
The Decimal Number system:

The Decimal number system contains ten unique symbols. 0,1,2,3,4,5,6,7,8,9. Since

Counting in decimal involves ten symbols its base or radix is ten. There is no symbol for its

base.i.e, for ten .It is a positional weighted system i.e,the value attached to a symbol depends on

its location w.r.t. the decimalpoint.In this system, any no.(integer, fraction or mixed) of any

magnitude can be rep. by the use of these ten symbols only.Each symbol in the no. is called a

Digit. The leftmost digit in any no.rep ,which has the greatest positional weight out of all the

digits present in that no.is called the MSD (Most Significant Digit) and the right most digit

which has the least positional weight out of all the digits present in that no. is called the

LSD(Least Significant Digit).The digits on the left side of the decimal pt. form the integer part of

a decimal no. & those on the right side form the fractional part.The digits to the right of the

decimal pt have weights which are negative powers of 10 and the digits to the left of the decimal

pt have weights are positive powers of 10. The value of a decimal no.is the sum of the products

of the digit of that no. with their respective column weights. The weights of each column is 10

times greater than the weight of unity or 10
10

.The first digit to the right of the decimal pt. has a

weight of 1/10 or 10
-1

.for the second 1/100 & for third 1/1000.In general the value of any mixed

decimal no. is

 dn dn-1 dn-2 ………d1 d0.d-1 d-2 d-3 …….d-k is given by

(dn x10n)+(dn-1 x10 n-1)+ ………(d1 x101)+(d0 x10
1
)+(d-1 x10

2
)(d-2 x10

3
) …….

9’s & 10’s Complements:

It is the Subtraction of decimal no.s can be accomplished by the 9‘s & 10‘s compliment

methods similar to the 1‘s & 2‘s compliment methods of binary . the 9‘s compliment of a

decimal no. is obtained by subtracting each digit of that decimal no. from 9. The 10‘s

compliment of a decimal no is obtained by adding a 1 to its 9‘s compliment.

Example: 9‘s compliment of 3465 and 782.54 is

 9999 999.99

-3465 -782.54

---------- -----------

6534 217.45
 ------------------ --------------------

Switching Theory And Logic Design

UNIT-I

NUMBER SYSTEM & BOOLEAN ALGEBRA

10‘s complement of 4069 is

 9999

- 4069

 5930

 +1

 5931

9’s compliment method of subtraction:

To perform this, obtain the 9‘s compliment of the subtrahend and it to the minuend now

call this no. the intermediate result .if there is a carry to the LSD of this result to get the answer

called end around carry.If there is no carry , it indicates that the answer is negative & the

intermediate result is its 9‘s compliment.

Example: Subtract using 9‘s comp

 (1)745.81-436.62 (2)436.62-745.82

 745.81 436.62

 -436.62 -745.81

 ---------- ----------

309.19 -309.19

----------- ---------

745.81 436.62

+563.37 9‘s compliment of 436.62 +254.18

 ---------- ------------

1309.18 Intermediate result 690.80

 +1 end around carry

 309.19

 If there is ono carry indicating that answer is negative . so take 9‘s complement of intermesiate

result & put minus sign (-) result should ne -309.19

If carry indicates that the answer is positive +309.19

10’s compliment method of subtraction:

 To perform this, obtain the 10‘s compliment of the subtrahend& add it to the minuend. If

there is a carry ignore it. The presence of the carry indicates that the answer is positive, the result

is the answer. If there is no carry, it indicates that the answer is negative & the result is its 10‘s

compliment. Obtain the 10‘s compliment of the result & place negative sign infront to get the

answer.

Example: (a)2928.54-41673 (b)416.73-2928.54

2928.54 0416.73

 -0416.73 -2928.54

 ---------- ----------

2511.81 -2511.81

----------- ---------

2928.54 0416.73

+9583.27 10‘s compliment of 436.62 +7071.46

 ---------- ------------

12511.81 ignore the carry 7488.19

The Binary Number System:

It is a positional weighted system. The base or radix of this no. system is 2 Hence it has

two independent symbols. The basic itself can‘t be a symbol. The symbol used are 0 and 1.The

binary digit is called a bit. A binary no. consist of a sequence of bits each of which is either a 0

or 1. The binary point seperates the integer and fraction parts. Each digit (bit) carries a weight

based on its position relative to the binary point. The weight of each bit position is on power of

2 greater than the weight of the position to its immediate right. The first bit to the left of the

binary point has a weight of 2
0

& that column is called the Units Column.The second bit to the

left has a weight of 2
1

& it is in the 2‘s column & the third has weight of 2
2
& so on.The first bit

to the right of the binary point has a weight of 2
-1

& it is said to be in the ½ ‗s column , next

right bit with a weight of 2
-2

 is in ¼‘s column so on..The decimal value of the binary no. is the

sum of the products of all its bits multiplied by the weight of their respective positions. In

general , binary no. wioth an integer part of (n+1) bits & a fraction parts of k bits can be

dn dn-1 dn-2 ………d1 d0.d-1 d-2 d-3 …….d-k

In decimal equivalent is
(dn x2

n
)+(dn-1 x2

n-1
)+ ………(d1 x2

1
)+(d0 x2

0
)+(d-1 x2

-1
)(d-2 x2

-2
) …….

The decimal equivalent of the no. system

dn dn-1 dn-2 ………d1 d0.d-1 d-2 d-3 …….d-k in any system with base b is

(dn xb

n
)+(dn-1 xb

n-1
)+ ………(d1 xb

1
)+(d0 xb

0
)+(d-1 xb

-1
)(d-2 xb

-2
) …….

The binary no. system is used in digital computers because the switching circuits used in

these computers use two-state devices such as transistors , diodes etc. A transistor can be OFF or

ON a switch can be OPEN or CLOSED , a diode can be OFF or ON etc(twopossible states).

These two states represented by the symbols 0 & 1 respectively.

Counting in binary:

 Easy way to remember to write a binary sequence of n bits is

 The rightmost column in the binary number begins with a 0 & alternates between 0 & 1.

 Second column begins with 2(=2
1
) zeros & alternates between the groups of 2 zeros & 2

ones. So on

Decmal no. Binary no. Decimal no. Binary no.

 0 0 20 10100

 1 1 21 10101

 2 10 22 10110

 3 11 23 10111

 4 100 24 11000

 5 101 25 11001

 6 110 26 11010

 7 111 27 11010

 8 1000

 9 1001

 10 1010

 11 1011

 12 1100

 13 1101

 14 1110

 15 1111

 16 10000

 17 10001

 18 10010

 19 10011 39 100111

Binary to Decimal Conversion:

 It is by the positional weights method . In this method,each binary digit of the

no. is multiplied by its position weight . The product terms are added to obtain the decimal no.

Example: convert 101012 to decimal

 Positional weights 2
4

2
 3

2
 2

2
 1

2
0

Binary no. 101012 =(1x 2

4
)+(0x2

3
)+(1x2

2
)+(0x2

1
)+(1x2

0
)

 =16+0+4+0+1

 = 2110

Example: convert 11011.1012 to decimal

 Positional weights 2
4

2
 3

2
 2

2
 1

2
0

2
 -1

2
 -2

2
 -3

 =16+8+0+2+1+.5+0+.125

 = 27.62510

 An integer binary no. can also converted toa an integer decimal no as follows

* Left bit MSB , multipliy this bit by 2 & add the provided to next bit to the right

* Multiply the result obtained in the previous step by 2 & add the product to the

next bit to the right.

Exaple: 10010112

1 0 0 1 0 1 1

↓ ↓ ↓ ↓ ↓ ↓ ↓

1x2+0 2x2+0 4x2+1 9x2+0 18x2+1 37x2+1

=2 =4 =9 =18 =37 =75

Result=7510

Decimal to Binary conversion:

 Two methods

 There are reverse processes of the two methods used to convert a binary no. to a

decimal no.

I method: is for small no.s The values of various powers of 2 need to be remembered. . for

conversion of larger no.s have a table of powers of 2 known as the sum of weights method. The

set of binary weight values whose sum is equal to the decimal no. is determined.

 To convert a given decimal integer no. to binary,

(1). Obtain largest decimal no. which is power of 2 not exceeding the remainder

& record it

(2). Subtract this no. from the given no & obtain the remainder

(3). Once again obtain largest decimal no. which is power of 2 not exceeding this

remainder & record it.

(4). Subtract through no. from the remainder to obtain the next remainder.

(5). Repeat till you get a ―0‖ remainder

 The sumof these powers of 2 expressed in binary is the binary equivalent of the original

decimal no. similarly to convert fractions to binary.

II method: It converts decimal integer no. to binary integer no by successive division by 2 & the

decimal fraction is converted to binary fraction by double –dabble method

Example: 163.875
10

binary

 Given decimal no. is mixed no.

 So convert its integer & fraction parts separately.

 Integer part is 16310

 The largest no. which is a power of 2, not exceeding 163 is

 128.

 128=2
7
 =100000002

 remainder is 163-128=35

 The largest no., apower of 2 , not exceeding 35 is 32.

 32=2
5
=1000002.

 remainder is 35-32=3

 The largest no., apower of 2 , not exceeding 35is 2.

 2=2
1
 =102

 Remainder is

 3-2=1

 1=2
0
= 12

16310= 100000002+1000002+102+12= 101000112.

 The fraction part is 0.87510

 1.The largest fraction,which is a power of 2 , not exceeding 0.875 is is 0.5

 0.5=2
-1

=0.1002

 Remainder is 0.875-.5=0.3752.

