operations. It is not a 

BCD code . It is a cyclic code because successive code words in this code differ in one bit 

position only i.e, it is a unit distance code.Popular of the unit distance code.It is also a reflective 

code i.e,both reflective & unit distance. The n least significant bits for 2
n
 through 2

n+1
-1 are the 

mirror images of thosr for 0 through 2
n
-1.An N bit gray code can be obtained by reflecting an N-

1 bit code about an axis at the end of the code, & putting the MSB of 0 above the axis & the  

MSB of 1 below the axis. 

 



Reflection of gray codes: 

Gray Code  

Decimal 

 

4 bit binary 1 bit 2 bit 3 bit  4 bit 

0 

1 

00 

01 

000 

001 

0000 

0001 

0 

1 

0000 

0001 

 11 

10 

011 

010 

0011 

0010 

2 

3 

0010 

0011 

  110 

111 

101 

110 

0110 

0111 

0101 

0100 

4 

5 

6 

7 

0100 

0101 

0110 

0111 

   1100 

1101 

1111 

1110 

1010 

1011 

1001 

1000 

8 

9 

10 

11 

12 

13 

14 

15 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

Binary to Gray conversion: 

  N bit  binary no is rep by     Bn Bn-1 ------- B1 

   Gray code equivalent is by     Gn Gn-1 ------- G1 

Bn,, Gn are the MSB‘s then the gray code bits are obtaind from the binary code as 

   Gn=Bn Gn-1=Bn

Bn-1 

Gn-2=Bn-1 Bn-

2 

----------- G1=B2 B1  

  →EX-or  symbol 

Procedure: ex-or the bits of the binary no with those of the binary no shifted one position to the 

right . The LSB of the shifted no. is discarded & the MSB of the gray code no.is the same as the 

MSB of the original binaryno. 

EX:   10001 

(a).   Binary :  1 →0 →0 →1 

 Gray : 1  1 0 1 

(b). Binary:   1 0 0 1 

 Shifted binary: 1 0 0 (1) 

    
____________________________ 

    
1 1 0 1→gray 



Gray to Binary Conversion: 

 If an n bit gray no. is rep by Gn Gn-1 ------- G1 

its  binary equivalent by Bn Bn-1 ------- B1 then the binary bits are obtained from gray bits as 

   Bn= Gn Bn-1=Bn Gn-1 Bn-2= Bn-1  Gn-2 ----------- B1 =B2  

G1 

 

To convert no. in any system into given no. first convert it into binary & then binary to gray. To 

convert gray no into binary no & convert binary no into require no system. 

Ex:10110010(gray) = 110111002= DC16=3348=22010 

EX:1101 

 Gray:      1               1   0                1 

     

 Binary:1  0  0  1 

Ex:  3A716= 0011,1010,01112=1001110100(gray) 

 5278=101,011,0112=111110110(gray) 

 65210=10100011002= 1111001010(gray) 

XS-3 gray code: 

 In a normal gray code , the bit patterns for 0(0000) & 9(1101) do not have a unit distance 

between them i.e, they differ in more than one position.In xs-3 gray code , each decimal digit is 

encoded with gray code patter of the decimal digit that is greater by 3. It has a unit distance 

between the patterns for 0 & 9. 

XS-3 gray code for decimal digits 0 through 9 

Decimal digit Xs-3 gray code  Decimal digit Xs-3 gray code 

0 0010 5 1100 

1 0110 6 1101 

2 0111 7 1111 

3 0101 8 1110 

4 0100 9 1010 

 



Error – Detecting codes:When binary data is transmitted & processed,it is susceptible to noise 

that can alter or distort its contents. The 1‘s may get changed to 0‘s & 1‘s .because digital 

systems must be accurate to the digit, error can pose a problem. Several schemes have been 

devised to detect the occurrence of a single bit error in a binary word, so that whenever such an 

error occurs the   concerned binary word can be corrected & retransmitted. 

Parity:The simplest techniques for detecting errors is that of adding an extra bit known as parity 

bit to each word being transmitted.Two types of parity: Oddparity, evenparity forodd parity, the 

parity bit is set to a ‗0‘ or a ‗1‘ at the transmitter such that the total no. of 1 bit in the word 

including the parity bit is an odd no.For even parity, the parity bit is set to a ‗0‘ or a ‗1‘ at the 

transmitter such that the parity bit is an even no. 

Decimal 8421 code  Odd parity Even parity 

0 0000 1 0 

1 0001 0 1 

2 0010 0 1 

3 0011 1 0 

4 0100 0 1 

5 0100 1 0 

6 0110 1 0 

7 0111 0 1 

8 1000 0 1 

9 1001 1 0 

When the digit data is received . a parity checking circuit generates an error signal if the 

total no of 1‘s is even in an odd parity system or odd in an even parity system. This parity check 

can always detect a single bit error but cannot detect 2 or more errors with in the same word.Odd 

parity is used more often than even parity does not detect the situation. Where all 0‘s are created 

by a short ckt or some other fault condition. 

 

Ex:  Even parity scheme 

(a) 10101010   (b)  11110110 (c)10111001 

Ans: 

(a) No. of 1‘s in the word is even  is 4 so there is no error 

(b) No. of 1‘s in the word is even  is 6 so there is no error 

(c) No. of 1‘s in the word is odd  is 5 so there is error 

 

Ex: odd parity 

 (a)10110111    (b) 10011010 (c)11101010 

Ans: 

(a) No. of 1‘s in the word is even  is 6 so word has  error 

(b) No. of 1‘s in the word is even  is 4 so word has error 

(c) No. of 1‘s in the word is odd is 5 so there is no error 

 

 

 



Checksums: 

  

Simple parity can‘t detect two errors within the same word. To overcome this, use a sort 

of 2 dimensional parity. As each word is transmitted, it is added to the sum of the previously 

transmitted words, and the sum retained at the transmitter end. At the end of transmission, the 

sum called the check sum. Up to that time sent to the receiver. The receiver can check its sum 

with the transmitted sum. If the two sums are the same, then no errors were detected at the 

receiver end.  If there is an error, the receiving location can ask for retransmission of the entire 

data, used in teleprocessing systems.  