 2. 0.375 is 0.25

 0.25 =2
-2

=0.012

Remainder is 0.375-.25=0.125.

3. 0.125 is 0.125 itself

 0.125 =2
-3

=0.0012

0.87510=0.1002+0.012+0.0012=0.1112

final result is

 163.87510 =10100011.1112.

Example: convert5210 tobinary using double-dabble method

 Divide the given decimal no successively by 2 &read the remainders upwards to

get the equivalent binary no.

Successive division remainder

 2 | 52

 |______

 2 | 26 --- 0

 |__________

 2 | 13 --- 0

 |__________

 2 | 6 --- 1

 |__________

 2 | 3 --- 0 ↓

 |__________ ↓ = 1101002

 2 | 1 --- 1 ↓

 |__________

 2 | 0 --- 1

 |__________

Example:0.7510 using double – dabble method

 Multiply give fraction by 2

 Keep the integer in the product as it is & multiply the new fraction in the product

by 2

 0.75

 Multiply 0.75 by 2 1.50 ↓

 Multiply 0.50 by 2 1.00 ↓ =0.112

Binary Addition:

 Rules:

 0+0=0

 0+1=1

 1+0=1

 1+1=10 i.e, 0 with a carry of 1.

Example: add binary no.s 1101.101 & 111.011

 8421 2
-1

 2
-2

 2
-3

1101.101

 111.011

10101.000

In 2
-3

column 1+1=0 with a carry of 1 to the 2
-2

column

In 2
-2

column 0+1+1=0 2
-1

 1 1+0+1=0 1‘s

 2 1+1+1=1 2‘s

 4 0+1+1=0 4‘s

 8 1+1+1=1 8‘s

 16 1+1 =0 16‘s

Binary Subtraction:

Rules: 0-0=0

 1-1=0

 1-0=1

 0-1=1 with a borrow of 1

Example: subtract binary no.s 111.12& 1010.012

 8421 2
-1

 2
-2

 2
-3

1010.010

 111.111

0010.011

In 2
-3

column 10-1=1

 2
-2

 10-1=1

 2
-1

1-1=0

 1‘s 1-1=0

 2‘s 10-1=1

 4‘s 1-1=0

 8‘s 0-0=0 result is 0010.0112

Binary multiplication:

Two methods:

 1. paper method

 2. computer method

 Rules:

 0x0=0

 1x1=0

 1x0=0

 0x1=0

Paper method:

 11012 by 1102 1011.1012 by 101.012

 1101 1011.101

 X110 x101.01

____________ _______________

0000 1011101

 1101 0000000

 1101 1011101

 0000000

1001110 1011101

 111101.00001

Computer method:

 11002 by 10012

 MQ reg 10010000 A1 shifted out so add

 Shifted MQ left 100100000 M to MQ

 Add M 1100

Partial sum in MQ 00101100 A 0shifted out so add

 Shift MQ left 001011000 0 to MQ

 Add 0 0000

 Partial sum in MQ 01011000 A 0shifted out so add

 Shift MQ left 010110000 0 to MQ

 Add 0 0000

Partial sum in MQ

101100000 A1 shifted out so add

 Shift MQ left 101100000 M to MQ

 Add M 1100

Final sum in MQ 01101100

Binary Division:

 Two methods:

 1.paper method

 2. computer method

Example : 1011012 by 110

110) 101101 (111.1

 110

 1010

 110

 1001

 110

 110

 110

000

 Ans: 111.1

Representation of signed no.s binary arithmetic in computers:

 Two ways of rep signed no.s

1. Sign Magnitude form

2. Complemented form

 Two complimented forms

1. 1‘s compliment form

2. 2‘s compliment form

Advantage of performing subtraction by the compliment method is reduction in the hardware.(

instead of addition & subtraction only adding ckt‘s are needed.)

i.e, subtraction is also performed by adders only.

Istead of subtracting one no. from other the compliment of the subtrahend is added to minuend.

In sign magnitude form, an additional bit called the sign bit is placed in front of the no. If the

sign bit is 0, the no. is +ve, If it is a 1, the no is _ve.

 Ex:

 0 1 0 1 0 0 1

 ↓

Sign bit =+41 magnitude

 ↑

1 1 0 1 0 0 1

 = -41

 Note: manipulation is necessary to add a +ve no to a –ve no

Representation of signed no.s using 2’s or 1’s complement method:

 If the no. is +ve, the magnitude is rep in its true binary form & a sign bit 0 is placed in

front of the MSB.I f the no is _ve , the magnitude is rep in its 2‘s or 1‘s compliment form &a

sign bit 1 is placed in front of the MSB.

The rep of +51 & -51 is

Sign bit magnitude

 ↓

 In sign magnitude form

 In sign 2‘s compliment form

 In sign 1‘s compliment form

 =+51

In sign magnitude form

 =-51

In sign 2‘s compliment form

 =-51

In sign 1‘s compliment form

 =-51

Ex:

Given no. Sign mag form 2‘s comp form 1‘s comp form

01101 +13 +13 +13

010111 +23 +23 +23

10111 -7 -7 -8

1101010 -42 -22 -21

Special case in 2’s comp representation:

0 1 1 0 0 1 1

1 1 1 0 0 1 1

1 0 0 1 1 0 1

1 0 0 1 1 0 0

 Whenever a signed no. has a 1 in the sign bit & all 0‘s for the magnitude bits, the decimal

equivalent is -2
n
 , where n is the no of bits in the magnitude .

Ex: 1000= -8 & 10000=-16

Characteristics of 2’s compliment no.s:

 Properties:

1. There is one unique zero

2. 2‘s comp of 0 is 0

3. The leftmost bit can‘t be used to express a quantity . it is a 0 no. is +ve.

4. For an n-bit word which includes the sign bit there are (2
n-1

-1) +ve integers,

2
n-1

 –ve integers & one 0 , for a total of 2
n
 unique states.

5. Significant information is containd in the 1‘s of the +ve no.s & 0‘s of the _ve

no.s

6. A _ve no. may be converted into a +ve no. by finding its 2‘s comp.

Signed binary numbers:

 Decimal Sign 2‘s comp form Sign 1‘s comp form Sign mag form

+7 0111 0111 0111

+6 0110 0110 0110

+5 0101 0101 0101

+4 0100 0100 0100

+3 0011 0011 0011

+2 0010 0010 0010

+1 0011 0011 0011

+0 0000 0000 0000

-0 -- 1111 1000

-1 1111 1110 1001

-2 1110 1101 1010

-3 1101 1100 1011

-4 1100 1011 1100

-5 1011 1010 1101

-6 1010 1001 1110

-7 1001 1000 1111

8 1000 -- --

Methods of obtaining 2’s comp of a no:

 In 3 ways

1. By obtaining the 1‘s comp of the given no. (by changing all 0‘s to 1‘s & 1‘s to 0‘s) &

then adding 1.

2. By subtracting the given n bit no N from 2
n

3. Starting at the LSB , copying down each bit upto & including the first 1 bit

encountered , and complimenting the remaining bits.

Ex: Express -45 in 8 bit 2‘s comp form

 +45 in 8 bit form is 00101101

I method:

 1‘s comp of 00101101 & the add 1

 00101101

 11010010

 +1

 11010011 is 2‘s comp form

 II method:

 Subtract the given no. N from 2
n

 2
n

= 100000000

 Subtract 45= -00101101

 +1

11010011 is 2‘s comp

III method:

 Original no: 00101101

Copy up to First 1 bit 1

Compliment remaining : 1101001

bits 11010011

Ex:

 -73.75 in 12 bit 2‘s comp form

 I method

 01001001.1100

 10110110.0011

 +1

 10110110.0100 is 2‘s

 II method:

 2
8
= 100000000.0000

Sub 73.75=-01001001.1100

 10110110.0100 is 2‘s comp

 III method :

 Orginalno : 01001001.1100

 Copy up to 1‘st bit : 100

 Comp the remaining bits: 10110110.0

 10110110.0100

2’s compliment Arithmetic:

 The 2‘s comp system is used to rep –ve no.s using modulus arithmetic . The word length

of a computer is fixed. i.e, if a 4 bit no. is added to another 4 bit no . the result will be

only of 4 bits. Carry if any , from the fourth bit will overflow called the Modulus

arithmetic.

Ex:1100+1111=1011

 In the 2‘s compl subtraction, add the 2‘s comp of the subtrahend to the minuend . If there

is a carry out , ignore it , look at the sign bit I,e, MSB of the sum term .If the MSB is a

0, the result is positive.& it is in true binary form. If the MSB is a ` (carry in or no carry

at all) the result is negative.& is in its 2‘s comp form. Take its 2‘s comp to find its

magnitude in binary.

Ex:Subtract 14 from 46 using 8 bit 2‘s comp arithmetic:

 +14 = 00001110

 -14 = 11110010 2‘s comp

 +46 = 00101110

 -14 =+11110010 2‘s comp form of -14

 ___ ____________

 -32 (1)00100000 ignore carry

 Ignore carry , The MSB is 0 . so the result is +ve. & is in normal binary form. So

the result is +00100000=+32.

EX: Add -75 to +26 using 8 bit 2‘s comp arithmetic

 +75 = 01001011

 -75 =10110101 2‘s comp

 +26 = 00011010

 -75 =+10110101 2‘s comp form of -75

 ___ ____________

 -49 11001111 No carry

No carry , MSB is a 1, result is _ve & is in 2‘s comp. The magnitude is 2‘s comp of 11001111.

i.e, 00110001 = 49. so result is -49

Ex: add -45.75 to +87.5 using 12 bit arithmetic

 +87.5 = 01010111.1000

 -45.75=+11010010.0100

 ___ ____________

 -41.75 (1)00101001.1100 ignore carry

 MSB is 0, result is +ve. =+41.75

1’s compliment of n number:

 It is obtained by simply complimenting each bit of the no,.& also , 1‘s comp of a no, is

subtracting each bit of the no. form 1.This complemented value rep the –ve of the

original no. One of the difficulties of using 1‘s comp is its rep o f zero.Both 00000000 &

its 1‘s comp 11111111 rep zero.

 The 00000000 called +ve zero& 11111111 called –ve zero.

Ex: -99 & -77.25 in 8 bit 1‘s comp

+99 = 01100011

 -99 = 10011100

 +77.25 = 01001101.0100

 -77.25 = 10110010.1011

1’s compliment arithmetic:

 In 1‘s comp subtraction, add the 1‘s comp of the subtrahend to the minuend. If

there is a carryout , bring the carry around & add it to the LSB called the end around carry.

Look at the sign bit (MSB) . If this is a 0, the result is +ve & is in true binary. If the MSB is a

1 (carry or no carry), the result is –ve & is in its is comp form .Take its 1‘s comp to get the

magnitude inn binary.

Ex: Subtract 14 from 25 using 8 bit 1‘s EX: ADD -25 to +14

 25 = 00011001 +14 =00001110

 -45 = 11110001 -25 =+11100110

 __ ________ ___ ___________

 +11 (1)00001010 -11 11110100

 +1

 ____________ No carry MSB =1

 00001011 result=-ve=-1110

 MSB is a 0 so result is +ve (binary)

 =+1110

Double precision no.s:

 For any computer the word length is fixed . in a 16 bit computer, i.e., with a 16 bit

word length, only no.s from +2
16-1

(+32,767) to -2
16-1

(+32,768) can be expressed in each register.

If no. is greater than this, two storage locations need to be used. i.e, each such no. has to be

stored in two registers called Double Precision.

 Leaving the MSB which is the sign bit, allows a 31 bit no. length with two 16 bit

registers. If still larger no.s are to be expressed, there registers are used to store each no. called

Triple Precision.

Floating Point NO.s:

 In decimal system, very large & very small no.s expressed in scientific notation by

stating a no. (mantissa) & an exponent of 10.

Binary no.s can be expressed in same notation by an exponent of 2.

Mantissa Exponent

0110000000 100101

16 bit word contains two parts:10 bit mantissa , 6 bit exponent.i.e, in 2‘s comp form & in that

MSB is sign bit.

Many formats of floating pt.no.s.Someuse 2 words for mantissa, one for exponent .other use 2 &

half words for mantissa & half for exponent.

Depending on the accuracy desired. some use excess n notation for the exponent, some use 2‘s

comp notation for mantissa &some use sign magnitude for both mantissa & exponent.

The Octal Number System:

 It is used by early minicomputers. It is also a positional weights system. Its base

or radix is 8.It has 8 independent symbols 0, 1,2,3,4,5,6,7. Since its base 8=2
3
, every 3-bit group

of binary can be rep by an octal digit. An octal no. is, 1/3 rd the length of the corresponding

binary no.

Octal to Binary conversion:

 Just replace each octal digit by its 3 bit binary equivalent.

Ex:

 367.528 to binary

 Given octal no is 367.52

3 6 7 . 5 2

011 110 111 101 010

 = 011110111.1010102

Mantissa = +0.110000000

Exponent= 100101

Actual exponent = 100101-

100000=000101

Entire no. =N= +0.11002x 2
5
 = 110002 =2410

Binary to Octal conversion:

 Starting from the binary pt. make groups of 3 bits each, on either side of the binary

pt, & replace each 3 bit binary group by the equivalent octal digit.

Octal to decimal Conversion:

Multiply each digit in the octal no by the weight of its position & add all the product terms

Decimal value of the octal no.

dn dn-1 dn-2 ………d1 d0.d-1 d-2 d-3 …….d-k is
(dn x8

n
)+(dn-1 x8

n-1
)+ ………(d1 x8

1
)+(d0 x8

0
)+(d-1 x8

-1
)(d-2 x8

2
) …….

Decimal to Octal Conversion:

 To convert a mixed decimal no. To a mixed octal no. convert the integer and fraction

parts separately. To convert decimal integer no. to octal, successively divide the given no by 8

till the quotient is 0. The last remainder is the MSD .The remainder read upwards give the

equivalent octal integer no. To convert the given decimal fraction to octal, successively multiply

the decimal fraction&the subsequent decimal fractions by 8 till the product is 0 or till the

required accuracy is the MSD. The integers to the left of the octal pt read downwards give the

octal fraction.

Ex: convert 4057.068 to octal

=4x8
3
+0x8

2
+5x8

1
+7x8

0
+0x8

-1
+6x8

-2

=2048+0+40+7+0+0.0937

=2095.093710

Ex:

 Convert 110101.1010102 to octal

 Group of 3 110 101 . 101 010

 6 5 . 5 2

 =65.528

Ex:

 10101111001.01112

 10 101 111 001 . 011 1

 010 101 111 001 . 011 100

 2 5 7 1 . 3 4

 =2571.348

Ex: convert 378.9310 to octal

37810 tooctal: Successive division:

 8 | 378

 |______

 8 | 47 --- 2

 |__________

 8 | 5 --- 7 ↑

 |__________

 0 --- 5

 =5728

0.9310 to octal :

 0.93x8=7.44

 0.44x8=3.52 ↓

 0.53x8=4.16

 0.16x8=1.28

 =0.73418

 378.9310=572.73418

EX: 549710 to binary

 8 | 5497

 |______

 8 | 687 --- 1

 |__________

 8 | 85 --- 7 ↑

 |__________

 8 | 10 --- 5

 |_________

 8 | 1--- 2

 |__________

 0 --- 1 ↑ =125718=0010101011110012

Conversion of large deciml no.s to binary & large binary no.s to decimal can be conveniently &

quickly performed via octal

 EX:1011110100012 to decimal

 1011110100012 = 57218 =5x8
3
+7x8

2
+2x8

1
+1x8

0

=2560+448+16+1=302510

Octal Arithmetic:

 The rules are similar to the decimal or binary arithmetic.This no. system used to

enter long strings of binary data in a digital system like a microcomputer. Arithmetic operations

canbe performed by converting the octal no.s to binary no.s & then using the rules of binary

arithmetic. Octal subtraction can be performed using 1‘s compliment method or 2‘s comp

method & can also be performed directly by 7‘s & 8‘s comp methods of decimal system.

Multiplication & division can slso be performed using the binary rep. of octal no.s &

then making use of multiplication & division rules of binary no.s

The Hexadecimal number system:

Binary no.s are long & fine for machines but are too lengthy to be handled by human

benigs. So rep binary no.s concisely with their objective is the hexadecimal no system(or hex) .

It is a positional weighted system.The base or radix of there is 16 i.e, it has 16 independent

symbols 0,1,2,----9,A,B,C,D,E,F. since its base is 16=2
4
, every 4 binary digit combination can be

rep by one hexa decimal digit . so a hexadecimal no is ¼ th the length of the corresponding

binary no..A 4 bit group is nibble.

Hexadecimal counting system:

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

: ;

: :

: :

F0 F1 F2--FF

100 101 ---10F

: :

: :

1F0 1F1--1FF

Ex: Add (27.5)8 (74.4)8 Subtract 458 from 668

 27.58 = 010 111 . 1012 668 =00 110 1102

 +74.48 = +1111000.1002 -458 =+11 011 0112

 _____ ____________ ___ ___________

 124.18 1010 100. 001 (1)00 010 0012

 Ignore carry ans: +ve.

Binary to Hexadecimal conversion:

 For this make groups of 4 bits each , on either side of the binary pt &

replace each 4 bit group by the equivalent hexadecimal digit.

Hexadecimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

EX: 10110110112

 groups of 4-bits: 0010 1101 1011

 2 D B =2DB16

Hexadecimal to binary conversion:

 Replace each hex digit by its 4-bit binary group.

 Ex: 4BAC10 to binary

 4 B A C

 0100 1011 1010 1100

 =01001011101011002

Hexadecimal to Decimal conversion:

 Multiply each dihit in the hex no. by its position weight & add all those product

terms .

Hex no is: dn dn-1 dn-2 ………d1 d0.d-1 d-2 d-3 …….d-k

In decimal equivalent is given by(dn x16
n
)+(dn-1 x16

n-1
)+ ………(d1 x16

1
)+(d0 x16

0
)+(d-1 x16

-

1
)+(d-2 x16

-2
)

Ex: 5C716 to decimal

(5x16
2
)+(C x16

1
)+ (7 x16

0
)

=1280+192+7.

=14710

Decimal to Hexadecimal conversion:

It is successively divide the given decimal no. by 16 till the quotient is zero. The last remainder

is the MSB. The remainder read from bottom to top gives the equivalent hexadecimal integer. To

convert a decimal fraction to hexadecimal successively multiply the given decimal fraction &

subsequent decimal fractions by 16, till the product is zero. Or till the required accuracy is

obtained,and collect all the integers to the left of decimal pt. The first integer is MSB & the

integer read from top to bottom give the hexadecimal fraction known as the hexadabble

method.