 

Block parity: 

 

 Block of data shown is create the row & column parity bits for the data using odd parity. 

The  parity bit 0 or 1 is added column wise & row wise such that the total no. of 1‘s in each 

column & row including the data bits & parity bit is odd as  

          

Data  Parity bit 

10110 0 

10001 1 

10101 0 

00010 0 

11000 1 

00000 1 

11010 0 

    

 

Error –Correcting Codes: 

A code is said to be an error –correcting code, if the code word can always be deduced 

from an erroneous word.  For a code to be a single bit error correcting code, the minimum 

distance of that code must be three. The minimum distance of that code is the smallest no. of bits 

by which any two code words must differ. A code with minimum distance of 3 can‘t only correct 

single bit errors but also detect ( can‘t correct) two bit errors, The  key to error correction is that 

it must be possible to detect  & locate erroneous that it must be possible to detect & locate 

erroneous digits. If the location of an error has been determined. Then by complementing the 

erroneous digit, the message can be corrected , error correcting , code is the Hamming code , In 

this , to each group of m information  or  message or data bits, K parity checking bits denoted by  

P1,P2,----------pk  located at positions 2
 k-1

 from left are added to form an (m+k) bit code word. 

To correct the error, k parity checks are performed on selected digits of each code word, & the 

position of the error bit is located by forming an error word, & the error bit is then 

complemented. The  k bit error word is generated by putting a 0 or a 1 in the 2
 k-1

th position 

depending upon whether the check for parity involving the parity bit Pk is satisfied or not.Error 

positions & their corresponding values : 

data 

10110 

10001 

10101 

00010 

11000 

00000 

11010 



Error Position For 15 bit code 

C4  C3  C2  C1 

For 12 bit code 

C4  C3  C2  C1 

For 7 bit code 

  C3  C2  C1 

0 0   0   0   0  0   0   0   0    0   0   0  

1 0   0   0   1 0   0   0   1   0   0   1 

2 0   0   1   0 0   0   1   0   0   1   0 

3 0   0   1   1 0   0   1   1   0   1   1 

4 0   1   0   0  0   1   0   0    1   0   0  

5 0   1   0   1 0   1   0   1  1   0   1 

6 0   1    1   0 0   1    1   0   1    1   0 

7 0   1    1    1 0   1    1    1   1    1    1 

8 1   0   0     0 1   0   0     0  

9 1   0    0    1 1   0    0    1  

10 1   0    1    0 1   0    1    0  

11 1   0    1    1 1   0    1    1  

12 1   1    0     0  1   1    0     0   

13 1    1    0     1   

14 1    1    1     0   

15 1    1     1     1   

 

7-bit Hamming code: 

  To transmit four data bits, 3 parity bits located at positions 2
0
 21&2

2
 from left are 

added to make a 7 bit codeword which is then transmitted. 

The word format  

P1 P2 D3 P4 D5 D6 D7 

  D—Data bits 

  P—Parity bits 
 

For Excess-3 

P1P2D3P4D5D6D7 

1    0   0    0   0   1     1 

1    0   0    1   1   0     0 

0    1    0   0   1   0     1 

1    1   0    0   1   1    0 

0    0   0    1   1    1    1 

1    1   1    0   0    0    0 

0    0   1    1   0    0    1 

1    0   1    1    0    1    0 

0    1   1    0    0     1    1 

0     1   1    1    1    0    0 

 

 

Decimal  Digit For BCD 

P1P2D3P4D5D6D7 

0 0    0   0    0   0   0     0 

1 1    1   0    1   0   0     1 

2 0    1   0    1   0   1     1 

3 1    0   0    0   0   1     1 

4 1    0   0    1   1   0     0 

5 0    1    0   0   1   0     1 

6 1    1   0    0   1   1    0 

7 0    0   0    1   1    1    1 

8 1    1   1    0   0    0    0 

9 0    0   1    1   0    0    1 



Ex: Encode the data bits 1101 into the 7 bit even parity Hamming Code 

 The bit pattern is 

  P1P2D3P4D5D6D7 

   1   1     0     1 

 Bits 1,3,5,7 (P1 111) must have even parity, so P1 =1 

 Bits 2, 3, 6, 7(P2 101) must have even parity, so P2 =0 

 Bits 4,5,6,7 (P4    101)must have even parity, so P4  =0 

   The final code is 1010101 

EX: Code word is 1001001 

 Bits 1,3,5,7 (C1 1001) →no error →put a 0 in the 1‘s position→C1=0 

 Bits 2, 3, 6, 7(C2 0001)) → error →put a 1 in the 2‘s position→C2=1 

 Bits 4,5,6,7 (C4    1001)) →no error →put a 0 in the 4‘s position→C3=0 

15-bit Hamming Code: It transmit 11 data bits, 4 parity bits located 2
0
 2

1
 2

2
 2

3
 

Word format is 

P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12 D13 D14 D15 

 

12-Bit Hamming Code:It transmit 8 data bits, 4 parity bits located at position 2
0
 2

1
 2

2
 2

3
 

 Word format is 

P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12 

 

Alphanumeric Codes: 

 These codes are used to encode the characteristics of alphabet in addition to the  decimal  

digits. It is used for transmitting data between computers & its I/O device such as printers, 

keyboards & video display terminals.Popular modern alphanumeric codes are ASCII code & 

EBCDIC code. 

 

 



Boolean Algebra And Switching Functions 

Boolean algebra: 

Switching circuits called Logic circuits, gate circuits & digital circuits. Switching algebra 

called Boolean Algebra. Boolean algebra is a system of mathematical logic. It is an algebraic 

system consisting of the set of element (0.1) two binary operators called OR & AND & One 

unary operator  NOT. Binary Digits 0 & 1 used to represent two voltage levels. Binary 1 is for 

high i.e, +5v . Binary 0 for Low i.e, 0v. 