 Ex: 2598.67510

 16 2598

 16162 -6

 10 -2

 = A26 (16)

 0.67510=0.675x16 -- 10.8

 =0.800x16 -- 12.8 ↓

 =0.800x16 -- 12.8 =0.ACCC16

 =0.800x16 -- 12.8

 2598.67510 = A26.ACCC16
Ex: 4905610

 16 | 49056 decimal hexa binary

 |______

 16 | 3066 --- 0 0 000

 |__________

 16 | 191 --- 10 A 1010

 |__________

 16 | 11 --- 15 ↑ F 1111

 |__________

 0 --- 11 B 1011

 = BFA016= 1011,1111,1010,00002

Octal to hexadecimal conversion:

The simplest way is to first convert the given octal no. to binary & then the binary no. to

hexadecimal.

 Ex: 756.6038

7 5 6 . 6 0 3

111 101 110 . 110 000 011

0001 1110 1110 . 1100 0001 1000

1 E E . C 1 8

Hexa decimal to octal conversion:

 First convert the given hexadecimal no. to binary & then the binary no. to octal .

Ex: B9F.AE16

B 9 F . A E

1011 1001 1111 . 1010 1110

101 110 011 111 . 101 011 100

5 6 3 7 . 5 3 4

 =5637.534

Hexadecimal Arithmetic:

 The rules for arithmetic is same as decimal octal & binary. Arithmetic operations are not

done directly in hex. The hex no.s are first converted into binary & arithmetic operations are

done in binary. Hex decimal subtraction can be performed using 1‘s compliment method or 2‘s

compliment methods performed directly by 15‘s & 16‘s compliment methods. Similar to the 9‘s

& 10‘s compliment of decimal system..

Ex:: Add 6E 16 & C516 Subtract 7B16fromC416

 6E 16 =0110 11102 C416 =1100 01002

 C516= +1100 01012 -7B16 =+100001 012

 _____ ____________ ___ ___________

 13316 1010 100. 001 4916 (1)010 010 012

 Ignore carry ans: +ve.

8421 BCD code (Natural BCD code):

Each decimal digit 0 through 9 is coded by a 4 bit binary no. called natural binary codes.

Because of the 8,4,2,1 weights attached to it. It is a weighted code & also sequential . it is useful

for mathematical operations. The advantage of this code is its case of conversion to & from

decimal. It is less efficient than the pure binary, it require more bits.

Ex: 14→1110 in binary

 But as 0001 0100 in 8421 ode.

The disadvantage of the BCD code is that , arithmetic operations are more complex than

they are in pure binary . There are 6 illegal combinations 1010,1011,1100,1101,1110,1111 in

these codes, they are not part of the 8421 BCD code system . The disadvantage of 8421 code is,

the rules of binary addition 8421 no, but only to the individual 4 bit groups.

BCD Addition:

 It is individually adding the corresponding digits of the decimal no,s expressed in

4 bit binary groups starting from the LSD . If there is no carry & the sum term is not an illegal

code , no correction is needed .If there is a carry out of one group to the next group or if the sum

term is an illegal code then 610(0100) is added to the sum term of that group & the resulting carry

is added to the next group.

Ex: Perform decimal additions in 8421 code

 (a)25+13

 In BCD 25= 0010 0101

 In BCD +13 =+0001 0011

 ___ ___________

 38 0011 1000

 No carry , no illegal code .This is the corrected sum

(b). 679.6 + 536.8

679.6 = 0110 0111 1001 .0110 in BCD

+536.8 = +0101 0011 0010 .1000 in BCD
_________ ___

1216.4 1011 1010 0110 . 1110 illegal codes

 +0110 + 0011 +0110 . + 0110 add 0110 to each

 (1)0001 (1)0000 (1)0101 . (1)0100 propagate carry

 / / / /

 +1 +1 +1 +1

 __

 0001 0010 0001 0110 . 0100

 1 2 1 6 . 4

BCD Subtraction:

Performed by subtracting the digits of each 4 bit group of the subtrahend the digits from

the corresponding 4- bit group of the minuend in binary starting from the LSD . if there is no

borrow from the next group , then 610(0110)is subtracted from the difference term of this group.

(a)38-15

 In BCD 38= 0011 1000

 In BCD -15 = -0001 0101

 ___ ___________

 23 0010 0011

 No borrow, so correct difference.

 .(b) 206.7-147.8

206.7 = 0010 0000 0110 . 0111 in BCD

-147.8 = -0001 0100 0111 . 0110 in BCD
_________ ___

58.9 0000 1011 1110 . 1111 borrows are present

 -0110 -0110 . -0110 subtract 0110

 0101 1000 . 1001

BCD Subtraction using 9’s & 10’s compliment methods:

 Form the 9‘s & 10‘s compliment of the decimal subtrahend & encode that no. in

the 8421 code . the resulting BCD no.s are then added.

EX: 305.5 – 168.8

 305.5 = 305.5

 -168.8= +83.1 9‘s comp of -168.8

(1)136.6

 +1 end around carry

 136.7 corrected difference

305.510 = 0011 0000 0101 . 0101

+831.110 = +1000 0011 0001 . 0001 9‘s comp of 168.8 in BCD
_________ ___

 +1011 0011 0110 . 0110 1011 is illegal code

 +0110 add 0110

 (1)0001 0011 0110 . 0110

 +1 End around carry

 0001 0011 0110 . 0111

 = 136.7

Excess three(xs-3)code:

It is a non-weighted BCD code .Each binary codeword is the corresponding 8421

codeword plus 0011(3).It is a sequential code & therefore , can be used for arithmetic

operations..It is a self-complementing code.s o the subtraction by the method of compliment

addition is more direct in xs-3 code than that in 8421 code. The xs-3 code has six invalid states

0000,0010,1101,1110,1111.. It has interesting properties when used in addition & subtraction.

Excess-3 Addition:

 Add the xs-3 no.s by adding the 4 bit groups in each column starting from the LSD. If

there is no carry starting from the addition of any of the 4-bit groups , subtract 0011 from the

sum term of those groups (because when 2 decimal digits are added in xs-3 & there is no carry ,

result in xs-6). If there is a carry out, add 0011 to the sum term of those groups(because when

there is a carry, the invalid states are skipped and the result is normal binary).

 EX: 37 0110 1010

 +28 +0101 1011
 ______ ________________________

 65 1011 (1)0101 carry generated

 +1 propagate carry

1100 0101 add 0011 to correct 0101 &

 -0011 +0011 subtract 0011 to correct 1100

1001 1000 =6510

Excess -3 (XS-3) Subtraction:

 Subtract the xs-3 no.s by subtracting each 4 bit group of the subtrahend from the

corresponding 4 bit group of the minuend starting form the LSD .if there is no borrow from the

next 4-bit group add 0011 to the difference term of such groups (because when decimal digits are

subtracted in xs-3 & there is no borrow , result is normal binary). I f there is a borrow , subtract

0011 from the differenceterm(b coz taking a borrow is equivalent to adding six invalid states ,

result is in xs-6)

Ex: 267-175

 267 = 0101 1001 1010

 -175= -0100 1010 1000

0000 1111 0010

 +0011 -0011 +0011

 0011 1100 +0011 =9210

Xs-3 subtraction using 9’s & 10’s compliment methods:

Subtraction is performed by the 9‘s compliment or 10‘s compliment

Ex:687-348 The subtrahend (348) xs -3 code & its compliment are:

 9‘s comp of 348 = 651

 Xs-3 code of 348 = 0110 0111 1011

 1‘s comp of 348 in xs-3 = 1001 1000 0100

 Xs=3 code of 348 in xs=3 = 1001 1000 0100

687 687

 -348 → +651 9‘s compl of 348

_______ _______

 339 (1)338

 +1 end around carry

 339 corrected difference in decimal

 1001 1011 1010 687 in xs-3

 +1001 1000 0100 1‘s comp 348 in xs-3

__

 (1)0010 (1)0011 1110 carry generated

⁄⁄

+1 +1

propagate carry

__-

(1)0011 0010 1110

 +1 end around carry

0011 0011 1111 (correct 1111 by sub0011 and

 +0011 +0011 +0011 correct both groups of 0011 by

adding 0011)

 0110 0110 1100 corrected diff in xs-3 = 33010

The Gray code (reflective –code):

Gray code is a non-weighted code & is not suitable for arithmetic operations. It is not a

BCD code . It is a cyclic code because successive code words in this code differ in one bit

position only i.e, it is a unit distance code.Popular of the unit distance code.It is also a reflective

code i.e,both reflective & unit distance. The n least significant bits for 2
n
 through 2

n+1
-1 are the

mirror images of thosr for 0 through 2
n
-1.An N bit gray code can be obtained by reflecting an N-

1 bit code about an axis at the end of the code, & putting the MSB of 0 above the axis & the

MSB of 1 below the axis.

Reflection of gray codes:

Gray Code

Decimal

4 bit binary 1 bit 2 bit 3 bit 4 bit

0

1

00

01

000

001

0000

0001

0

1

0000

0001

 11

10

011

010

0011

0010

2

3

0010

0011

 110

111

101

110

0110

0111

0101

0100

4

5

6

7

0100

0101

0110

0111

 1100

1101

1111

1110

1010

1011

1001

1000

8

9

10

11

12

13

14

15

1000

1001

1010

1011

1100

1101

1110

1111

Binary to Gray conversion:

 N bit binary no is rep by Bn Bn-1 ------- B1

 Gray code equivalent is by Gn Gn-1 ------- G1

Bn,, Gn are the MSB‘s then the gray code bits are obtaind from the binary code as

 Gn=Bn Gn-1=Bn

Bn-1

Gn-2=Bn-1 Bn-

2

----------- G1=B2 B1

 →EX-or symbol

Procedure: ex-or the bits of the binary no with those of the binary no shifted one position to the

right . The LSB of the shifted no. is discarded & the MSB of the gray code no.is the same as the

MSB of the original binaryno.

EX: 10001

(a). Binary : 1 →0 →0 →1

 Gray : 1 1 0 1

(b). Binary: 1 0 0 1

 Shifted binary: 1 0 0 (1)

1 1 0 1→gray

Gray to Binary Conversion:

 If an n bit gray no. is rep by Gn Gn-1 ------- G1

its binary equivalent by Bn Bn-1 ------- B1 then the binary bits are obtained from gray bits as

 Bn= Gn Bn-1=Bn Gn-1 Bn-2= Bn-1 Gn-2 ----------- B1 =B2

G1

To convert no. in any system into given no. first convert it into binary & then binary to gray. To

convert gray no into binary no & convert binary no into require no system.

Ex:10110010(gray) = 110111002= DC16=3348=22010

EX:1101

 Gray: 1 1 0 1

 Binary:1 0 0 1

Ex: 3A716= 0011,1010,01112=1001110100(gray)

 5278=101,011,0112=111110110(gray)

 65210=10100011002= 1111001010(gray)

XS-3 gray code:

 In a normal gray code , the bit patterns for 0(0000) & 9(1101) do not have a unit distance

between them i.e, they differ in more than one position.In xs-3 gray code , each decimal digit is

encoded with gray code patter of the decimal digit that is greater by 3. It has a unit distance

between the patterns for 0 & 9.

XS-3 gray code for decimal digits 0 through 9

Decimal digit Xs-3 gray code Decimal digit Xs-3 gray code

0 0010 5 1100

1 0110 6 1101

2 0111 7 1111

3 0101 8 1110

4 0100 9 1010

Error – Detecting codes:When binary data is transmitted & processed,it is susceptible to noise

that can alter or distort its contents. The 1‘s may get changed to 0‘s & 1‘s .because digital

systems must be accurate to the digit, error can pose a problem. Several schemes have been

devised to detect the occurrence of a single bit error in a binary word, so that whenever such an

error occurs the concerned binary word can be corrected & retransmitted.

Parity:The simplest techniques for detecting errors is that of adding an extra bit known as parity

bit to each word being transmitted.Two types of parity: Oddparity, evenparity forodd parity, the

parity bit is set to a ‗0‘ or a ‗1‘ at the transmitter such that the total no. of 1 bit in the word

including the parity bit is an odd no.For even parity, the parity bit is set to a ‗0‘ or a ‗1‘ at the

transmitter such that the parity bit is an even no.

Decimal 8421 code Odd parity Even parity

0 0000 1 0

1 0001 0 1

2 0010 0 1

3 0011 1 0

4 0100 0 1

5 0100 1 0

6 0110 1 0

7 0111 0 1

8 1000 0 1

9 1001 1 0

When the digit data is received . a parity checking circuit generates an error signal if the

total no of 1‘s is even in an odd parity system or odd in an even parity system. This parity check

can always detect a single bit error but cannot detect 2 or more errors with in the same word.Odd

parity is used more often than even parity does not detect the situation. Where all 0‘s are created

by a short ckt or some other fault condition.

Ex: Even parity scheme

(a) 10101010 (b) 11110110 (c)10111001

Ans:

(a) No. of 1‘s in the word is even is 4 so there is no error

(b) No. of 1‘s in the word is even is 6 so there is no error

(c) No. of 1‘s in the word is odd is 5 so there is error

Ex: odd parity

 (a)10110111 (b) 10011010 (c)11101010

Ans:

(a) No. of 1‘s in the word is even is 6 so word has error

(b) No. of 1‘s in the word is even is 4 so word has error

(c) No. of 1‘s in the word is odd is 5 so there is no error

Checksums:

Simple parity can‘t detect two errors within the same word. To overcome this, use a sort

of 2 dimensional parity. As each word is transmitted, it is added to the sum of the previously

transmitted words, and the sum retained at the transmitter end. At the end of transmission, the

sum called the check sum. Up to that time sent to the receiver. The receiver can check its sum

with the transmitted sum. If the two sums are the same, then no errors were detected at the

receiver end. If there is an error, the receiving location can ask for retransmission of the entire

data, used in teleprocessing systems.

Block parity:

 Block of data shown is create the row & column parity bits for the data using odd parity.

The parity bit 0 or 1 is added column wise & row wise such that the total no. of 1‘s in each

column & row including the data bits & parity bit is odd as

Data Parity bit

10110 0

10001 1

10101 0

00010 0

11000 1

00000 1

11010 0

Error –Correcting Codes:

A code is said to be an error –correcting code, if the code word can always be deduced

from an erroneous word. For a code to be a single bit error correcting code, the minimum

distance of that code must be three. The minimum distance of that code is the smallest no. of bits

by which any two code words must differ. A code with minimum distance of 3 can‘t only correct

single bit errors but also detect (can‘t correct) two bit errors, The key to error correction is that

it must be possible to detect & locate erroneous that it must be possible to detect & locate

erroneous digits. If the location of an error has been determined. Then by complementing the

erroneous digit, the message can be corrected , error correcting , code is the Hamming code , In

this , to each group of m information or message or data bits, K parity checking bits denoted by

P1,P2,----------pk located at positions 2
 k-1

 from left are added to form an (m+k) bit code word.

To correct the error, k parity checks are performed on selected digits of each code word, & the

position of the error bit is located by forming an error word, & the error bit is then

complemented. The k bit error word is generated by putting a 0 or a 1 in the 2
 k-1

th position

depending upon whether the check for parity involving the parity bit Pk is satisfied or not.Error

positions & their corresponding values :

data

10110

10001

10101

00010

11000

00000

11010

Error Position For 15 bit code

C4 C3 C2 C1

For 12 bit code

C4 C3 C2 C1

For 7 bit code

 C3 C2 C1

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 1

2 0 0 1 0 0 0 1 0 0 1 0

3 0 0 1 1 0 0 1 1 0 1 1

4 0 1 0 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 1 1 0 1

6 0 1 1 0 0 1 1 0 1 1 0

7 0 1 1 1 0 1 1 1 1 1 1

8 1 0 0 0 1 0 0 0

9 1 0 0 1 1 0 0 1

10 1 0 1 0 1 0 1 0

11 1 0 1 1 1 0 1 1

12 1 1 0 0 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

7-bit Hamming code:

 To transmit four data bits, 3 parity bits located at positions 2
0
 21&2

2
 from left are

added to make a 7 bit codeword which is then transmitted.

The word format

P1 P2 D3 P4 D5 D6 D7

 D—Data bits

 P—Parity bits

For Excess-3

P1P2D3P4D5D6D7

1 0 0 0 0 1 1

1 0 0 1 1 0 0

0 1 0 0 1 0 1

1 1 0 0 1 1 0

0 0 0 1 1 1 1

1 1 1 0 0 0 0

0 0 1 1 0 0 1

1 0 1 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

Decimal Digit For BCD

P1P2D3P4D5D6D7

0 0 0 0 0 0 0 0

1 1 1 0 1 0 0 1

2 0 1 0 1 0 1 1

3 1 0 0 0 0 1 1

4 1 0 0 1 1 0 0

5 0 1 0 0 1 0 1

6 1 1 0 0 1 1 0

7 0 0 0 1 1 1 1

8 1 1 1 0 0 0 0

9 0 0 1 1 0 0 1

Ex: Encode the data bits 1101 into the 7 bit even parity Hamming Code

 The bit pattern is

 P1P2D3P4D5D6D7

 1 1 0 1

 Bits 1,3,5,7 (P1 111) must have even parity, so P1 =1

 Bits 2, 3, 6, 7(P2 101) must have even parity, so P2 =0

 Bits 4,5,6,7 (P4 101)must have even parity, so P4 =0

 The final code is 1010101

EX: Code word is 1001001

 Bits 1,3,5,7 (C1 1001) →no error →put a 0 in the 1‘s position→C1=0

 Bits 2, 3, 6, 7(C2 0001)) → error →put a 1 in the 2‘s position→C2=1

 Bits 4,5,6,7 (C4 1001)) →no error →put a 0 in the 4‘s position→C3=0

15-bit Hamming Code: It transmit 11 data bits, 4 parity bits located 2
0
 2

1
 2

2
 2

3

Word format is

P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12 D13 D14 D15

12-Bit Hamming Code:It transmit 8 data bits, 4 parity bits located at position 2
0
 2

1
 2

2
 2

3

 Word format is

P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

Alphanumeric Codes:

 These codes are used to encode the characteristics of alphabet in addition to the decimal

digits. It is used for transmitting data between computers & its I/O device such as printers,

keyboards & video display terminals.Popular modern alphanumeric codes are ASCII code &

EBCDIC code.

Boolean Algebra And Switching Functions

Boolean algebra:

Switching circuits called Logic circuits, gate circuits & digital circuits. Switching algebra

called Boolean Algebra. Boolean algebra is a system of mathematical logic. It is an algebraic

system consisting of the set of element (0.1) two binary operators called OR & AND & One

unary operator NOT. Binary Digits 0 & 1 used to represent two voltage levels. Binary 1 is for

high i.e, +5v . Binary 0 for Low i.e, 0v.

A+A=A A.A=A because variable has only a logic value.

Also there are some theorems of Boolean Algebra.

Logic Operators:

AND,OR,NOT are 3 basic operations or functions that performed in Boolean Algebra. & derived

operations as NAND , NOR,X-OR, X-NOR.