A+A=A     A.A=A  because variable has only a logic value. 

Also there are some theorems of Boolean Algebra. 

 

 

 
 

Logic Operators: 

  

AND,OR,NOT are 3 basic operations or functions that performed in Boolean Algebra. & derived 

operations as  NAND , NOR,X-OR, X-NOR. 

 

AXIOMS & Laws of Boolean Algebra: 

 Axioms or Postulates are a set of logical expressions i.e, without proof. & also we can 

build a set of useful theorems. Each axiom can be interpreted as the outcome of an operation 

performed by a logic gate. 

  

 

 

 

 

 

 

Complementation Laws: 

 Complement means invert(0 as 1 & 1 as 0) 

 Law1:0 =1 

Law2:1 =0 

AND OR NOT 

0.0=0 0+0=0 1 =0 

0.1=0 0+1=1 0 =1 

1.0=0 1+0=1 

1.1=1 1+1=1 



Law3:If A=0 then 𝐴 =1 

Law4:If A=1 then 𝐴 =0 

Law5:𝐴 =A(double complementation law) 

AND laws: 

 Law 1: A.0=0(Null law) 

 Law 2:A.1=A(Identity law) 

 Law 3:A.A=A 

 Law 4:A.𝐴 =0 

OR laws: 

 Law 1: A+0=A(Null  law) 

 Law 2:A+1=1 

 Law 3:A+A=A 

 Law 4:A+𝐴 =0 

 

Commutative laws: allow change in position of AND or OR variables. 

 2 commutative laws 

 Law 1: A+B=B+A 

Law 2: A.B=B.A 

 

  

 

  

 

 

 

Associative laws: This allows grouping of variables. It has 2 laws. 

Law 1: (A+B)+C=A+(B+C) =A OR B ORed with C 

 This law can be extended to any no. of variables 

 (A+B+C)+D=(A+B+C)+D=(A+B)+(C+D) 
 

 

 

 

A.B B.A 

0 0 

0 0 

0 0 

1 1 

A   B A+B = B    A B+A 

0    0    0  0     0    0 

0     1    1  0     1    1   

1     0    1  1     0    1 

1     1    1  1     1    1 



 

 

 

 

   =   

 

Law2: (A.B).C=A(B.C) 

 This law can be extended to any no. of variables 

 (A.B.C).D=(A.B.C).D 

 

 
 

 

 

= 

 

 

 

 

 

 

 

 

Distributive Laws: 

 This has 2 laws 

 Law 1.A(B+C)=AB+AC 

  This law applies to single variables. 

   EX:ABC(D+E)=ABCD+ABCE 

    AB(CD+EF)=ABCD+ABEF 

 
  

A  B  C  A+B (A+B)+C 

0  0  0    0 0 

0  0  1    0 1 

0  1  0    1 1 

0  1  1    1 1 

1  0  0    1 1 

1  0  1    1 1 

1  1  0    1 1 

1  1  1    1 1 

A  B  C  B+C A+(B+C) 

0  0  0    0 0 

0  0  1    1 1 

0  1  0    1 1 

0  1  1    1 1 

1  0  0   0 1 

1  0  1    1 1 

1  1  0    1 1 

1  1  1    1 1 

A  B  C  BC A(BC) 

0  0  0    0 0 

0  0  1 0 0 

0  1  0 0 0 

0  1  1    1 0 

1  0  0 0 0 

1  0  1 0 0 

1  1  0 0 0 

1  1  1    1 1 

A  B  C  AB (AB)C 

0  0  0    0 0 

0  0  1    0 0 

0  1  0    0 0 

0  1  1    0 0 

1  0  0    0 0 

1  0  1    0 0 

1  1  0    1 0 

1  1  1    1 1 



 

 

  

 

 

= 

 

 

 

 

 

 

Law 2.A+BC=(A+B)(A+C) 

  RHF=(A+B)(A+C) 

   =AA+AC+BA+BC 

   =A+AC+AB+BC 

   =A(1+C+B)+BC 

   =A.1+BC 

   =A+BC            LHF 

 

 

 
 

  

 

= 

 

 

 

 

 

 

 

 

Redundant Literal Rule(RLR): 

 Law 1: A+𝐴 B=A+B 

   LHF   = (A+𝐴 )(A+B) 

    =1.(A+B) 

    =A+B  RHF 

A  B  C  AB      AC AB+AC 

0  0  0    0         0 0 

0  0  1    0         0 0 

0  1  0    0         0 0 

0  1  1    0         0 0 

1  0  0    0         0 0 

1  0  1    0         1 1 

1  1  0    1         0 1 

1  1  1    1          1 1 

A  B  C  B+C A(B+C) 

0  0  0    0 0 

0  0  1    1 0 

0  1  0    1 0 

0  1  1    1 0 

1  0  0    0 0 

1  0  1    1 1 

1  1  0    1 1 

1  1  1    1 1 

A  B  C  BC    A+BC 

0  0  0    0 0 

0  0  1    0 0 

0  1  0    0 0 

0  1  1    1 1 

1  0  0    0 1 

1  0  1    0 1 

1  1  0    0 1 

1  1  1    1 1 

A  B  C    A+B     A+C (A+B)(A+C) 

0  0  0    0             0 0 

0  0  1    1             1 0 

0  1  0    1             0 0 

0  1  1    1             1 0 

1  0  0    0             1 0 

1  0  1    1             1 1 

1  1  0    1             1 1 

1  1  1    1             1 1 



ORing of a variable with the AND of the compliment of that variable with another 

variable, is equal to the ORing of the two variables. 