AXIOMS & Laws of Boolean Algebra:

 Axioms or Postulates are a set of logical expressions i.e, without proof. & also we can

build a set of useful theorems. Each axiom can be interpreted as the outcome of an operation

performed by a logic gate.

Complementation Laws:

 Complement means invert(0 as 1 & 1 as 0)

 Law1:0 =1

Law2:1 =0

AND OR NOT

0.0=0 0+0=0 1 =0

0.1=0 0+1=1 0 =1

1.0=0 1+0=1

1.1=1 1+1=1

Law3:If A=0 then 𝐴 =1

Law4:If A=1 then 𝐴 =0

Law5:𝐴 =A(double complementation law)

AND laws:

 Law 1: A.0=0(Null law)

 Law 2:A.1=A(Identity law)

 Law 3:A.A=A

 Law 4:A.𝐴 =0

OR laws:

 Law 1: A+0=A(Null law)

 Law 2:A+1=1

 Law 3:A+A=A

 Law 4:A+𝐴 =0

Commutative laws: allow change in position of AND or OR variables.

 2 commutative laws

 Law 1: A+B=B+A

Law 2: A.B=B.A

Associative laws: This allows grouping of variables. It has 2 laws.

Law 1: (A+B)+C=A+(B+C) =A OR B ORed with C

 This law can be extended to any no. of variables

 (A+B+C)+D=(A+B+C)+D=(A+B)+(C+D)

A.B B.A

0 0

0 0

0 0

1 1

A B A+B = B A B+A

0 0 0 0 0 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 1

 =

Law2: (A.B).C=A(B.C)

 This law can be extended to any no. of variables

 (A.B.C).D=(A.B.C).D

=

Distributive Laws:

 This has 2 laws

 Law 1.A(B+C)=AB+AC

 This law applies to single variables.

 EX:ABC(D+E)=ABCD+ABCE

 AB(CD+EF)=ABCD+ABEF

A B C A+B (A+B)+C

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A B C B+C A+(B+C)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A B C BC A(BC)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

A B C AB (AB)C

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 0

1 1 1 1 1

=

Law 2.A+BC=(A+B)(A+C)

 RHF=(A+B)(A+C)

 =AA+AC+BA+BC

 =A+AC+AB+BC

 =A(1+C+B)+BC

 =A.1+BC

 =A+BC LHF

=

Redundant Literal Rule(RLR):

 Law 1: A+𝐴 B=A+B

 LHF = (A+𝐴)(A+B)

 =1.(A+B)

 =A+B RHF

A B C AB AC AB+AC

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 1 1

A B C B+C A(B+C)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A B C BC A+BC

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

A B C A+B A+C (A+B)(A+C)

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 0 1 0

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 1 1 1

ORing of a variable with the AND of the compliment of that variable with another

variable, is equal to the ORing of the two variables.

 =

Law 2:A(𝐴 +B)=AB

 LHF = A𝐴 +AB

 =0+AB

 =AB RHF

 ANDing of a variable with the OR of the complement of that variable with another

variable , is equal to the ANDing of the two variables.

 =

Idempotence Laws:

Idempotence means same value. It has 2 laws.

 Law 1=A.A=A

 This law states that ANDing of a variable with itself is equal to that

variable only.

 If A=0, then A.A=0.0=0=A

 If A=1, then A.A=1.1=1=A

 Law 2=A+A=A

A B 𝐴 B A+𝐴 B

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 1

A B A+B

0 0 0

0 1 1

1 1 1

1 1 1

A B 𝐴 +B A(𝐴 +B)

0 0 1 0

0 1 1 0

1 0 0 0

1 1 1 1

A B A+B

0 0 0

0 1 0

1 1 0

1 1 1

 This law states that ORing of a variable with itself is equal to that

variable only.

 If A=0, then A+A=0+0=0=A

 If A=1, then A+A=1+1=1=A

Absorption Laws:

 Law 1=A+A.B=A

 = A(1+B)

 =A.1

 =A

i.e., A+A. any term=A

Law 2=A(A+B)=A

 A(A+B)=A.A+A.B

 = A+AB

 =A(1+B)

 = A.1

 =A

Consensus theorem:

Theorem 1: AB+𝐴 C+BC=AB+𝐴 c

 LHS: AB+𝐴 C+BC

=AB+𝐴 C+BC(A+𝐴)
=AB+𝐴 C+BCA+BC𝐴
=AB(1+C)+𝐴 c(1)

=AB+𝐴 C

RHS

A B 𝐴𝐵 A+𝐴B)

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

A B 𝐴 + 𝐵 A(A+B)

0 0 0 0

0 1 1 0

1 0 1 1

1 1 1 1

This can be extended to any no. of variables

 EX: AB+𝐴 C+BCD =AB+𝐴 𝐶

Theorem 2: (A+B)(𝐴 + 𝐶)(B+C)=(A+B)(𝐴 +C)

Transposition Theorem:

 AB+𝐴 C= (A+C)(𝐴 +B)

 RHS: (A+C)(𝐴 +B)

 =A𝐴 +C𝐴 +AB+CB

 =0+𝐴 C+AB+BC

 =𝐴 C+AB+BC(A+𝐴)
 =AB+ABC+𝐴 C+𝐴 BC

 =AB+𝐴 C

 LHS

DeMorgans Theorem:

 It represents two of the most powerful laws in Boolean algebra

Law 1: 𝐴 + 𝐵 =𝐴 𝐵

 This law states that the compliment of a sum of variables is equal to the product

of their individual complements.

LHS

RHS

 NOR gate Bubbled AND gate

A B A+B (A+B)‘

 0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

A B A‘ B‘ A‘B‘

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

NOR gate= Bubbled AND gate

This can be extended to any variables.

(A+B+C+D+-----)‘=A‘B‘C‘D‘----

Law 2: (AB)‘=A‘+B‘

 Complement of the product of variables is equal to the sum of their individual

components.

This law also can extend to any no. Of variables.

 (ABCD---)‘=A‘+B‘+C‘+D‘+------

 It can be extended to complicated expressions by

1. Complement the entire function

2. Change all the ANDs to ORS and all the Ors to ANDS

3. Complement each of the individual variables.

4. Change all 0s to 1s and 1s to 0s.

This procedure is called demorganization or complementation of switching expressions.

Shannon’s expansion Theorem:

 This theorem states that any switching expression can be decomposed w.r.t. a

variable A into two parts, one containing A &other containing A‘. It is useful in decomposing

complex machines into an interconnection of smaller components.

 f(A,B,C---)=A.f(1,B,C---)+A‘.f(0,B,C----)

 f(A,B,C,---)=[A+f(0,B,C,-----)].[A‘+f(1,B,C-----]

 Ex: DeMorganize f=((A+B‘)(C+D‘))‘, f=((A+B‘)(C+D‘))‘

 =(A+B‘)(C+D‘)
 = A.B‘ +C.D‘

 =A‘.B+C‘.D

A B (AB)‘

 0 0 1

0 1 1

1 0 1

1 1 0

A B A‘ B‘ A‘+B‘

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

Duality:

 In a positive Logic system the more positive of the two voltage levels is represented by a

1 & the more negative by a 0. In a negative logic system the more positive of the two voltage

levels is represented by a 0 & more negative by a 1. This distinction between positive &negative

logic systems is important because an OR gate in the positive logic system becomes an AND

gate in the negative logic system &vice versa. Positive & Negative logics give a basic duality in

Boolean identities. Procedure dual identity by changing all ‗+‘ (OR) to ―.‘(AND) &

complementing all 0‘s &1‘s. Once a theorem or statement is proved, the dual also thus stands

proved called Principle of duality.

 [f(A,B,C,-------0,1,+,.)]d =f(A,B,C,----1,0,.,+)

Relations between complement

 (fc(A,B,C----)= (𝑓𝑐(𝐴. 𝐵, 𝐶 − −−) = (fd(𝐴, 𝐵, 𝐶, --)

 (fd(A,B,C----)= (𝑓𝑐(𝐴. 𝐵, 𝐶 − −−) = (fc(𝐴, 𝐵, 𝐶, --)

Duals:

Expression Dual

0 =1 1 =0

0.1=0 1+0=1

0.0=0 1+1=1

1.1=1 0+0=0

A.0=0 A+1=1

A.1=A A+0=A

A.A=A A+A=A

A.𝐴 =0 A+𝐴 =1

A.B=B.A A+B=B+A

A.(B.C)=(A.B).C A+(B+C)=(A+B)+C

A.(B+C)=(AB+AC) A+BC=(A+B)(A+C)

A(A+B)=A A+AB=A

A.(A.B)=A.B A+A+B=A+B

𝐴𝐵 =𝐴 +𝐵 𝐴 + 𝐵 =𝐴 +𝐵

(A+B)(𝐴 +C)(B+C)=(A+B)(𝐴 +C) AB+𝐴 C+BC=AB+𝐴 C

Reducing Boolean Expressions:

 Procedure:

1. Multiply all variables necessary to remove parenthesis

 2. Look for identical terms. Only one of those terms to be retained & other

dropped.

Ex: AB+AB+AB+AB=AB

4. Look for a variable & its negation in the same term. This term can be dropped 1

Ex: AB𝐶 𝐷 +AB𝐶 = AB𝐶 (𝐷 +1)=AB𝐶 .1=AB𝐶

5. Look for pairs of terms which have the same variables,with one or more variables

complemented. If a variable in one term of such a pair is complemented while in the

second term it is not then such terms can be combined into a single term with variable

dropped.

Ex: AB𝐶 𝐷 +AB𝐶 D= AB𝐶 (𝐷 +D)=AB𝐶 .1=AB𝐶 unctions

Boolean functions & their representation:

 A function of n Boolean variables denoted by f(x1,x2,x3------xn) is another variable

denoted by & takes one of the two possible values 0 & 1.

 The various way of represent a given function is

1. Sum of Product(SOP) form:

 It is called the Disjunctive Normal Form(DNF)

 Ex:f(A,B,C)=(𝐴 B+𝐵 C)

2. Product of Sums (POS) form:

 It is called the Conjunctive Normal Form(CNF).This is implemented usin Consensus

theorem.

 Ex:f(A,B,C)=(𝐴 + B)(B+C)

3. Truth Table form:

 The function is specified by listing all possible combinations of values assumed by

the variables & the corresponding values of the function.

 Truth table for f(A,B,C)=(𝐴 B+𝐵 C)

Decimal Code A B C F(A,B,C)

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 0

4. Standard Sum of Products form:Called Disjunctive Canonical form (DCF) & also called

Expanded SOP form or Canonical SOP form.

 f(A,B,C)=(𝐴 B+𝐵 C)=𝐴 B(C+𝐶)+𝐵 C(A+𝐴)

 =𝐴 𝐵 C+𝐴 B𝐶 +𝐴 BC+A𝐵 C

A Product term contains all the variables of the function either in complemented or

Uncomplemented form is called a minterm. A minterm assumes the value 1 only for one

combination of the variables. An n variable function can have in all 2
n

minterms to 1 is

the standard sum of products form of the function. Min terms are denoted as m0, m1,m2--

--. Here suffixes are denoted by the decimal codes.

 Ex: 3 variable functions

 m0=𝐴 𝐵 𝐶

 m1=𝐴 𝐵 C

 m2=𝐴 B𝐶

 m3=𝐴 BC

 ׀

 = CBA 7 m no other way of representation in canonical SOP form is , the SUM

of minterms for which the function equals 1.Thus

 f(A,B,C)=m1+m2+m3+m5

The function in DCF is listing the decimal codes of the minterms for which f=1

 f(A,B,C)=∑m(1,2,3,5).

5. Standard Product of Sums form: It is called as Conjunctive Canonical form (CCF). It is also

called Expanded POS or Canonical POS.

If 𝐴 =0 (A=1) B=0 C=0, term=0

Thus function f (A, B, C) =(𝐴 +𝐵)(A+B) given by POS

f(A,B,C)=(𝐴 +𝐵 + 𝐶𝐶)(A+B+𝐶𝐶)

 =(𝐴 +𝐵 + 𝐶) (𝐴 +𝐵 + 𝐶)(A+B+C)(A+B+𝐶)

A sum term which contains each of the n variables in either complemented form is called

a Maxterm. A maxterm assumes the value ‗0‘ only for one combination of the variables.

The most there are 2
n
 maxterms. It is represented as M0,M1,M2-----. Here the suffixes are

decimal codes.

The CCF of f(A,B,C)=M0.M4.M6.M7

 f(A,B,C)=πM(0,4,6,7)

π or ^ represents the product of all maxterms.

6. Octal designation:

 m7m6 m5 m4 m3 m2 m1 m0

 0 0 1 0 1 1 1 0

7. Karnaugh Map:

 Put the Truth Table in a compact form by labeling the row & columns of a map. It

is used in the minimization of functions 3,4,5,6 variables.

m0,m1,m2 ----- are minterms

M0,M1,M2,M3-------- are Maxterms.

Expansion of a Boolean expression in SOP form to the standard SOP form:

 1.Write down all the terms.

 2. If one or more variables are missing in any term.Expand that term by multiplying it with

 the sum of each one of the missing variable and its complement.

 3. Drop out redundant terms.

* interms of minterms:

 1.Write down all the

terms.

2.Put Xs in terms where variables must be inserted to form a minterm.

3.Replace the non-complemented variables by 1s and the complemented variables by 0s,

and use all combinations of Xs in terms of 0s and 1s to generate minterms.

4. Drop out redundant terms.

Expansion of a Boolean expression in POS form to standard POS form:

1. Write down all the terms.

2. . If one or more variables are missing in any sum term. expand that term by adding the

product of each of the missing variable and its complement.

3. Drop out redundant terms.

 Interms of Maxterms:

1. Write down all the terms.

2. Put x‘s in terms where variable inserted

3. Replace complemented variable by 1‘s & non complemented variable by 0‘s.& use

all combinations.

4. Drop out redundant terms.

Conversion between Canonical form:

 The complement of a function expressed as the sum of minterms equals the sum of

minterms missing from the original function is expressed by those minterms that make

the function equal to 1 for those minterms that make the function equal to 0.

Ex: f(A,B,C)=πm(0,2,4,6,7)

Complement is

𝑓(𝐴,𝐵, 𝐶 =∑m(1,3,5).=m1+m3+m5

complement of 𝑓 by deMorgans theorem

 f= (m1 + m3 + m5) =𝑚1 .𝑚2 .𝑚5 =M1 M3 M5=πM(1,3,5)

𝑚1 =Mj , the maxterm with subscript j is a complement of the minterm with the same

subscript j and vice versa. To convert one canonical form to another, interchange the

symbol ∑ and π, and list those numbers missing from the original form.

Computation of total gate inputs:

 The total number of gate inputs required to realize a Boolean expression is

computed as, If the expression is in the SOP form, count the number of AND inputs and

number of AND gates feeding the OR gate. If the expression is in the POS form, count

the number of OR inputs and the number of OR gates feeding the AND gate. If it is in

hybrid form, count the gate inputs and the gates feeding other gates. The cost of

implementing circuit is proportional to no. of gate inputs required.

EX: ABC+A𝐵 CD +E𝐹 +AD

1. Count the AND Inputs 3+4+2+2=11

2. Count AND gates feeding the OR gate 1+1+1+1=4

3. Total gate inputs =15

Boolean Expression & Logic Diagrams:

 Boolean expressions can be realized as hardware using logic gates.

Conversely, hardware can be translated into Boolean expressions for the analysis of

existing circuits.

1. Converting Boolean Expressions to Logic:

 To convert, start with the output & work towards the input.

 Assume the expression 𝐴𝐵 +A+𝐵 + 𝐶 is to be realized using AOI logic. Start

with this expression. Since it is three terms, it must be the output of a three-input OR

gates. So, draw an OR gate with three inputs as

 (AB)‘ is the output of an inverter whose inputs is AB and (B+C)‘ must be the output of

an inverter whose input is B+C. so, those two inverters are as

Now AB must be output of a two-input AND gate whose inputs are A and B . And

B+C must be the output of a two-input OR gate whose inputs are B and C. so, an AND

gate and an OR gate are as

2. Converting Logic to Boolean Expressions:

 To convert logic to algebra, start with the input signals and develop the terms of the

Boolean expression until the output is reached.

Converting AND/OR/INVERT logic to NAND/NOR logic:

1. The SOP expression ABC+AB‘+A‘BC can be implemented in AND/ OR

logic as

 The POS expression (A+B+C)(A+B‘)(A‘+B+C) can be implemented usin OR and

AND gates

 The expression ABC‘+A‘B[=B(A‘+AC‘) can be implemented in hybrid form as

 Hybrid Logic reduces the no. of gate inputs required for realization (from 7 to 6 in this case), but

results in multilevel logic. Different inputs pass through number of gates to reach the output. It

leads to non-uniform propagation delay between different numbers of gates to give rise to logic

race. The SOP and POS realizations give rise two-level logic. The two-level logic provides

uniform time delay between input and outputs, because each input signal has to pass through two

gates to reach the output. So, it does not suffer from the problem of logic race.

 Since NAND logic and MOR logic are universal logic circuits which are first

computed and converted to AOI logic may ten be converted to either NAND logic or NOR logic

depending on the choice. The procedure is

1. Draw the circuit in AOI logic

2. If NAND hardware is chosen, add a circle at the output of each AND gate and at the

inputs to all the AND gates.

3. If NOR hardware is chosen, add a circle at the output of each OR gate and at the inputs

to all the AND gates

4. Add or subtract an inverter on each line that received a circle in steps 2 or 3 so that the

polarity of signals on those lines remains unchanged from that of the original diagram

5. Replace bubbled OR by NAND and bubbled AND by NOR

6. Eliminate double inversions.

LOGIC GATES: Logic gates are fundamental building blocks of digital systems. Logic gate

produces one output level when some combinations of input levels are present. & a different

output level when other combination of input levels is present. In this, 3 basic types of gates are

there. AND OR & NOT

The interconnection of gates to perform a variety of logical operation is called Logic

Design. Inputs & outputs of logic gates can occur only in two levels.1,0 or High, Low or True ,

False or On , Off. A table which lists all the possible combinations of input variables & the

corresponding outputs is called a Truth Table. It shows how the logic circuits output responds to

various combinations of logic levels at the inputs. Level Logic, a logic in which the voltage levels

represent logic 1 & logic 0.Level logic may be Positive Logic or Negative Logic. In Positive

Logic the higher of two voltage levels represent logic 1 & Lower of two voltage levels represent

logic 0.In Negative Logic the lower of two voltage levels represent logic 1 & higher of two

voltage levels represent logic 0.

In TTl (Transistor-Transistor Logic) Logic family voltage levels are +5v, 0v.Logic 1 represent

+5v & Logic 0 represent 0v.

AND Gate:

 It is represented by ‗.‘(dot) It has two or more inputs but only one output. The output

assume the logic 1 state only when each one of its inputs is at logic 1 state . The output assumes

the logic 0 state even if one of its inputs is at logic 0 state. The AND gate is also called an All or

Nothing gate.