 

 
 

  

 

 = 

 

 

 

Law 2:A(𝐴 +B)=AB 

  LHF = A𝐴 +AB 

   =0+AB 

   =AB  RHF 

 ANDing of a variable with the OR of the complement of that variable with another 

variable , is equal to the ANDing of the two variables. 

 

 

 
 

 

   

 

 

 =  

 

 

Idempotence Laws: 

Idempotence means same value. It has 2 laws. 

 Law 1=A.A=A 

                       This law states that ANDing of a variable with itself is equal to that 

variable only. 

      If A=0, then A.A=0.0=0=A             

     If A=1, then A.A=1.1=1=A 

 

 Law 2=A+A=A 

A  B 𝐴 B A+𝐴 B 

0  0  0   0 

0  1  1   1 

1  0  0   1 

1  1  0   1 

A B A+B 

0 0   0 

0 1   1 

1 1   1 

1 1   1 

A  B 𝐴 +B A(𝐴 +B) 

0  0  1    0 

0  1  1   0 

1  0  0   0 

1  1  1   1 

A B A+B 

0 0    0 

0 1   0 

1 1   0 

1 1   1 



                          This law states that ORing of a variable with itself is equal to that 

variable only. 

      If A=0, then A+A=0+0=0=A             

     If A=1, then A+A=1+1=1=A 

 

 

Absorption Laws: 

 Law 1=A+A.B=A    

 

  = A(1+B)     

  =A.1 

  =A 

i.e.,    A+A. any term=A 

 

 
 

Law 2=A(A+B)=A 

 A(A+B)=A.A+A.B 

     = A+AB 

     =A(1+B) 

    = A.1 

     =A 

 

 

  

 

 
 

 

Consensus theorem: 

 

Theorem 1: AB+𝐴 C+BC=AB+𝐴 c 

   LHS: AB+𝐴 C+BC 

=AB+𝐴 C+BC(A+𝐴 ) 
=AB+𝐴 C+BCA+BC𝐴  
=AB(1+C)+𝐴 c(1) 

=AB+𝐴 C 

RHS 

A  B 𝐴𝐵 A+𝐴B) 

0  0    0 0 

0  1   0 0 

1  0   0 1 

1  1   1 1 

A  B 𝐴 + 𝐵 A(A+B) 

0  0    0 0 

0  1   1 0 

1  0   1 1 

1  1   1 1 



This can be extended to any no. of variables 

 EX: AB+𝐴 C+BCD =AB+𝐴 𝐶 

 

Theorem 2:  (A+B)(𝐴 + 𝐶)(B+C)=(A+B)(𝐴 +C) 

 

Transposition Theorem: 

  AB+𝐴 C= (A+C)(𝐴 +B) 

  RHS: (A+C)(𝐴 +B) 

   =A𝐴 +C𝐴 +AB+CB 

   =0+𝐴 C+AB+BC 

   =𝐴 C+AB+BC(A+𝐴 ) 
   =AB+ABC+𝐴 C+𝐴 BC 

   =AB+𝐴 C 

   LHS 

DeMorgans Theorem: 

 It represents two of the most powerful laws in Boolean algebra 

 

Law 1: 𝐴 + 𝐵        =𝐴 𝐵  

  This law states that the compliment of a sum of variables is equal  to the product 

of their individual complements. 

 

LHS 

 
 

 

RHS 

 

 NOR gate  Bubbled AND gate  

  

 

 

 

 

 

A  B A+B (A+B)‘ 

 0  0  0 1 

0  1 1 0 

1  0 1 0 

1  1 1 0 

A  B A‘   B‘ A‘B‘ 

0  0  1   1 1 

0  1 1    0 0 

1  0 0    1 0 

1  1 0    0 0 



NOR gate= Bubbled AND gate 

This can be extended to any variables. 

(A+B+C+D+-----)‘=A‘B‘C‘D‘---- 

Law 2:   (AB)‘=A‘+B‘ 

                    Complement of the product of variables is equal to the sum of their individual 

components. 

 

 

 

 

 

 

This law also can extend to any no. Of variables.                    

                      (ABCD---)‘=A‘+B‘+C‘+D‘+------ 

 It can be extended to complicated expressions by  

1. Complement the entire function 

2. Change all the ANDs to ORS and all the Ors to ANDS 

3. Complement each of the individual variables. 

4. Change all 0s to  1s and 1s to 0s. 

This procedure is called demorganization or complementation of switching expressions. 

Shannon’s expansion Theorem: 

                     This theorem states that any switching expression can be decomposed w.r.t. a 

variable A into two parts, one containing A &other containing A‘. It is useful in decomposing 

complex machines into an interconnection of smaller components. 

    f(A,B,C---)=A.f(1,B,C---)+A‘.f(0,B,C----) 

    f(A,B,C,---)=[A+f(0,B,C,-----)].[A‘+f(1,B,C-----] 

                 Ex: DeMorganize f=((A+B‘)(C+D‘))‘,   f=((A+B‘)(C+D‘))‘ 

                                =(A+B‘)(C+D‘) 
                               = A.B‘ +C.D‘ 

                               =A‘.B+C‘.D 

A  B (AB)‘ 

 0  0 1 

0  1 1 

1  0 1 

1  1 0 

A  B A‘   B‘ A‘+B‘ 

0  0  1   1 1 

0  1 1    0 1 

1  0 0    1 1 

1  1 0    0 0 



Duality: 

           In a positive Logic system the more positive of the two voltage levels is represented by a 

1 & the more negative by a 0. In a negative logic system the more positive of the two voltage 

levels is represented by a 0 & more negative by a 1. This distinction between positive &negative 

logic systems is important because an OR gate in the positive logic system becomes an AND 

gate in the negative logic system &vice versa. Positive & Negative logics give a basic duality in 

Boolean identities. Procedure dual identity by changing all ‗+‘ (OR) to ―.‘(AND) & 

complementing all 0‘s &1‘s. Once a theorem or statement is proved, the dual also thus stands 

proved called Principle of duality. 

    [f(A,B,C,-------0,1,+,.)]d =f(A,B,C,----1,0,.,+) 

Relations between complement 

          (fc(A,B,C----)=    (𝑓𝑐(𝐴. 𝐵, 𝐶 − −−)                      = (fd(𝐴, 𝐵, 𝐶, --)  

                   (fd(A,B,C----)=    (𝑓𝑐(𝐴. 𝐵, 𝐶 − −−)                      = (fc(𝐴, 𝐵, 𝐶, --) 

Duals: 

Expression Dual 

0 =1 1 =0 

0.1=0 1+0=1 

0.0=0 1+1=1 

1.1=1 0+0=0 

A.0=0 A+1=1 

A.1=A A+0=A 

A.A=A A+A=A 

A.𝐴 =0 A+𝐴 =1 

A.B=B.A A+B=B+A 

A.(B.C)=(A.B).C A+(B+C)=(A+B)+C 

A.(B+C)=(AB+AC) A+BC=(A+B)(A+C) 

A(A+B)=A A+AB=A 

A.(A.B)=A.B A+A+B=A+B 

𝐴𝐵    =𝐴 +𝐵  𝐴 + 𝐵        =𝐴 +𝐵  

(A+B)(𝐴 +C)(B+C)=(A+B)(𝐴 +C) AB+𝐴 C+BC=AB+𝐴 C 

 

Reducing Boolean Expressions: 

                  Procedure: 

1. Multiply all variables necessary to remove parenthesis 



                      2. Look for identical terms. Only one of those terms to be retained & other 

dropped. 

Ex: AB+AB+AB+AB=AB 

4. Look for a variable & its negation in the same term. This term can be dropped 1 

Ex: AB𝐶 𝐷 +AB𝐶 = AB𝐶 (𝐷    +1)=AB𝐶 .1=AB𝐶  

5. Look for pairs of terms which have the same variables,with one or more variables 

complemented. If a variable in one term of such a pair is complemented while in the 

second term it is not then such terms can be combined into a single term with variable 

dropped. 

Ex: AB𝐶 𝐷 +AB𝐶 D= AB𝐶 (𝐷    +D)=AB𝐶 .1=AB𝐶 unctions  

Boolean functions & their representation: 

               A function of n Boolean variables denoted by f(x1,x2,x3------xn) is  another variable 

denoted by & takes one of the two possible values 0 & 1. 

            The various way of represent a given function is 

1. Sum of Product(SOP) form: 

              It is called the Disjunctive Normal Form(DNF) 

                Ex:f(A,B,C)=(𝐴 B+𝐵 C) 

2. Product of Sums (POS) form: 

     It is called the Conjunctive Normal Form(CNF).This is implemented usin Consensus 

theorem. 

                         Ex:f(A,B,C)=(𝐴 +     B)(B+C) 

3. Truth Table form: 

           The function is specified by listing all possible combinations of values assumed by 

the variables & the corresponding values of the function. 

 

  Truth table for f(A,B,C)=(𝐴 B+𝐵 C) 

Decimal Code   A     B     C F(A,B,C) 

0    0    0    0 0 

1    0    0   1 1 

2    0    1   0 1 

3    0    1   1 1 

4    1    0   0 0 

5    1    0   1 1 

6    1    1   0 0 

7    1    1   1 0 

4. Standard Sum of Products form:Called Disjunctive Canonical form (DCF) & also called 

Expanded SOP form or Canonical SOP form. 



 

   f(A,B,C)=(𝐴 B+𝐵 C)=𝐴 B(C+𝐶 )+𝐵 C(A+𝐴 ) 

                 =𝐴 𝐵 C+𝐴 B𝐶 +𝐴 BC+A𝐵 C 

A  Product term contains all the variables of the function either in complemented or 

Uncomplemented form is called a minterm. A minterm assumes the value 1 only for one 

combination of the variables. An n variable function can have in all 2
n 

minterms to 1 is 

the standard sum of products form of the function. Min terms are denoted as m0, m1,m2--

--. Here suffixes are denoted by the decimal codes. 

   Ex:   3 variable functions 

              m0=𝐴 𝐵 𝐶  

              m1=𝐴 𝐵 C 

              m2=𝐴 B𝐶  

              m3=𝐴 BC 

                ׀               

  

  =  CBA   7             m no other way of representation in canonical SOP form is , the SUM 

of minterms for which the function equals 1.Thus  

                            f(A,B,C)=m1+m2+m3+m5 

The function in DCF is listing the decimal codes of the minterms for which f=1 

                              f(A,B,C)=∑m(1,2,3,5). 

5. Standard Product of Sums form: It is called as Conjunctive Canonical form (CCF). It is also 

called Expanded POS or Canonical POS. 

If 𝐴 =0 (A=1) B=0 C=0, term=0 

Thus function f (A, B, C) =(𝐴 +𝐵 )(A+B) given by POS 

f(A,B,C)=(𝐴 +𝐵 + 𝐶𝐶 )(A+B+𝐶𝐶 ) 

                           =(𝐴 +𝐵 + 𝐶) (𝐴 +𝐵 + 𝐶 )(A+B+C)(A+B+𝐶 ) 

A sum term which contains each of the n variables in either complemented form is called 

a Maxterm. A maxterm assumes the value ‗0‘ only for one combination of the variables. 

The most there are 2
n
 maxterms. It is represented as M0,M1,M2-----. Here the suffixes are 

decimal codes. 

The CCF of f(A,B,C)=M0.M4.M6.M7 

                   f(A,B,C)=πM(0,4,6,7) 



π or ^  represents the product of all maxterms. 

6. Octal designation: 

     m7m6            m5             m4         m3       m2     m1      m0 

   0           0               1               0            1         1        1         0 

7. Karnaugh Map: 

                     Put the Truth Table in a compact form by labeling the row & columns of a map. It 

is used  in the minimization of functions 3,4,5,6 variables. 

m0,m1,m2 -----                      are minterms 

M0,M1,M2,M3--------                       are Maxterms. 

Expansion of a Boolean expression in SOP form to the standard SOP form: 

     1.Write down all the terms. 

      2. If one or more variables are missing in any term.Expand that term by multiplying it with  

        the sum of each one of the missing variable and its complement. 

      3. Drop out redundant terms. 

*  interms of minterms:   

    

 1.Write down all the 

terms. 

2.Put Xs in terms  where variables must be inserted to form a minterm. 

3.Replace the non-complemented variables by 1s and the complemented variables by 0s,  

and use all combinations of Xs in terms of 0s and 1s to generate minterms. 

4. Drop out redundant terms. 

 

Expansion of a Boolean expression in POS form to standard POS form: 

1. Write down all the terms. 

2. . If one or more variables are missing in any sum term. expand that term by adding  the 

product of each of the missing variable and its complement. 

3. Drop out redundant terms. 

 Interms of Maxterms: 

1. Write down all the terms. 

2. Put x‘s in terms where variable inserted 

3. Replace complemented variable by 1‘s & non complemented variable by 0‘s.& use 

all combinations. 

4. Drop out redundant terms. 

 



Conversion between Canonical form: 

       The complement of a function expressed as the sum of minterms equals the sum of 

minterms missing from the original function is expressed by those minterms that make 

the function equal to 1 for those minterms that make the function equal to 0. 

Ex: f(A,B,C)=πm(0,2,4,6,7) 

Complement is 

𝑓(𝐴,𝐵, 𝐶           =∑m(1,3,5).=m1+m3+m5 

complement of  𝑓  by deMorgans theorem 

    f= (m1 + m3 + m5)                       =𝑚1    .𝑚2    .𝑚5    =M1 M3 M5=πM(1,3,5) 

𝑚1    =Mj , the maxterm with subscript j is a complement of the minterm with the same 

subscript j and vice versa. To convert one canonical form to another, interchange the 

symbol ∑ and π, and list those numbers missing from the original form. 

Computation of total gate inputs: 

          The total number of gate inputs required to realize a Boolean expression is 

computed as, If the expression is in the SOP form, count the number of AND inputs and 

number of AND gates feeding the OR gate. If the expression is in the POS form, count 

the number of OR inputs and the number of OR gates feeding the AND gate. If it is in 

hybrid form, count the gate inputs and the gates feeding other gates. The cost of 

implementing circuit is proportional to no. of gate inputs required. 

EX: ABC+A𝐵 CD +E𝐹 +AD 

1. Count the AND Inputs 3+4+2+2=11 

2. Count AND gates feeding the OR gate 1+1+1+1=4 

3. Total gate inputs   =15 

Boolean Expression & Logic Diagrams: 

                  Boolean expressions can be realized as hardware using logic gates. 

Conversely, hardware can be translated into Boolean expressions for the analysis of 

existing circuits. 

1. Converting Boolean Expressions to Logic: 

                      To convert, start with the output & work towards the input. 



                 Assume the expression 𝐴𝐵    +A+𝐵 + 𝐶         is to be realized using AOI logic. Start 

with this expression. Since it is three terms, it must be the output of a three-input OR 

gates. So, draw an OR gate with three inputs as 

 

              (AB)‘ is the output of an inverter whose inputs is AB and (B+C)‘ must be the output of 

an inverter whose input is B+C. so, those two inverters are as 

 

 

Now AB must be output of a two-input AND gate whose inputs are A and B . And 

B+C must be the output of a two-input OR gate whose inputs are B and C. so,  an AND 

gate and an OR gate are as 

 
2. Converting Logic to Boolean Expressions: 

     To convert logic to algebra, start with the input signals and develop the terms of the 

Boolean expression until the output is reached. 

 

Converting AND/OR/INVERT logic to NAND/NOR logic: 

1.  The SOP expression  ABC+AB‘+A‘BC can be implemented in  AND/ OR 

logic as 

 



 

                  The POS expression (A+B+C)(A+B‘)(A‘+B+C) can be implemented usin OR and 

AND gates 

             The expression ABC‘+A‘B[=B(A‘+AC‘) can be implemented in hybrid form as   

 

 Hybrid Logic reduces the no. of gate inputs required for realization (from 7 to 6 in this case), but 

results in multilevel logic.  Different inputs pass through number of gates to reach the output. It 

leads  to non-uniform propagation delay between different numbers of gates to give rise to logic 

race. The SOP and POS realizations give rise two-level logic. The two-level logic provides 

uniform time delay between input and outputs, because each input signal has to pass through two 

gates to reach the output. So, it does not suffer from the problem of logic race. 

  Since NAND logic and MOR logic are universal logic circuits  which are first 

computed and converted to AOI logic may ten be converted to either NAND logic or NOR logic 

depending on the choice. The procedure is 

1. Draw the circuit in AOI logic  

2. If NAND hardware is chosen, add a circle at the output of each AND gate and at the 

inputs to all the AND gates. 

3.  If NOR hardware is chosen, add a circle at the output of each OR gate and at the inputs 

to all the AND gates 

4. Add or subtract an inverter on each line that received a circle in steps 2 or 3 so that the 

polarity of signals on those lines remains unchanged from that of the original diagram 

5. Replace bubbled OR  by NAND and bubbled AND by NOR 

6. Eliminate double inversions. 

 



LOGIC GATES: Logic gates are fundamental building blocks of digital systems. Logic gate 

produces one output level when some combinations of input levels are present. & a different 

output level when other combination of input levels is present. In this, 3 basic types of gates are 

there. AND OR & NOT 

The interconnection of gates to perform a variety of logical operation is called Logic 

Design. Inputs & outputs of logic gates can occur only in two levels.1,0 or High, Low  or True , 

False or On , Off.  A table which lists all the possible combinations of input variables & the 

corresponding outputs is called a Truth Table. It shows how the logic circuits output responds to 

various combinations of logic levels at the inputs. Level Logic, a logic in which the voltage levels 

represent logic 1 & logic 0.Level logic may be Positive Logic or Negative Logic. In Positive 

Logic  the higher of two voltage levels represent logic 1 & Lower of two voltage levels represent 

logic 0.In Negative Logic the lower of two voltage levels represent logic 1 & higher of two 

voltage levels represent logic 0. 

In TTl (Transistor-Transistor Logic) Logic family voltage levels are +5v, 0v.Logic 1 represent 

+5v & Logic 0 represent 0v. 

AND Gate: 

 It is represented by ‗.‘(dot) It has two or more inputs but only one output. The output 

assume the logic 1 state only when each one of its inputs is at logic 1 state . The output assumes 

the logic 0 state even if one of its inputs is at logic 0 state. The AND gate is also called an All or 

Nothing gate. 

 Boolean Expression:  

     A and B 

 

 Logic Symbol     Truth Table 

 

IC 7408 contains 4 two input AND gates  

IC 7411 contains 3 three input AND gates 

IC 7421 contains 2 four input AND gates 

 

 

 



OR Gate: 

 

It is represented by ‗+‘ (plus) It has two or more inputs but only one output. The output assumes 

the logic 1 state only when one of its inputs is at logic 1 state. The output assumes the logic 0 

state even if each one of its inputs is at logic 0 state. TheOR gate is also called an any or All gate. 

Also called an inclusive OR gate because it includes the condition both the inputs can be present. 

   
  Logic Symbol   Truth Table 

 Boolean Expression: 

  A OR B   

 
 

IC 7432 Contains 4 two input OR gates. 

 

NOT Gate: 

  It is represented by ‗-―(bar).It is also called an Inverter or Buffer. It has only one 

input & one output. Whose output always the compliment of its input? Theoutput assumes logic 

1 when input is logic 0 & output assume logic 0 when input is logic 1.    

  

   Logic Symbol 

      

  

 Truth Table     Boolean Expression: 

             A X      X=A‘ 
  __________ 

 
1 0 

 

 0 1 
 

Logic circuits of any complexity can be realized using only AND, OR , NOT  gates. Using these 

3 called AND-OR-INVERT i.e, AOI Logic circuits. 

 



The Universal Gates: 

 The universal gates are NAND, NOR. Each of which can also realize Logic Circuits 

Single handedly. NAND-NOR called Universal Building Blocks.. Both NAND-NOR can 

perform all the three basic logic functions. AOI logic can be converted to NAND logic or NOR 

logic. 

NAND Gate: 

 NAND gate mean NOT AND i.e, AND output is NOTed. 

  NAND→AND & NOT gates 

  

Boolean Expression: 

    Y=𝐴𝐵𝐶       
     = A .B.C whole bar. 

NAND assumes Logic 0 when each of inputs assume logic 1. 

  

 Logic Symbol 

    

   Truth table 

Bubbled OR gate: The output of this is same as NAND gate. 

Bubbled OR gate is OR gate with inverted inputs. 

  Y=A‘+B‘=(AB)‘ 

 

 

Truth Table   Logic Symbol 



 NAND gate as an Inverter. 

All  its input terminals together & applying the signal to be inverted to the 

common terminal by connecting all input terminals except one to logic 1 & 

applying the signal to be inverted to the remaining terminal. 

It is also called Controlled Inverter. 

   

Bubbled NAND Gate: 

   

NOR Gate: 

 NOR gate is NOT gate with OR gate. i.e, OR gate is NOTed. 

 Boolean expression: 

  X=𝐴 + 𝐵 + 𝐶 + − −                       

  

 Logic Symbol              Logic symbol with  OR and NOT 

    

A B    Y 

0 0    1 

0 1    0 

1 0    0 

1 1    0  

    Truth Table 

Bubbled AND gate: 

  is  AND gate with inverted inputs.The AND gate with inverted inputs is called a 

bubbled And gate. So a NOR gate is equivalent to a bubbled and gate.A bubbled AND gate is 

also called a negative AND gate. Since its output assumes the HIGH state only when all its 



inputs are in LOW state , a NOR gate is also called active-LOW AND gate.Output Y is 1 only 

when both A & B are equal to 0.i.e, only when both A‘ and B‘ are equal to 1. 

NOR can also realized by first inverting the inputs and ANDing those inverted inputs. 

    

 Logic Symbol 

  

Inputs 

A   B 

Inverted 

Inputs 

A‘   B‘ 

Output 

   Y 

0   0 1   1   1 

0   1 1   0   0 

1    0 0   1   0 

1   1 0   0   0 

 

NOR gate as an inverter: 

               is tying all input terminals together & applying the signal  to be inverted to the common 

terminals or all inputs set as logic 0 except one & applying signal to be inverted to the remaining 

terminal. 

  

 

Bubbled NOR Gate:  is AND gate. 

  

IC 7402 is 4 two input NOR gate 

IC 7427 is 3 three input NOR gate 

IC 7425 is 2 four input NOR gate 

 

The Exclusive OR (X-OR) gate: 

  

It has 2 inputs& only 1 output. It assumes output as 1 when input is not equal called anti-

coincidence gate or inequality detector. 



 
                      Logic Symbol 

  

 

   

 Proof:    Truth Table 

  
 

The high outputs are generated only when odd number of high inputs is present. This is why x-or 

function also known as odd function. 

 

 
 

 

The X-OR gate using AND-OR-NOT gates: 

 

 
 

 

 

X-OR gate as an Inverter: 

                By connecting one of two input terminals to logic 1 & feeding the sequence to be 

inverted to other terminal 

 
                   Logic Symbol 

TTL IC 746 has 4 x-OR gate 

CMOS IC 74C8C has 4 X-OR gates. 

 

 

 

 

 

A B  
0 0   0 

0 1   1 

1 0   1 

1 1   0 



X-OR gate using NAND gates only: 

 

 
 

X-OR gate using NOR gates only: 

 
 

 

 

The EX-NOR Gate: 

It is X-OR gate with a NOT gate.It has two inputs & one output logic circuit. It assumes output 

as 0 when one if inputs are 0 & other 1.It can be used as an equality detector because it outputs a 

1 only when its inputs are equal. 

 

 X=A B=AB+A‘B‘= =(AB‘+A‘B)‘ 

  Proof:

 

  
 

Logic Symbol. 

 

 

X-NOR gate as an inverter: 

by connecting one of 2 input terminals to logic 0 & feeding the input sequence to be inverted to 

the other terminal. 

 
Logic Symbol as an inverter 

Inputs 

A   B 

Output  

X= A B 

0   0 1 

0   1 0 

1   0 0 

1   0 1 



  

 

 

 

 

 

It can be used as Controlled inverter. 

 A B=(A B)‘ is compliment of X-OR 

 A B C=(A B C)‘ 

 

TTl IC74LS266 contain 4 each X-NOR gates. 

CMOS 74C266 contain 4 each X-NOR gates. 

Highspeed CMOS IC 74HC266 contain 4 each X-NOR gates. 

 

 

INHIBIT CIRCUITS: 

 

              AND , OR , NAND , NOR gates can be used to control the passage of an input logic 

signal through the output. 

 
Pulsed operation of Logic gates: 

             The    inputs to a gate are not stationary levels , but are voltages that change frequently 

between two logic levels & can be classified as pulse waveform. 

 

 

EX:AND  

 

i/p 

0 

o/p  

0 0=1 

i/p 

1 

0/p 

1 0=0 



 
   

Hybrid Logic: 

          Both SOP & POS reductions result in a logic circuit in which each input signal has to pass 

through two gates to reach the output called Two-level logic. It has the advantage of providing 

uniform time delay between input signals & the output. The disadvantage is that the minimal or 

POS reductions may not be the actual minimal. 

      Actual minimal obtained by manipulating the minimal SOP & POS forms into a hybrid form. 

EX:  ABC+ABD+ACD+BCD----(SOP)  has 16 inputs 

   AB(C+D)+CD(A+B) ----has 12 inputs. 

  

The C input to the OR gate must go through 3 levels of logic before reaching the output where as 

C input to the AND gate must only go through two levels, can result critical timing problem 

called Logic Race. 

 

 

 



Implementation of Logic functions: 

Two level implementation: 

               The implementation of a logic expression such that each one of the inputs has to pass 

through only two gates to reach the output is called Two-level implementation. 

 Both SOP , POS forms result in two-level logic 

 Two level implementation can be with  AND, OR gates or only NAND or with only 

NOR gates  

 Boolean expression with only NAND gates requires that the function be in SOP form. 

                   Function F= AB+CD 

(A) AND-OR logic 

(B)  NAND-NAND logic 

F=AB+CD=𝐴𝐵 + 𝐶𝐷            =𝐴𝐵    . 𝐶𝐷              

                         
AND-OR Logic                                                     NAND Logic 

  Two –level implementation using AND-OR and NAND logic 

The implementation of the form: 

    F=XY‘+X‘Y+Z  using AND-OR logic and NAND- NAND logic is 

 

                       Two –level implementation using AND-OR and NAND logic 



The implementation of Boolean expressions with only NOR gates requires that the function be in 

the form of POS form. 

Implementation of the function (A+B)(C‘+D‘) 

 

                      Two –level implementation using OR-AND and NOR logic 

 

                        Two –level implementation using OR-AND and NOR logic 

Other two level implementations: 

          The types of gates most often found in IC‘s are NAND and NOR 

Some NAND or NOR gates allow the possibility of wire connection between the outputs of two 

gates to provide a specific logic function called Wired Logic. 

                 The logic function implemented by the circuit  

  

                       Is calledan AND-OR Invert function. 



 

Similarly NOR outputs of ECL gates can be tied together to form Wired NOR function. 

The logic function implemented by this circuit is 

 

Is called OR-AND INVERT Function. 

EX: Open Collector TTL NAND gates, when tied together perform the wired AND logic is 

called AOI 

                       =(𝐴𝐵     ) .(𝐶𝐷)        

                       =𝐴𝐵 + 𝐶𝐷             

Similarly NOR outputs of ECL can tied together to perform a wired NOR function. 

  F=(𝐴 + 𝐵        )+(𝐶 + 𝐷)          

     =[(𝐴 + 𝐵)(𝐶 + 𝐷)]                     

Non Degenerate forms: 

               Considering 4 types of gates AND, OR, NAND , NOR & assign  one  type of gate for 

the first level & one type of gate for the second level. Find 16 possible combinations of two level 

form. Eight of these are degenerate forms. Because they generate to a single operation. i.e, AND 

gate in first level  &  AND gate in second The output is nearly the AND function of all input 

variables. 

The other non degenerate forms produce an implementation in SOP or POS are  

                          AND-OR                       OR-AND 

                        NAND-NAND                 NOR-NOR 

                           NOR-OR                        NAND-NAND 

                         OR-NAND                        AND-NOR 



The two forms are dual of each other. 

AND-OR & OR-AND forms are the basic two-level forms. 

NAND-NAND, NOR_NOR 

AOI Implementation: 

The two forms Nandi-And and And-Nor perform AOI function. 

Inversion isand-Nor form resembles the and-Or form done by the bubble in the output of the 

NOR gate. 

Its function is F= 𝐴𝐵 + 𝐶𝐷 + 𝐸                  

 

               Two-level implementation in AND-NOR and NAND-AND form 

OAI Implementation: 

The twoforms OR-NAND and NOR-NOR perform OAI function. 

OR-NAND form OR-AND form except inversion done by bubble in NAND gate. 

  Function F=[(𝐴 + 𝐵)(𝐶 + 𝐷)𝐸                     ] 

 

 

 

 



Summary: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