 Boolean Expression:

 A and B

 Logic Symbol Truth Table

IC 7408 contains 4 two input AND gates

IC 7411 contains 3 three input AND gates

IC 7421 contains 2 four input AND gates

OR Gate:

It is represented by ‗+‘ (plus) It has two or more inputs but only one output. The output assumes

the logic 1 state only when one of its inputs is at logic 1 state. The output assumes the logic 0

state even if each one of its inputs is at logic 0 state. TheOR gate is also called an any or All gate.

Also called an inclusive OR gate because it includes the condition both the inputs can be present.

 Logic Symbol Truth Table

 Boolean Expression:

 A OR B

IC 7432 Contains 4 two input OR gates.

NOT Gate:

 It is represented by ‗-―(bar).It is also called an Inverter or Buffer. It has only one

input & one output. Whose output always the compliment of its input? Theoutput assumes logic

1 when input is logic 0 & output assume logic 0 when input is logic 1.

 Logic Symbol

 Truth Table Boolean Expression:

 A X X=A‘

1 0

 0 1

Logic circuits of any complexity can be realized using only AND, OR , NOT gates. Using these

3 called AND-OR-INVERT i.e, AOI Logic circuits.

The Universal Gates:

 The universal gates are NAND, NOR. Each of which can also realize Logic Circuits

Single handedly. NAND-NOR called Universal Building Blocks.. Both NAND-NOR can

perform all the three basic logic functions. AOI logic can be converted to NAND logic or NOR

logic.

NAND Gate:

 NAND gate mean NOT AND i.e, AND output is NOTed.

 NAND→AND & NOT gates

Boolean Expression:

 Y=𝐴𝐵𝐶
 = A .B.C whole bar.

NAND assumes Logic 0 when each of inputs assume logic 1.

 Logic Symbol

 Truth table

Bubbled OR gate: The output of this is same as NAND gate.

Bubbled OR gate is OR gate with inverted inputs.

 Y=A‘+B‘=(AB)‘

Truth Table Logic Symbol

 NAND gate as an Inverter.

All its input terminals together & applying the signal to be inverted to the

common terminal by connecting all input terminals except one to logic 1 &

applying the signal to be inverted to the remaining terminal.

It is also called Controlled Inverter.

Bubbled NAND Gate:

NOR Gate:

 NOR gate is NOT gate with OR gate. i.e, OR gate is NOTed.

 Boolean expression:

 X=𝐴 + 𝐵 + 𝐶 + − −

 Logic Symbol Logic symbol with OR and NOT

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

 Truth Table

Bubbled AND gate:

 is AND gate with inverted inputs.The AND gate with inverted inputs is called a

bubbled And gate. So a NOR gate is equivalent to a bubbled and gate.A bubbled AND gate is

also called a negative AND gate. Since its output assumes the HIGH state only when all its

inputs are in LOW state , a NOR gate is also called active-LOW AND gate.Output Y is 1 only

when both A & B are equal to 0.i.e, only when both A‘ and B‘ are equal to 1.

NOR can also realized by first inverting the inputs and ANDing those inverted inputs.

 Logic Symbol

Inputs

A B

Inverted

Inputs

A‘ B‘

Output

 Y

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

NOR gate as an inverter:

 is tying all input terminals together & applying the signal to be inverted to the common

terminals or all inputs set as logic 0 except one & applying signal to be inverted to the remaining

terminal.

Bubbled NOR Gate: is AND gate.

IC 7402 is 4 two input NOR gate

IC 7427 is 3 three input NOR gate

IC 7425 is 2 four input NOR gate

The Exclusive OR (X-OR) gate:

It has 2 inputs& only 1 output. It assumes output as 1 when input is not equal called anti-

coincidence gate or inequality detector.

 Logic Symbol

 Proof: Truth Table

The high outputs are generated only when odd number of high inputs is present. This is why x-or

function also known as odd function.

The X-OR gate using AND-OR-NOT gates:

X-OR gate as an Inverter:

 By connecting one of two input terminals to logic 1 & feeding the sequence to be

inverted to other terminal

 Logic Symbol

TTL IC 746 has 4 x-OR gate

CMOS IC 74C8C has 4 X-OR gates.

A B
0 0 0

0 1 1

1 0 1

1 1 0

X-OR gate using NAND gates only:

X-OR gate using NOR gates only:

The EX-NOR Gate:

It is X-OR gate with a NOT gate.It has two inputs & one output logic circuit. It assumes output

as 0 when one if inputs are 0 & other 1.It can be used as an equality detector because it outputs a

1 only when its inputs are equal.

 X=A B=AB+A‘B‘= =(AB‘+A‘B)‘

 Proof:

Logic Symbol.

X-NOR gate as an inverter:

by connecting one of 2 input terminals to logic 0 & feeding the input sequence to be inverted to

the other terminal.

Logic Symbol as an inverter

Inputs

A B

Output

X= A B

0 0 1

0 1 0

1 0 0

1 0 1

It can be used as Controlled inverter.

 A B=(A B)‘ is compliment of X-OR

 A B C=(A B C)‘

TTl IC74LS266 contain 4 each X-NOR gates.

CMOS 74C266 contain 4 each X-NOR gates.

Highspeed CMOS IC 74HC266 contain 4 each X-NOR gates.

INHIBIT CIRCUITS:

 AND , OR , NAND , NOR gates can be used to control the passage of an input logic

signal through the output.

Pulsed operation of Logic gates:

 The inputs to a gate are not stationary levels , but are voltages that change frequently

between two logic levels & can be classified as pulse waveform.

EX:AND

i/p

0

o/p

0 0=1

i/p

1

0/p

1 0=0

Hybrid Logic:

 Both SOP & POS reductions result in a logic circuit in which each input signal has to pass

through two gates to reach the output called Two-level logic. It has the advantage of providing

uniform time delay between input signals & the output. The disadvantage is that the minimal or

POS reductions may not be the actual minimal.

 Actual minimal obtained by manipulating the minimal SOP & POS forms into a hybrid form.

EX: ABC+ABD+ACD+BCD----(SOP) has 16 inputs

 AB(C+D)+CD(A+B) ----has 12 inputs.

The C input to the OR gate must go through 3 levels of logic before reaching the output where as

C input to the AND gate must only go through two levels, can result critical timing problem

called Logic Race.

Implementation of Logic functions:

Two level implementation:

 The implementation of a logic expression such that each one of the inputs has to pass

through only two gates to reach the output is called Two-level implementation.

 Both SOP , POS forms result in two-level logic

 Two level implementation can be with AND, OR gates or only NAND or with only

NOR gates

 Boolean expression with only NAND gates requires that the function be in SOP form.

 Function F= AB+CD

(A) AND-OR logic

(B) NAND-NAND logic

F=AB+CD=𝐴𝐵 + 𝐶𝐷 =𝐴𝐵 . 𝐶𝐷

AND-OR Logic NAND Logic

 Two –level implementation using AND-OR and NAND logic

The implementation of the form:

 F=XY‘+X‘Y+Z using AND-OR logic and NAND- NAND logic is

 Two –level implementation using AND-OR and NAND logic

The implementation of Boolean expressions with only NOR gates requires that the function be in

the form of POS form.

Implementation of the function (A+B)(C‘+D‘)

 Two –level implementation using OR-AND and NOR logic

 Two –level implementation using OR-AND and NOR logic

Other two level implementations:

 The types of gates most often found in IC‘s are NAND and NOR

Some NAND or NOR gates allow the possibility of wire connection between the outputs of two

gates to provide a specific logic function called Wired Logic.

 The logic function implemented by the circuit

 Is calledan AND-OR Invert function.

Similarly NOR outputs of ECL gates can be tied together to form Wired NOR function.

The logic function implemented by this circuit is

Is called OR-AND INVERT Function.

EX: Open Collector TTL NAND gates, when tied together perform the wired AND logic is

called AOI

 =(𝐴𝐵) .(𝐶𝐷)

 =𝐴𝐵 + 𝐶𝐷

Similarly NOR outputs of ECL can tied together to perform a wired NOR function.

 F=(𝐴 + 𝐵)+(𝐶 + 𝐷)

 =[(𝐴 + 𝐵)(𝐶 + 𝐷)]

Non Degenerate forms:

 Considering 4 types of gates AND, OR, NAND , NOR & assign one type of gate for

the first level & one type of gate for the second level. Find 16 possible combinations of two level

form. Eight of these are degenerate forms. Because they generate to a single operation. i.e, AND

gate in first level & AND gate in second The output is nearly the AND function of all input

variables.

The other non degenerate forms produce an implementation in SOP or POS are

 AND-OR OR-AND

 NAND-NAND NOR-NOR

 NOR-OR NAND-NAND

 OR-NAND AND-NOR

The two forms are dual of each other.

AND-OR & OR-AND forms are the basic two-level forms.

NAND-NAND, NOR_NOR

AOI Implementation:

The two forms Nandi-And and And-Nor perform AOI function.

Inversion isand-Nor form resembles the and-Or form done by the bubble in the output of the

NOR gate.

Its function is F= 𝐴𝐵 + 𝐶𝐷 + 𝐸

 Two-level implementation in AND-NOR and NAND-AND form

OAI Implementation:

The twoforms OR-NAND and NOR-NOR perform OAI function.

OR-NAND form OR-AND form except inversion done by bubble in NAND gate.

 Function F=[(𝐴 + 𝐵)(𝐶 + 𝐷)𝐸]

Summary:

