Corrections to Digital Communications, 4™ Edition

. Page 31, Equation (2.1-54)
First line: y; instead of y,
Second line: g, instead of g;

. Page 163, Equation (4.2-30)
o0

should be: s(t)=ay/2 4 2
k=1

. Page 163, Equation (4.2-31)

T
should be: a, = (2/T) ] s(t) cos 2nkt/T dt , k>0
0
T
b= (2/T) | s(t) sin 2nkt/T dt , k>1
0

. Page 178, 7 lines from the top

should be: sqrt (28) instead of € sqrt (2)
. Page 238, Equation (5.1-19)
should be: h(T-t ) instead of h(t-t)

. Page 238, two lines below Equation (5.1-20)

should be: y* (T) instead of y*(t)
n n

. Page 244, Equation (5.1 — 45)
should be: m=1,2,..M

. Page 245, Equation (5.1-48)

should be: : sqrt(€,) instead of  sqrt (€,)



9. Page 309, Equation (5.4-39)
R, sqrt (2€4/Ny) instead of sqrt (2E,R1/Np)
10. Page 318, Equation (5.5-17)
add the term: — (Ng)apw/Hz

11. Page 366, Equation (6.4-3)
Replace + sign with — sign in the second term of the summation
12. Page 367, Equation (6.4-6)
Replace + sign with — sign in the second term of the summation
13. Page 367, Equations (6.4-8) and (6.4-9)
add the subscript L to the log-likelihood function
14. Page 422, lines 2 and 3 above Equation (8.1-14)
delete the phrase “no more than”
15. Page 468, 12 lines from the top and 5 lines from the bottom
should be: b< insteadof b<
16. Page 491, Figure 8.2-15

solid line corresponds to soft-decision decoding
broken line corresponds to hard-decision decoding

17. Page 500, Equation (8.2-41)

In the denominator, My should be M; and M; should be M;

18. Page 591, Figure P9.9
The lower shaping filter in the modulator and demodulator,

q(t) should have a “hat” on it



19.

20.

21.

22.

23.

24.

25.

26.

27.

Page 609, 6 lines above Equation (10.1-34)

€ should be €
k+1-L-1 k+ -L-1

Page 646, Figure 10.3-5

delete the “hat” from I(z)

Page 651, 4 lines from the top
replace “over” with “about”

Page 651, 2 lines above Section 10.6
“Turob” should be “Turbo”

Page 673, Figure 11.1-6

Lower delay line elements: z' should be z™*
Page 750, Figure 13.2-8

Replace “adders” with “multipliers”
Page 752, Figure 13.2-9

Replace “adders” with multipliers”
Page 856, Equation (14.6-5)

Replace K with k

Page 885, Figure 14.7-7

The “Input” should be 02310



28. Page 894, Problem 14.16

r; = h;s; + hos, + 1y

= hlsg* + hzsl* +1,
29. Page 895

Delete 2" from the expression on the error probability
30. Page 915, top of page

(15.47) should be (15.3-47)
31. Page 925, 6 lines form top

To should be T,
32. Page 935

a) top of page:

r1=b;sqrt(€1) + bop sqrt (€7) + ny

2 = bip sqrt(€1) + by sqrt (€7) + ny

b) Problem 15.8, last equation
delete factor of 1/2
c) Problem 15.9, first equation
delete comma after b,=1
33. Page 936, first equation at top of page, second term

should be:

| ncosh { [rz sqrt (€2) —bip sqrt (8182)]/N0}



34. Page 936, second equation from top of page
divide each of the arguments in the cosh function by Ny

35. Page 936, Problem 15.10

should be Nk = [ ]2

36. Page 936, Problem 15.11

the last term in the equation should be:

120 {sqrt[81+ 82-2|p| sqrt (8182)]}
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CHAPTER 2

Problem 2.1 :
3
P(A;) = Z P(A;, Bj),i =1,2,3,4
j=1
Hence : s
P(A)) = Z P(Aq, Bj) =0.1+0.08+0.13=0.31
j=1
3
P(A) = Z P(A,, Bj) =0.0540.034+0.09 = 0.17
j=1
3
P(A3) = Z P(As, Bj) =0.05+0.12+0.14 = 0.31
j=1
3
P(Ay) =) P(A4,Bj) =0.11+0.04 4 0.06 = 0.21
j=1
Similarly :
4
P(By) = Z P(A;, By) =0.10 + 0.05+ 0.05 + 0.11 = 0.31
i=1
4
P(B,) = Z P(A;, B3) =0.0840.034+0.124 0.04 = 0.27
=1
4
P(B3) = Z P(A;,B3) =0.13+0.09 4+ 0.14 + 0.06 = 0.42

<.
I
—

Problem 2.2 :

The relationship holds for n = 2 (2-1-34) : p(z1, x2) = p(x2|x1)p(z1)
Suppose it holds for n = k,i.e : p(z1,xa, ..., x%) = p(Tr|Tr_1, .o, T1)P(Th_1| T2, ..., 1) ...p(2T1)
Then forn =k +1:

P($17$27~-7$k,$k+1) = p($k+1\$k,$k—1,wxl)p(ﬁk,ﬁk—yu,xl)
= p($k+1\$k,$k—1,‘-‘7$1)P($k‘xk—17-~7$1)p($k—1\$k—27-~7$1) -~p($1)

Hence the relationship holds for n = k£ + 1, and by induction it holds for any n.



Problem 2.3 :

Following the same procedure as in example 2-1-1, we prove :

prio) = o (y‘b)

a

Problem 2.4 :

Relationship (2-1-44) gives :

B 1 y—2>b 1/3
)= =0 [( a ) }

X is a gaussian r.v. with zero mean and unit variance : px(x) = \/%—We
Hence :

—z2/2

TR

1 1 y—b)2/3

Py (y)

pdf of Y
0.5 T

0.45-

0.4

0.35-

0.3-

0.25-

Problem 2.5 :

(a) Since (X, X;) are statistically independent :

1 6—(m%+w?)/202

px (2, 7)) = px (v,)px () = 9r02
Yixea



Also : .
Y, + Y = (X, + X;)e'? =

X, + X = (Yo +5Yi) e7? =Y, cos+ Yising + j(=Y, sin¢ + Y; cos ¢) =

X,= Y,.cos¢p+Y;sin¢
X;= —Y,sin¢+ Y;cos¢

The Jacobian of the above transformation is :

X, 0X; .
J=| o | = cos¢ —sing _
r i :
oY, o sing  cos ¢

Hence, by (2-1-55) :

py (Y vi) = px((Yycosg+Yising), (=Y, sin¢ + Y;cos o))

_ ﬁe—(y%y?)/%z
(b) Y=AX and X =AY
Now, px(x) = W —x'x/20° (the covariance matrix M of the random variables x,

M = 0?1, since they are i.i.d) and J = 1/|det(A)|. Hence :

1 1 / —1\y/ A—1 2
_ —y/(A~1Y A"ty 2
W) = G et a)¢

For the pdf’s of X and Y to be identical we require that :
|det(A)|=Tand (A)YA ' =1 = A=A’

Hence, A must be a unitary (orthogonal) matrix .

Problem 2.6 :

(a)

n

irto0) = B[] = B[] = [l o] = [T P[] = (ox(e)’

=1
But, , .
px(z) =pd(x — 1)+ (1 —p)o(z) = Yx(e’’) =1+ p+ pe’”

= ¢y (jo) = (1+p+pe”)"

ey Ty 18



(b)

dy (ju ) om—1 - i
E(Y) = _J#\U:o = —jn(l — p+ pe’?) Liped ly—0 = np
and
d%ﬁy(j’U) d i . .
2\ . v\n—1 v _
E(Y?) = —Th:o T {Jn(l —p+pe’”)" pe’ L}:O =np +np(n—1)p

= E(Y?) =n’p> + np(1 — p)

Problem 2.7 :

(viz1+v2zatvzes +v4w4)}

¢(J'7117J'Uzajv3ajv4) =E [ej

464'17D(j111,j212,jv3,jv4) ‘
OV, 0V 0v300, v1=v2=us=0s=0

From (2-1-151) of the text, and the zero-mean property of the given rv’s :

E(X1X2X5X4) = (—J)

b(jv) = e

Where vV = [U17 V2, U3, U4]/ ) M - [IU’Z]] .
We obtain the desired result by bringing the exponent to a scalar form and then performing
quadruple differentiation. We can simplify the procedure by noting that :

aw(jv) Mlve—%v’Mv

8vi N i

where pif = [pi1, fhio, f1i3, fia] - Also note that :

opsv

D, = Wi = Hjs
Hence : . . . .

0 ¢(J017]U27]U37]U4)| = liofizs + fasfiia + floapt
001003005004 V=0 121434 231414 241413

Problem 2.8 :

For the central chi-square with n degress of freedom :

1
(1 — j2v02)"?

bjv) =

4



Now : d(jv) ., di(jv)
Jju Jjno Ay (ju
= =FE(Y)=- v=0 =
d’U (1 - j21}0’2)n/2+1 ( ) J d'U | 0 no
2 - - 4 2 .
dv? (1 — j2uo2)™/?*? dv?
The variance is 02 = E (Y?) — [E (Y)])* = 2no*
For the non-central chi-square with n degrees of freedom :

2

2

lo=o = n(n +2)o

w(]v) _ 1 ej’l)82/(1—j21102>

where by definition : s = 31, m? .

di(jv) _ j"02 152 jvs?/(1-j2v0?)
= . FYSES U . njatz | €
dv (1 — j2vo?) (1 — j2vo?)
Hence, E (V) = —j%\vzo =no? + s
d*y(jv) B [ —not (n+2) —s2(n +4)0* — ns’o? N —st ] jos?/(1-j2002)
dU2 (1 N j2U02)n/2+2 (1 . j2’l)0'2)n/2+3 (1 . j2U02)n/2+4
Hence,
d*(jv)
2\ _ 4 2 2 2 | .2
E(Y)— o2 ly—o = 2no" + 4s°c +(na —l—s)
and
op = E(Y?) = [E (V)] = 2n0" + 40”5
Problem 2.9 :

The Cauchy r.v. has : p(z) = 255, —00 < 2 < oo (a)

2 +CL2 ’

E(X)= /OO xp(z)dr =0

since p(x) is an even function.
[e'e) fo%s) 2
E (Xz) = / *p(r)dr = 2/ "

— m —oofE2+CL2

Note that for large x, % — 1 (i.e non-zero value). Hence,

E(X2) = 00,0° = 00



(b)

v =E() = [ Z xzafm edo = [ Z i 15)/(7; e

This integral can be evaluated by using the residue theorem in complex variable theory. Then,

forv>0:
a/m

v) = 2mj | ———eI** =e v
s =oms (5]

For v < 0 :

Y(jv) = —2mj (Lﬂ,ej”> =e"v
r=—ja

x—ja
Therefore :

Y(jv) = e
Note: an alternative way to find the characteristic function is to use the Fourier transform
relationship between p(z), ¥ (jv) and the Fourier pair :

1 c
e_blt‘ — — ,
wer+ f?

c=b/2n, f=2m0v

Problem 2.10 :
(a) Y =130, X;, ¢x,(jv) = e

oy (o) = B[ T 5] < LB [085] = [Lux (on) = o] = e
1=1

i=1

a/m

(b) Since ¢y (jv) = ¥x, (jv) = py (y) = px,(z:) = pyv(y) = 2=

(c) Asn — o0, py(y) = yg%, which is not Gaussian ; hence, the central limit theorem does
not hold. The reason is that the Cauchy distribution does not have a finite variance.

Problem 2.11 :

We assume that x(t),y(t), z(t) are real-valued stochastic processes. The treatment of complex-
valued processes is similar.

(a)
¢=2(7) = E{[z(t +7) + y(t + D] [2() + YOI} = ba(T) + Puy(T) + Dya(7) + P4y (7)

6



(b) When z(t), y(t) are uncorrelated :
Puy(7) = E [t +7)y(t)] = E et + )] Ey(t)] = mam,

Similarly :
Gya(T) = mymy

Hence :
G2z (T) = Gua(T) + Byy(7) + 2mzm,,

(c) When z(t),y(t) are uncorrelated and have zero means :

¢zz(7—) = ¢:c:c(7—) + ¢yy(7—)

Problem 2.12 :

The power spectral density of the random process z(t) is :

,,(f) = /_ o; bun(T)e 2T AT = Ny /2.

The power spectral density at the output of the filter will be :

Byy() = T DIH(P = SH ()P

Hence, the total power at the output of the filter will be :

o0 Ny [ N,
Ou(r=0)= [0, (Ndf =3 [ [H(f)Pdf = (2B) = NoB
Problem 2.13 :
Xy
My =F[(X-m,)(X—m,)], X=| X5 |, m, is the corresponding vector of mean values.
X3




Then :
(Y —m,)(Y —m,)’]

— E[AX - m,)(AX -m,))]

E[A(X - m,)(X — m,)'A]
— AE[(X - my)(X — my)] A’
= AM, A’

Hence :
111 0 M11 + M3
My = 0 4pioo 0
par+ gz 0 pan + pas o+ psn + ps3

Problem 2.14 :

Y () = X2(t), $uelr) = Ela(t +7)a(t)
Guy(T) = Ely(t +7)y(t)] = E [2*(t + 7)a”(1)]
Let X; = Xy = 2(t), X3 = X4 = 2(t+ 7). Then, from problem 2.7 :
B (X1 X2 X3X,) = E(X1X5) E(X3Xy) + E(X1X3) E(XoXy) + E(X1Xy) E(X2X3)

Hence :

¢yy(7') = 92592595(0) + 2‘15:2551:(7')

Problem 2.15 :

m m m— —m?"2
pr(r) = ﬁ (ﬁ) pim-le=mri/Q X = LR

We know that : px(z) = ﬁpR (1/“;’3/5> .
Hence :

1 2 m\™ 2m—1 2 2 2
— 0 —m(zvVQ)*/Q _ m, 2m—1_—mx
px () 71/\/§—F(m) <_Q) (93\/ ) e = _—m e

Problem 2.16 :

The transfer function of the filter is :

H(f) = 1/jwC 1 B 1
- R+1/jwC  jwRC+1  j2afRC +1

8



(a)

2

Duo(f) = 02 = Dy (f) = Bua(f) |H(f)? = 2
(1) == Bf) = el ) HOP = s
(b)
-1 j2nfr

Let : a = RC, v=_2nf. Then :

2 2

_ ¢ gor g, — 9 —ar| _ 9 _~|r|/RC
*w(T) = 5Re /_oo a1 2° 9RC 29RC°

where the last integral is evaluated in the same way as in problem P-2.9 . Finally :

0.2

E[Y2(0)] = 04(0) = 555

Problem 2.17 :

If ®x(f) =0 for |f| > W, then ®x(f)e 72"/ is also bandlimited. The corresponding autocor-
relation function can be represented as (remember that ®x(f) is deterministic) :

sin 27W (7’ — —)

W
oxtr—a) = 3 oxly o 2 (7~ ) W
Let us define : ( )
co & n sin27W (t — 5
0= 2 XG5 2)

We must show that : )
E[|X(t) - X(1)P] =0

) o0 m sin2rW (t — o
E|(Xx(t) - X(1)) (X(t)— 2 X QWW(( )))] - N
First we have
A - n—m 51n27TW( ﬁ)
£ [(x00 - %) X = oxte= g - 2 xCg T N



But the right-hand-side of this equation is equal to zero by application of (1) with a = m/2W.
Since this is true for any m, it follows that E {(X(t) — X(t)) X(t)} = 0. Also

R sin 27 W t—i
E[(X(t) - X)) X(t)] = S éx(57 — = W(( ))
n=—o0 T Bl

Again, by applying (1) with a =t anf 7 = ¢, we observe that the right-hand-side of the equation
is also zero. Hence (2) holds.

Problem 2.18 :

Qz) = rfoo e */2dt = P[N > ], where N is a Gaussian r.v with zero mean and unit
variance. From the Chernoff bound :
PN >a] < e ™ (™) (1)
where v is the solution to :
E(Ne™N) — 2B (V) =0 (2)
Now : ,
B (6UN) _ \/% [ evtet /24t
— %21 —(t—v)?/2
= / \/ﬁf— 2124t
— 61)2/2
and p
vIN s N\ _ v2/2
E(Ne )— dvE(e )—ve
Hence (2) gives :
V=x

and then :

Problem 2.19 :

Since H(0) =3 h(n) =0=m, =m,H(0) =0

10



The autocorrelation of the output sequence is
Gyy(k Z Z h(i)h(j)bea(k — j +1i) = 02 D> h(i)h(k +1)
where the last equality stems from the autocorrelation function of X (n) :

2 ,
¢zz(k—j+i)=0§5(k—j+i):{ 0y J=k+1 }

0, 0.W.

Hence, ¢,,(0) = 602, ¢yy(1) = ¢yy(—1) = =407, ¢yy(2) = ¢yy(—2) = 07, ¢y (k) = 0 otherwise.
Finally, the frequency response of the discrete-time system is :

H(f) = £ h(n)e7?mn
= 1—2e79%f 4 e7i4nf

= (1 — e‘jzﬂff
— et (ginf _ e—jfrf)z

—4e77™  sin 21 f
which gives the power density spectrum of the output :

By (f) = Pua(H)IH(F)? = 02 [165in*7f] = 1607 sin *n f

Problem 2.20 :

The power density spectrum is
O(f) = XR_o S(k)e 2T
1 1\ F _jorsk o (1\* _jonfk
= T (3) PSR (3) e
— Zk—( e]27rfk> _'_EOO (1 —]27rf) -1

1 1
T 11— )2 + l—e—i27f /2 ~ 1

2—cos2mf 1
5/4—cos 2w f

3
5—4 cos2m f

11



Problem 2.21 :

We will denote the discrete-time process by the subscript d and the continuous-time (analog)
process by the subscript a. Also, f will denote the analog frequency and fy; the discrete-time
frequency.

(a)
¢a(k) = E[X*(n)X(n+k))
E[X*(nT)X (nT + kT)]
¢a(KT)
Hence, the autocorrelation function of the sampled signal is equal to the sampled autocorrelation
function of X(t).

(b)

Ga(k) = u(KT) = 22, Ba(F)e?> KT df
= S S ®al(F)e T qf
= S [ ar @alf + £ T af

= [ (S @alf + 1) s
Let f; = fT. Then :

1/2

o) = [, | X wllar /| e

1/2

We know that the autocorrelation function of a discrete-time process is the inverse Fourier
transform of its power spectral density

1/2 )
Galk) = [ | Rl ®

Comparing (1),(2) :
1

i (ot 3)

(c) From (3) we conclude that :

Ja

R f) = (1)

iff :
D (f) =0, V[f:l|f]>1/2T

12



Otherwise, the sum of the shifted copies of ®, (in (3)) will overlap and aliasing will occur.

Problem 2.22 :

(a) .
da(T) = 2% (I)a(f)eﬂﬂﬁdf

— fi’VW ej27rf7-df

sin 2nWr
T

By applying the result in problem 2.21, we have

sin 2nWET

Ball) = FulKT) = 2

(b) If T = 5, then :

(oW =1T, k=0
dalk) = { 0, otherwise }

Thus, the sequence X (n) is a white-noise sequence. The fact that this is the minimum value of
T can be shown from the following figure of the power spectral density of the sampled process:

I I
_fs_W _fs _fs+W -W w fs_W fs fs—|—W X

We see that the maximum sampling rate f, that gives a spectrally flat sequence is obtained
when :

1
W—fs—W:fs—QW:T_W

(c) The triangular-shaped spectrum ®(f) = 1 — M |f| < W may be obtained by convolv-

W
ing the rectangular-shaped spectrum ®(f) = 1/vVW, |f| < W/2. Hence, ¢(1) = ¢3(1) =

13



. 2
% (%) .Therefore, sampling X(t) at a rate % = W samples/sec produces a white sequence

with autocorrelation function :

1 (sinaWkT\ sink W, k=0
gbd(k):W( kT ) :W< k ) :{ 0, otherwise

Problem 2.23 :

Let’s denote : y(t) = fi(t)f;(t). Then :

| R0 = [yt =Y ()l

where Y'(f) is the Fourier transform of y(t). Since : y(t) = fi(t) f;(t) «— Y (f) = Fi.(f) = F;(f).
But :

> : 1.
A= [ " eI = e

Then :
V()= B+ Fy() = [ Fela)« Fy(f = a)da

and at f =0

Y (f)l =0 Fy(a) x Fj(—a)da

2
OO —j2ra(k—3)/2W
2W) o€ da
1/

(
_{ ,’i¢j}

o)
o9
L

Problem 2.24 :

1 00
Boy= [ IH()I
o= [ (R
For the filter shown in Fig. P2-12 we have G = 1 and
B = | \H()Pdf = B

For the lowpass filter shown in Fig. P2-16 we have

1
1+ 27 fRC

1

H{f) = + (27 fRC)?

= [H( = -

14



So G =1 and
Beq = IOOO‘H(f)Pdf
I H () P

4RC

where the last integral is evaluated in the same way as in problem P-2.9 .

15



Problem 3.1 :

Also :

Hence :

CHAPTER 3

A — 1o, PBIA) _\ P(B,.A)
[(Bj; Ai) = log 2= 5 3 = 1082 pp 50y 5

4 031, j=
P(B;) =Y P(Bj,A)) = ¢ 027, j=
=1 0.42, j=
031, i=1
0.17, i=
j:l . 9
0.21, i=
0.10
(B A = log s 10057 bi
(B1; Ar) Og2(0.31)(0.31) +0.057 bits
0.05
1(By: Ay) =1 — = —(). bit
(By; Ag) 0g2(0'31>(0'17) 0.076 bits
0.05
(By; As) Og2(0.31)(0.31) 0.943 bits
[(Bu: Ay) = log s— 10,757 bits
B =820 3y 0.21) T
0.08
(Ba; Ay) 0g2(0'27)(0.31) 0.065 bits
0.03
I(By; Ay) =logo——7—— = —0.614 bit
(B2; Az) 82 anar) ot bits
0.12
I(Bsy: Ag) =1 —————— = 4+0.520 bit
(B2 As) =log 2 omgany =+ 1ts
0.04
I1(By: Ay) =1 — = —(). bit
(Ba; Ay) 0g2(0'27)(0.21) 0.503 bits
0.13
I[(By; Ay) = log y—————— = —0.002 bit
(Bs; Ay) 0g2(0'42)(0'31) 0.002 bits
0.09
I(Bs; Ay) = log = +0.334 bits

(0.42)(0.17)

16



0.14
[(By; As) = logs—— "~ = +0.105 bit
(Bs; As) = logo 5o gy = +0-105 bits
0.06
[(By; Ag) = logo—— = —0.556 bit
(Bsi Au) = log o (55591 e

(b) The average mutual information will be :

3 4

j=1i=1

Problem 3.2 :
H(B) = —’_, P(B;)log,P(B;)
= —[0.31log20.31 4 0.27log 20.27 4 0.42 log 20.42]
= 1.56 bits/letter
Problem 3.3 :

Let f(u) =u — 1 — Inwu. The first and second derivatives of f(u) are

g4 1
du U
and 2/ .
%:$>O, Yu > 0

17



Hence this function achieves its minimum at % = 0 = u = 1. The minimum value is f(u =

1) =0solnu =wu—1, at u = 1. For all other values of u : 0 < u < 0o, u # 1, we have
fu)>0=u—1>Inu.

Problem 3.4 :
We will show that —I(X;Y) <0

—-I1(X;Y) = _ZiZjP(xivyj)lOg2%

P(x;)P(y;
= 522 Pl y)) ln%

We use the inequality Inu < u — 1. We need only consider those terms for which P(x;,y;) > 0;
then, applying the inequality to each term in I(X;Y) :

—I(X;Y) < 555 %, Pl y;) [713(”)]3(%) — 1}

P(zi,y5)
= 3 2i 2y [P()Py;) — P(zi,9;)] <0
The first inequality becomes equality if and only if

P(x;)P(y;)
P(xz',yj)

when P(z;,y;) > 0. Also, since the summations

ZZ [P(%‘)P(yj) - P(xiayj)]

=1 <= P(2;)P(y;) = P(x;,y;)

contain only the terms for which P(z;,y;) > 0, this term equals zero if and only if P(X;)P(Y;) =
0, when P(xz;,y;) = 0. Therefore, both inequalitites become equalities and hence, I(X;Y) =0
if and only if X and Y are statistically independent.
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Problem 3.5 :
We shall prove that H(X) —logn <0 :
H(X)—logn = Z?zlpilogpii—logn
= i pilog, — 3 pilogn
= Yitipilog ani
= 3l bilng
< 05 T P (n%,,z — 1)
= 0

Hence, H(X) <logn. Also, if p, =1/n Vi= H(X) = logn.

Problem 3.6 :

By definition, the differential entropy is

e e}

H(X) = = [ p(e) log pla)da

— o0

For the uniformly distributed random variable :

a1 1
H(X):—/O ~log ~dz = loga

a

(a) Fora=1, H(X)=0

(b) Fora=4, H(X)=Ilog4 =2log2

(c) Fora=1/4, H(X)=1log;=—2log2

Problem 3.7 :

(a) The following figure depicts the design of a ternary Huffman code (we follow the convention
that the lower-probability branch is assigned a 1) :

19



Codeword Probability

01 0.25 1
0.58
11 0.20 . 0
001 0.15 1 0.42 :
100 0.12 0
0.22 0
101 0.10 1
0.33
0001 0.08 ) 0
018 |
0.1 0
00001 0.05
— 2

(b) The average number of binary digits per source letter is :

R="3" P(x;)n; = 2(0.45) + 3(0.37) + 4(0.08) + 5(0.1) = 2.83 bits/letter

(c) The entropy of the source is :
H(X)= - P(z;)logP(x;) = 2.80 bits/letter

As it is expected the entropy of the source is less than the average length of each codeword.

Problem 3.8 :

The source entropy is :
> 1
H(X)=> p;log— = logh = 2.32 bits/letter
i=1 Di
(a) When we encode one letter at a time we require R = 3 bits/letter . Hence, the efficiency is
2.32/3 =0.77 (77%).
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(b) If we encode two letters at a time, we have 25 possible sequences. Hence, we need 5 bits
per 2-letter symbol, or R = 2.5 bits/letter ; the efficiency is 2.32/2.5 = 0.93.

(c) In the case of encoding three letters at a time we have 125 possible sequences. Hence we
need 7 bits per 3-letter symbol, so R = 7/3 bits/letter; the efficiency is 2.32/(7/3) = 0.994.

Problem 3.9 :

(a)

P(zily;)

(b)
I(z;; yj)

Problem 3.10 :

(a)

P(xi,y;)
P(z;)P(y;)
P(yj|zi)

= log

|
S
0

1

= log 5,5 — 108 51
= I(y;) — 1(y;]z:)

P(x;|y;
log zgngf)

P(xi,y;5)
log —P(lmPéj) 1 1
log 5y T 108 51y —log 5.5
I(x;) + 1(y;) — (24, y;)
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(b) Clearly P(X = k|X > K) =0 for k < K. If k > K, then

P(X =k X>K 1 —p)kt
P(X = KX > K) = (X=kX>K) pl-p)

P(X > K) P(X > K)
But,
P(X >K) = _f: p(l—p)’“‘lzp(i(l—p)k‘l—Z(l—p)“)
B 1 1-(1-p%\ K
- r(mam ) e
so that

1_
p(X:k\X>K):p(17p
If welet k=K + 1 withl=1,2,..., then

POX = k|X > k) = PAZPRO =0 e

(1-p¥X

that is P(X = k|X > K) is the geometrically distributed. Hence, using the results of the first
part we obtain

HX|X > K) = —ipa—p>’-llog2<p<1—p>l-1>
= logy(p) — ~Progy(1 - p)

Problem 3.11 :
(a) The marginal distribution P(x) is given by P(x) = >, P(z,y). Hence,
HX) = - Zx: P(z)log P(z) = — ZI: zy: P(z,y)log P(z)
= —zzyp(%y) log P(z)
Similarly it is proved that H(Y) = — 3, , P(x,y)log P(y).

P(z)P(y)

(b) Using the inequality Inw < w — 1 with w = ey Ve obtain




Multiplying the previous by P(z,y) and adding over z, y, we obtain

> P(x,y)InP(x)P(y) = > P(z,y)n P(x,y) < P(x)P(y) — > P(z,y) =0

x?y

Hence,

H(X)Y) < =) P(z,y)nP(x)P(y) = —>_ Plz,y)(In P(z) + In P(y))

T,y T,y

= —ZPmylnP ZnylIlP() H(X)+ H(Y)

Equality holds when £ Y =1, i.e when X, Y are independent.

(c)
H(X,)Y)=H(X)+ H(Y|X)=H(Y)+ HX|Y)

Also, from part (b), H(X,Y) < H(X) + H(Y). Combining the two relations, we obtain
HY)+HX|Y)<HX)+HY)= H(X|Y) < H(X)

Suppose now that the previous relation holds with equality. Then,

— > P(z)log P(z|y) = ZP )log P(x :>ZP log )=0

However, P(z) is always greater or equal to P(x|y), so that log(P(z)/P(z|y)) is non-negative.
Since P(z) > 0, the above equality holds if and only if log(P(z)/P(z|y)) = 0 or equivalently
if and only if P(z)/P(z|y) = 1. This implies that P(x|y) = P(x) meaning that X and Y are
independent.

Problem 3.12 :

The marginal probabilities are given by
P(X=0) = Y P(X=0Y=k=PX=0Y=0+PX=0Y=1)==<
k
P(X=1) = Y P(X=1LY=k=PX=1Y=1)=
k
P(Y=0) = ZP(sz:,YzO)zP(XzO,YzO):

P(Y =1) = ZP(X_k;,Y_1)_P(X_0,Y—1)+P(X_1,Y_1)_§



Hence,

1 1 1 1 1

H(X) = _ZPiIOgQPi:—(510g2§+§10g2§):.9183
=0
! 1 1 1 1

H(X) = —ZPilogng-:—(glog2§+§log2§):.9183
=0
21 1

H(X)Y) = —Zglog2§:1.5850

=0

H(X|Y) = H(X,Y)—H(Y)=1.5850— 09183 = 0.6667
H(Y|X) = H(X,Y)— H(X)=1.5850 — 0.9183 = 0.6667

Problem 3.13 :

H = nhnoloH(Xn|X1,,Xn_1)

= lim |- ) P(ml,...,xn)logQP(xn\xl,...,xn_l)l

n—oo

n—oo

= lim |— Z P(xl,...,xn)logzP(xn\xn_l)]

n—oo
Tn,Tn—1

= lim [— ) P(xn,xn_l)logzP(xn|xn_1)}

— lim H(Xo| X0 1)

n—oo

However, for a stationary process P(x,,%,_1) and P(x,|z,_1) are independent of n, so that

H = lim H(Xp|Xn_1) = H(Xp|Xn_1)

n—oo

Problem 3.14 :

H(X,Y) = H(X,g(X)) = H(X)+ H(9(X)[X)
= H(g(X)) + H(X|g(X))
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But, H(g(X)|X) = 0, since g(-) is deterministic. Therefore,
H(X) = H(g(X)) + H(X[g(X))
Since each term in the previous equation is non-negative we obtain
H(X) > H(g(X))

Equality holds when H(X|g(X)) = 0. This means that the values g(X) uniquely determine X,
or that g(-) is a one to one mapping.

Problem 3.15 :

I(X;Y)

n m P Ti,Yq
i X5y P, y;) log P(m(aPy(];j)

— 2 0y P, y5) log P(y;)

_ { i 2?21 P(zi, y;)log P(xi, y;) — 3ty P(x;) log P(x;) }
— X7k Ply;) log P(y;)

= —HXY)+HX)+ H(®Y)

Problem 3.16 :

mi  m2

H(X1X5..X Z Z Z P(xy1, 29, ...,x,) log P(x1, T2, ..., Ty)

Jji=1j2=1  jn=1
Since the {z;} are statistically independent :

P(xy1,29,...,2,) = P(x1)P(x2)...P(z,)

and s .
Z Z P(x1)P(xs)...P(x,) = P(x1)
J2=1 Jn=1
(similarly for the other z;). Then :
H(XlXQXn) = Z]l 12]2 1- Z;le P(,Il)P(l’g)P(]}n) IOgP(l’1>P(l’2)P(l’n)

= — X0 P(xy)log P(x1) — X002 P(x2) log P(x3)... — X7 P(xy,)log P(x,)
= XL H(X))
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Problem 3.17 :
We consider an n — input, n — output channel. Since it is noiseless :
0, i#] }

Hence :
HX|Y) = XL X
Doy 2

0 1#1]

But it is also true that :
Pl ~{ V7]

n

Hence :
H(X|Y) = —ZP(xi)logl =0

i=1

Problem 3.18 :
The conditional mutual information between x3 and x5 given x; is defined as :

P(x3, z5]11) P(xs|zoxy)

I(xz3;29|21) = 1O
(w3 22ler) =108 e Plaslan) — °8 Plasler)

]($3;$2|$1) = ](x?;‘xl) - ]($3\$2$1)

Hence :
and P
I(X35; Xs5|X1) D1 2a2 2oas P21, 72, 33) log%

_ _Zml Zw2 Zw3 P([El,[EQ,ZEg) IOgP(Ilfg‘flfl)
+ 201 Yown 2oz P21, 2, x3) log P(x3|x927)

H(X3]X1) — H(X3]X2X1)

Since I(X3; Xo|X1) > 0, it follows that :
H(X3|X1) > H(X3|X2X1)

Problem 3.19 :
26



Assume that a > 0. Then we know that in the linear transformation ¥ = aX + b :

() = ox(20)
Hence :
HY) = —[% pyv(y)logpy(y)dy

= = 2% apx(42) log tpx (M50)dy
Let u = ¥=2. Then dy = adu, and :

HY) = —[° tpx(u)[logpx(u) —logal adu
= — % px(u)log px (u)du + [% px(u)log adu
= H(X)+loga
In a similar way, we can prove that for a < 0 :

H(Y)=—-H(X)—1loga

Problem 3.20 :
The linear transformation produces the symbols :
yi=oax;+0, 1=1,23
with corresponding probabilities p; = 0.45, py = 0.35, p3 = 0.20. since the {y;} have the same

probability distribution as the {z;}, it follows that : H(Y) = H(X). Hence, the entropy of a
DMS is not affected by the linear transformation.

Problem 3.21 :

(a) The following figure depicts the design of the Huffman code, when encoding a single level
at a time :
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Codeword
1

00

010

011

The average number of binary digits per source level is :

The entropy of the source is :

Level

al

az

as

a4

H(X) ==Y P(a;)logP(a;) = 1.9118 bits/level

Probability

0.3365

0.3365

0.1635

0.1635

(b) Encoding two levels at a time :

28
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0.327

0.6635

R =Y P(a;)n; = 1.9905 bits/level




Codeword

001

010

011

100

1011

1010

00000

00001

00010

00011

1100

1101

11100

11101

11110

11111

The average number of binary digits per level pair is Ry = Y, P(ax)ni = 3.874 bits/pair
resulting in an average number :

Levels

aial

aiaz

asay

asaz

aias

alaq

aza3

asaq

azail

azaz

agal

asaz

azas

azaq

aga3

a4q0a4

Probability

0.11323

0.11323

0.11323

0.22646

0.11323

0.05502

0.05502

0.05502

0.05502

0.05502

0.05502

0.05502

0.05502

0.02673

0.02673

0.11004

0.22327

0.11004

0.33331

0.55987

0.11004

0.22008

0.11004

0.05346

0.44023

0.21696

0.02673

0.02673

0.05346

0.10692

R = 1.937 bits/level

H(X) < % <H(X)+

— H(X) = 1.9118 bits/level.
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Problem 3.22 :

First, we need the state probabilities P(z;), i = 1,2. For stationary Markov processes, these
can be found, in general, by the solution of the system :

PIl = P, Z P=1
where P is the state probability vector and II is the transition matrix : II[ij] = P(x;|z;).
However, in the case of a two-state Markov source, we can find P(z;) in a simpler way by noting

that the probability of a transition from state 1 to state 2 equals the probability of a transition
from state 2 to state 1(so that the probability of each state will remain the same). Hence :

P(z1|x9) P(x9) = P(xg|z1)P(x1) = 0.3P(22) = 0.2P (1) = P(x1) = 0.6, P(z3) = 0.4
Then :

B P(z1) [=P(z1]x1) log P(x1|x1) — P(x2|x1) log P(x2|x1)] +
A (X) { Pla) [— P(21|22) log P(x1]22) — P(xa]2) log P(x2]2) }

= 0.6[—0.810og0.8 — 0.210g 0.2] 4+ 0.4 [-0.310g 0.3 — 0.710g 0.7]

= 0.7857 bits/letter

If the source is a binary DMS with output letter probabilities P(x1) = 0.6, P(xy) = 0.4, its
entropy will be :

Hpps(X) = —0.6log0.6 —0.41og 0.4 = 0.971 bits/letter

We see that the entropy of the Markov source is smaller, since the memory inherent in it reduces
the information content of each output.

Problem 3.23 :

(a)
H(X) = —(.05log,.05+ .1log,.1+ .1log, .1+ .15log, .15
+.051og, .05 + .25 log, .25 + .3 log, .3) = 2.5282

(b) After quantization, the new alphabet is B = {—4,0,4} and the corresponding symbol
probabilities are given by
P(—4) = P(-5)+P(-3)=.05+.1=.15
P(0) = P(—1)+ P(0)+P(1)= .1+ .15+ .05 =3
P(4) = P(3)+P(5) =.25+.3=.55
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Hence, H(Q(X)) = 1.4060. As it is observed quantization decreases the entropy of the source.

Problem 3.24 :

The following figure depicts the design of a ternary Huffman code.

0 .22 0
0 18 ——0
117 50 |11
12 15 —12
20 13 — 0
21 1 28 |o
22 .05 —12

The average codeword length is
R(X) = > P(z)n, =224 2(.18+ .17+ .15+ .13 + .10 + .05)
= 1.78 (ternary symbols/output)

For a fair comparison of the average codeword length with the entropy of the source, we compute
the latter with logarithms in base 3. Hence,

H(X)=-> P(z)logs P(z) = 1.7047

As it is expected H(X) < R(X).

Problem 3.25 :

Parsing the sequence by the rules of the Lempel-Ziv coding scheme we obtain the phrases

0, 00, 1, 001, 000, 0001, 10, 00010, 0000, 0010, 00000, 101, 00001,

000000, 11, 01, 0000000, 110, ...

The number of the phrases is 18. For each phrase we need 5 bits plus an extra bit to represent
the new source output.

31



Problem 3.26 :

(a)

where we have used the fact [;°te"3dz =1 and E[X] =

(b)

Dictionary | Dictionary | Codeword
Location | Contents
1 00001 0 00000 0
2 00010 00 00001 0
3 00011 1 00000 1
4 00100 001 00010 1
5 00101 000 00010 0
6 00110 0001 00101 1
700111 10 00011 0
8 01000 00010 00110 0
9 01001 0000 00101 0
10 01010 0010 00100 0
11 01011 00000 01001 0
12 01100 101 00111 1
13 01101 00001 01001 1
14 01110 000000 01011 0
15 01111 11 00011 1
16 10000 01 00001 1
17 10001 0000000 01110 0
18 10010 110 011110
= le‘ﬂn(%e‘ dx
= —In(= /ool Y +/Ool x2d
= n()\) e ddrt | e x
= In)\+ % ; Xe Xxdx
= ln)\+%)\: 1+ 1InA

. 56_7 In(—e

—1n(%)/°°

|| 1
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(c)

Problem 3.27 :

(a) Since R(D) = log

- 1(2A)+1[/0 Lt edd +/O° i—%d}
- Ao TN T ) Tane T

1 1
= In(2)\) + 5/\ + 5A =1+ 1In(2))

0z 4+ A T+ A A=+ A -+ A
—/_)\ 32 ln( 32 )dx—/o 2 ln< 2 )dx
1 O z+ A A—x 4+ A
-in(53) [/_AT‘Z“/O e dx]

0z 4+ A A—x 4+ A
—/_)\ 5 ln(x+)\)dx—/0 In(—z + \)dz

A A2
2 2
In(A*) — ﬁ/o z1n zdz
2 [2Inz 22
In(\?) — = |[Z—=2 -2
00— 57 3)
1

In(A?) — In(A) + 3

and D = 3, we obtain R(D) = log(/\i/z) = log(2) = 1 bit/sample.

(b) The following figure depicts R(D) for A = 0.1, .2 and .3. As it is observed from the figure,
an increase of the parameter X\ increases the required rate for a given distortion.

R(D)

015 02 0.25 03
Distortion D
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Problem 3.28 :

(a) For a Gaussian random variable of zero mean and variance o2 the rate-distortion function
is given by R(D) = log2 % . Hence, the upper bound is satisfied with equality. For the lower
bound recall that H(X) = 1 log,(2mes?). Thus,

1 1 1
H(X) - 5 log,(2meD) = 5 log,(2mea?) — 5 log,(2meD)

1 2meo?
- — R(D
T < 2reD ) R(D)

As it is observed the upper and the lower bounds coincide.

(b) The differential entropy of a Laplacian source with parameter \ is H(X) = 1+1n(2)). The
variance of the Laplacian distribution is

e’} 1 =
o’ = / I2—6_‘_A‘dl’ = 2)\?
—o  2A

Hence, with 02 = 1, we obtain A = /1/2 and H(X) = 1+In(2)\) = 1+In(v/2) = 1.3466 nats/symbol =
1.5 bits/symbol. A plot of the lower and upper bound of R(D) is given in the next figure.

Laplacian Distribution, unit variance

R(D)
N

" Upper Bound

0 o0l 02 03 04 05 06 07 08 09 1
Distortion D

(c) The variance of the triangular distribution is given by

2 _ /i(HA) 2dx+/ < x—i—)\) 2

IR S SRR U UL DA SR WP W
- ﬁ(zl‘*gl’)_ﬁﬁ T3,
>\2
G
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Hence, with 02 = 1, we obtain A = /6 and H(X) = In(6)—In(v/6)+1/2 = 1.7925 bits /source output.
A plot of the lower and upper bound of R(D) is given in the next figure.

Triangular distribution, unit variance

R(D)
N

e .. Upper Bound

Lower Bound
oF
_05 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

Distortion D

Problem 3.29 :

A2
02 = BE[X*(t)] = Rx(7)|y=0 = o
Hence,
- X2 A2
— 2.4V X2 — 2.4V _ v
SQNR =3-4"X 34x2 342A2

max

With SQNR = 60 dB, we obtain

3. 44
101og,, (T) = 60 = ¢ = 9.6733

The smallest integer larger that ¢ is 10. Hence, the required number of quantization levels is

v = 10.
Problem 3.30 :

(a)
H(X|G) = / / (z, g) log p(|g)dzdg
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But X, G are independent, so : p(x,g) = p(x)p(g), p(z|g) = p(z).Hence :

H(X|G) = —[%plo) [/
= — [Zp(9H(X )
= H(X)=3lo g(27r6c7)

() log p(x)dz| dg

where the last equality stems from the Gaussian pdf of X.

(b)
[(X;Y)=H(Y) - HY|X)

Since Y is the sum of two independent, zero-mean Gaussian r.v’s , it is also a zero-mean Gaussian

r.v. with variance : o} = 02+ 02. Hence : H(Y) = §log (2me (02 + 02)) . Also, since y =z +g :

1 _(y—=)?
p(y‘]}) = pg(y - x) - \/%O' e

Hence :
HY|X) = —/ p(z,y) log p(y|z)dzdy
fe'e) 1 _ 2
= /P (x) loge/ p(y|x) In <\/%O-n exP(_(yQUg) )) dydzx

e e}

p(z)loge [/_O:O pe(y — ) <ln(\/ﬁan) + = x)2> dy] dx

1
p(x)loge lln(\/2 n) + 2—204 dx

e e}

[t
[t

- oS + o]
= ;log (27rec7 ) (= H(G))

where we have used the fact that : [°5 p,(y—z)dy =1, [% (y—x)*p,(y—z)dy = E[G?] =
From H(Y), HY|X) :

1 1 1 2
I(X:Y) = HY) ~ H(Y|X) = 7 log (2me(0? + 02)) - 5 log (2mea?) = 5 log (1 + %)

n
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Problem 3.31 :

Codeword  Letter Probability

9 1 0.25
9
00 Lo 0.20 0
1 0.47
01 T3 0.15
0
9
02 T4 0.12
0
10 s 0.10
9
12 6 0.08
0 0.28
110 T 0.05
1
1 1
111 T8 0.05
0.1
9
X9 0 X

R = 1.85 ternary symbols/letter

Problem 3.32 :
Given (ny,ng,n3,ny) = (1,2,2,3) we have :
1 9
oo =2"1427 422427 = >
k=1 8

Since the Craft inequality is not satisfied, a binary code with code word lengths (1,2, 2, 3) that
satisfies the prefix condition does not exist.

Problem 3.33 :

A 2m
Yoo =S o= 9np = |
k=1 k=1

37



Therefore the Kraft inequality is satisfied.

Problem 3.34 :

1 1~77 —1
X) — —1x'M~1X
p( ) (27r)”/2|M\1/26

H(X) = —/_:../_o;p(X) log p(X)dX

But :
1 1
log p(X) = ~3 log(2m)"™ | M| — (5 log e) X'M'X
and - o /1
[ (5 log e) X'M X p(X)dX = 2 loge
Hence :

H(X) = Zilog(2m)"|M|+ tloge”
= 5 log(2me)™ | M|

Problem 3.35 :

R(D)=1+DlogD+ (1 —D)log(l—D), 0<D=P, <1/2

0.9r

0.8

0.7F

0.6

R(D)
o
o

0.4

0.3

0.2

0.1r

. . . . . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Problem 3.36 :

Problem 3.37 :

Let W = P'P. Then :

where by definition : Y=y/nPX, Y = \/nPX . Hence :

Problem 3.38 :

(a) The first order predictor is

R(D)

251

1—
=logM + Dlog D + (1 — D) log (M—

dw (X, X)

dw (X, X) = (X = X)'W(X — X)

= (X - X)’P P(X — X)
= (Px ) P(X - X)
— 1 (Y Y) (Y Y)

dy (X, X)

= dy(Y,Y).

: #(n) = anyr(n—1). The coefficient a;; that minimizes the MSE

is found from the orthogonality of the prediction error to the prediction data :

Ele(n)z(n—1)]=0=
El(z(n) —anz(n—1))z(n—1)] =0=

¢(1) — ang(0) = 0= a;; = ¢(1)/9(0) = 1/2
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The minimum MSE is : €; = ¢(0) (1 — a3,) = 3/4

(b) For the second order predictor : Z(n) = agz(n — 1) 4+ agz(n — 2). Following the Levinson-
Durbin algorithm (Eqs 3-5-25) :

¢(2) = Ciaup2—k)  0-

€1 3/

a9 = a11 — Q2011 = 2/3

The minimum MSE is :
€y = €1 (1 - a22)2 = 2/3

Problem 3.39 :

Tab C
p('rluxZ)—{ 76b7 r1,To € }

0.W

If x1,z9 are quantized separately by using uniform intervals of length A, the number of levels

needed is Ly = %, Ly = %. The number of bits is :
ab
R, =Ry + Ry =log L 4+ log Ly, = logF
By using vector quantization with squares having area A%, we have L/ = 12‘2’2 and R/, = log L}, =

log IE“AZ’Q bits. The difference in bit rate is :

b Tab 15
% — log ©o_ log — = 1.1 bits/output sample

— / —
R, — R, =log EA2 -

for all a,b > 0.

Problem 3.40 :

1

(a) The area between the two squares is 4 x 4 —2 x 2 = 12. Hence, pxy(z,y) = 75. The

marginal probability px(z) is given by px(z) = [, pxy (2, y)dy. If =2 < X < —1, then

2 p 12 1
px(z) = /_2px7y(w,y) y=13Y_,=3

40



If -1 <X <1, then
px(x):/_2 dy+/ —dy——
Finally, if 1 < X < 2, then

1
/nyxy Yy = 12

The next figure depicts the marginal distribution px(x).

3

1/3
1/6
-2 -1 1 2
Similarly we find that

I 2<y<—1
i

pr(y) =4 7 “1<y<-1
;g l<y<?2

(b) The quantization levels 1, Zo, @3 and &, are set to —%, —%, % and % respectively. The

resulting distortion is
- 312 0 Lo
Dx = 2/2 (x+§) pX(x)dx+2/l(x+ 5) px(x)dx
2 0 1
9)alx+ —/ (2> + 7+ =)dx
6 /-1 4

= 2/_](2+3 +
Y R
—1+2(1 3+1 2+1 )
—|z2”+ 2"+ —x
6 \3

2 /1 3 9 0
——(x—i- —z’ + x)

3\3 2 4 9 2 4 _1
1
12
The total distortion is ) ) .
Diotal = D Dy = —+ —=—
total x + Dy o + 26

whereas the resulting number of bits per (X,Y") pair

R=Rx + Ry =log,4+log,4 =14

(c) Suppose that we divide the region over which p(z,y) # 0 into L equal subregions. The case
of L =4 is depicted in the next figure.
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For each subregion the quantization output vector (z,¢) is the centroid of the corresponding
rectangle. Since, each subregion has the same shape (uniform quantization), a rectangle with
width equal to one and length 12/L, the distortion of the vector quantizer is

b= [ iiiﬂ g3

- 12// [ (y_%)}dxdy

B 121+1231 1+12
T 12 L12 0 I312 12 L2

If we set D = %, we obtain

12 1
—=—=L=v144 =12
L2 12
Thus, we have to divide the area over which p(x,y) # 0, into 12 equal subregions in order to

achieve the same distortion. In this case the resulting number of bits per source output pair
(X,Y) is R = log, 12 = 3.585.

Problem 3.41 :

(a) The joint probability density function is pxy (z,y) = (2\}5)2 = 1. The marginal distribution

px(z) is px(v) = [, pxy (7, y)dy. If =2 < x < 0,then

z+2 1 I-%Q
px(aﬂ /{x_szQY(x7y) Yy 8y‘—z—2 4
If 0 <x < 2then

1 _m+2_—l’—|—2
g¥la—2 = Ty

—z+2
px(l") = /m_2 pr(x,y)dy =

The next figure depicts px(z).
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—2 | 2
From the symmetry of the problem we have

29 <y <0
py(y)—{-4z =
e 0<y<2

(b)
1
Dy = 2/ g;-|— pX dl‘+2/ T+ )pX( )dz
1 1
_ 5/ x—|—2)dx+2/ r+ ) (a4 2)de
1( £y B +9)_1+1(14+3+92+1>0
= — (=2t x <7 Z Slgt % ] 2"
9 8 2 9 2\ 4 8 2 -1
12
The total distortion is 1 1 1
Doa_D Dy = = 9 @
ol = Ex Y =t 1 T

whereas the required number of bits per source output pair

R=Rx + Ry =log,4+1log,4 =14

c) We divide the square over which p\x, 0 into 24 =16 equal square re ions. The area of
Yy g
each square is % and the I'GSIlltillg distortion

D = E/7/7 [@—ﬁ)%( QI)]dxdy

Hence, using vector quantization and the same rate we obtain half the distortion.
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CHAPTER 4

Problem 4.1 :
(a)
i)=— " ) 4
TJ-ot—a
Hence :
—i(—t) = —1 [% 2% da
= Ll w<t+b( db)
=
L%, b= (1)
where we have made the change of variables : b = —a and used the relationship : x(b) = x(—b).

(b) In exactly the same way as in part (a) we prove :

(c) z(t) = coswyt, so its Fourier transform is : X (f) = 5 [6(f — fo) + 6(f + fo)], fo = 2mwy.
Exploiting the phase-shifting property (4-1-7) of the Hilbert transform :

. 1

X(f):§[

000 = Jo) 4 38(F + o)) = 5= 60F = fo) = 8(f + fo)] = F* {sin 2 fo}

Hence, z(t) = sin wyt.

(d) In a similar way to part (c) :

olt) = sinwat = X(f) = 5= 5(F = fa) = 6(F + o)l = X(1) = 3 (=67 = o) = 8(¢ + fo)

A

= X(f) = —% [6(f — fo) +0(f + fo)] = —F ' {cos 2nwot} = #(t) = — coswpt

(e) The positive frequency content of the new signal will be : (—7)(—=7)X(f) = =X(f), f >0,
);

while the negative frequency content will be : j - jX(f) = —=X(f), f < 0. Hence, since X (f) =

—X(f), we have : z(t) = —x(¢).
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(f) Since the magnitude response of the Hilbert transformer is characterized by : |H(f)| = 1,
we have that : ‘X(f)‘ =|H(f)]|X(f)|=|X(f)|. Hence :

[e.e]
[ xG
and using Parseval’s relationship :

/OO P(t)dt = /OO 2% (t)dt

—00 —00

A

X(f)[ af = £ df

(g) From parts (a) and (b) above, we note that if z(¢) is even, Z(¢) is odd and vice-versa.
Therefore, z(t)z(t) is always odd and hence : [*°_z(t)z(t)dt = 0.

Problem 4.2 :

We have :

where h(t) = £ and H(f):{ _jj’ iig }.Hence:

7t
9

D35(f) = Pu(f) [H(f)* = Pua(f)

and its inverse Fourier transform :

Also :
G2(7) = Elz(t+71)2(t)]

_ 1 foo Elx( t+7'):c(a)} da

1 foo ¢1r t+7' a)da

— _1 f—oo qbgm db

= I foo ¢” = —ua(T)
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Problem 4.3 :

(a)

Efz(t)z(t +7)] El{zt+7)+ 7yt + )} z@) + jy(t)}]
Elz)zt+71)] - Ely@)y(t+7)] + B [x(t)y(t + 7)]
+E [y(t)x(t + 7)]

Cbmc(,r) - ¢yy(7—) +] [¢y:c (7—) + ¢:cy(7—)]
But ¢,,(7) = ¢yy(7)and ¢y, (1) = —¢uy (7). Therefore :

Elz(t)z(t+71)] =0

(b) )
V= /0 2(t)dt

B(v?) = /OT /OTE[z(a)z(b)] dadb = 0

from the result in (a) above. Also :

E(WVS) = fy ly Elx(a)z*(b)]dadb
I [T 9Ny6(a — b)dadb

JF2Nyda = 2N, T

Problem 4.4 :

E[z(t + 7)x(t)] AjE [sin 27 fo(t + 7) + 6) sin (27 fot + 0)]

A cos2mf.r — A;E [cos (27 f.(2t + 7) + 26)]

where the last equality follows from the trigonometric identity :
sin Asin B = 3 [cos(A — B) — cos(A+ B)] . But :

E [cos (2 fe(2t + T) + 20)] JZ™ cos (2 fo(2t + T) + 20) p(6)dh

L2 cos (2 £,(2t + 7) + 20) d = 0

Hence : )

Elx(t+7m)z(t)] = % oS 27 foT
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Problem 4.5 :

We know from Fourier transform properties that if a signal x(t) is real-valued then its Fourier
transform satisfies : X(—f) = X*(f) (Hermitian property). Hence the condition under which
si(t) is real-valued is : Si(—f) = S/ (f) or going back to the bandpass signal s(¢) (using 4-1-8):

Si(fe=f)=55(fe+ )

The last condition shows that in order to have a real-valued lowpass signal s;(t), the positive
frequency content of the corresponding bandpass signal must exhibit hermitian symmetry around
the center frequency f.. In general, bandpass signals do not satisfy this property (they have
Hermitian symmetry around f = 0), hence, the lowpass equivalent is generally complex-valued.

Problem 4.6 :

A well-known result in estimation theory based on the minimum mean-squared-error criterion
states that the minimum of &, is obtained when the error is orthogonal to each of the functions
in the series expansion. Hence :

/_Z [s(t) —Zskfk(t)] Fdt=0, n=12.K (1)

k=1

since the functions {f,(¢)} are orthonormal, only the term with & = n will remain in the sum,
SO :

n

/°° SO (At -8, =0, n=12...K

or:

oy = /m s (Ot n=1,2,. K

The corresponding residual error &, is :
Emin = 2% [5(8) = S s fu(®)] [5(8) = Sy sufu(®)]
S Vs dt = 22 Sy sefi(t)s (0t = S % (25 [s(8) — TS, sk fu()] £ (0)de
= [ s dt — [ S sefi(t)s*(t)dt
= & - XK, sl

where we have exploited relationship (1) to go from the second to the third step in the above
calculation.
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Note : Relationship (1) can also be obtained by simple differentiation of the residual error with
respect to the coefficients {s,}. Since s, is, in general, complex-valued s,, = a,, + jb, we have
to differentiate with respect to both real and imaginary parts :

L, = [s(t) = S sefu(®)] [s() = S sufut)] dt =0
= — [ anfalt) [5(6) = Sy saful))] + anfi(®) [s(6) = I sufalt)] dt =0
= —2a, [, Re {f;(t) [s(t) = S5, su fu®)] } dt = 0

= [Z Re{fi() [s() - I sufu®)] Jdt =0, n=1,2.K

where we have exploited the identity : (z + 2*) = 2Re{x}. Differentiation of & with respect to
b, will give the corresponding relationship for the imaginary part; combining the two we get

(1).

Problem 4.7 :

The procedure is very similar to the one for the real-valued signals described in the book (pages
167-168). The only difference is that the projections should conform to the complex-valued
vector space :

- [ st (0t

—0o0

and, in general for the k-th function :

Cit = /_°° s Odt, i=1,2,. k-1

Problem 4.8 :

For real-valued signals the correlation coefficients are given by : pg, = ﬁ J20 sk(t)sm(t)dt

and the Euclidean distances by : dff% = {5k + &, — 2\/5k8mpkm}l/2. For the signals in this
problem :
E1=2,86=28E=3,&E=3

p12 =10 ,0132% ,0142—%

p3 =0 py=0
P34 = —%



and:
di) =2 dif =\2+3-2v6% =1 dif = /2+3+2/6% =3
23—\/2+3 =5 d) = /5

d) = \/3+3+2%3L =22

Problem 4.9 :

The energy of the signal waveform s/ () is :

00 00 M
& = [Tlsnfar= [ sm(t)—%zskt

_ /_O:O dt+—ZZ/

k=11=1

31wt dt——z/
1 M M

= 5+—2255M——5

k=11l=1

M-—-1
= £ gpE-yf= (T )8

The correlation coefficient is given by :

b = 5 [ (s, = g [ (00— 37 3 50) (300 = 3 30

Problem 4.10 :

(a) To show that the waveforms f,(¢), n =1,...,3 are orthogonal we have to prove that:

/_Z Fufu®)dt =0,  m+£n
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Clearly:

R A I TR

9 4
= [ hwpmd+ [ AL
0 2
2 4
= fag [la=Tx2-txa-g)

=0
Similarly:
s = [T h@a@d = [ @ s
_ i/oldt—ifdt—i/;dwrifdt
=0
and :

o = [T pORwd = [ BO[0
- é[ﬁ—iﬂiﬁ+ifﬁ—ié%t

Thus, the signals f,(t) are orthogonal. It is also straightforward to prove that the signals have
unit energy :

| lwPde =1, i=123

Hence, they are orthonormal.

(b) We first determine the weighting coefficients

a%z[ix@ﬁ@ﬂ@ n=1,23
o = /0493 () f1()dt = ——/ dt + - /dt——/ dt + - /dt—O

! t)d
t—0
ot 2/

/
4 1 /2 1 /3 1 4
o /Ox _—i/odt—i/ldt+§/2dt+§/3dt—0

As it is observed, z(t) is orthogonal to the signal wavaforms f,(¢), n = 1,2,3 and thus it can
not represented as a linear combination of these functions.

To =
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Problem 4.11 :

(a) As an orthonormal set of basis functions we consider the set

o={3 0 {31
f3<t>={(1) ot f4(t)={(1) St

In matrix notation, the four waveforms can be represented as

s1(t) 2 -1 —1 1\ [ A()
s | _[ -2 1 1 o] RO
st |7 1 -1 1 -1 || R0
(1) 12 —2 2 )\

Note that the rank of the transformation matrix is 4 and therefore, the dimensionality of the
waveforms is 4

(b) The representation vectors are

s, = |2 -1 -1 —1]
Sy = i—2110}

sy = [1 -1 1 —1]
s = [1 -2 -2 2]

(c) The distance between the first and the second vector is:

o=l —sP=yf|[4 2 2 1] =3

Similarly we find that :

dis = Jlsi—ssl2=y/[[1 0 =2 0] =

d1,4 = \Sl - S4|2 =

V5
111 =3 =v12
V14

V
V
g = m—\/:—s 20 1] =
V
V

d2,4 = ‘82 - S4|




Thus, the minimum distance between any pair of vectors is dyi, = V5.

Problem 4.12 :

As a set of orthonormal functions we consider the waveforms

o={3 050 mo= {3 15 m{y 22
The vector representation of the signals is
s; = [2 22
s, = |20 0
s — [0 —2 -2 |
s = [22 0]

Note that s3(t) = sa2(t) — s1(¢t) and that the dimensionality of the waveforms is 3.

Problem 4.13 :

The power spectral density of X (¢) corresponds to : ¢, (t) = 2BNo3225t From the result of
Problem 2.14 :

sin 27 Bt ) 2

Oy (7) = 674(0) + 202, () = (2BNo)” + 8B° N (W

Also :

The following figure shows the power spectral density of Y (¢) :

R (2BNo)?6(f)

2N2B

—2B 0 2B ®
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Problem 4.14 :

u(t) = lang(t — 2nT) — jb,g(t — 2nT — T)]

n

(a) Since the signaling rate is 1/2T for each sequence and since g(¢) has duration 2T, for any
time instant only g(t —2nT) and g(t —2nT —T) or g(t —2nT +T') will contribute to u(t). Hence,
for2nT <t <2nT + T :

lwt)]> = |ang(t —2nT) — jbug(t — 2nT + T)|?
= a?g*(t —2nT) + b2g*(t — 2nT + T)
: T . T(t+T
= ¢t —2nT)+g*(t = 2nT +T) =sm2%+sm2—(ﬂ )

_ gn2mt 2wt _
= sin“gx fcos“gm =1, Vi

(b) The power density spectrum is :

B f) = 7 G

where G(f) = [%, g(t) exp(—j2m ft)dt = [3" sin 2 exp(—j27 ft)dt. By using the trigonometric
identity sinz = %ﬁ.’(p(_ﬂ) it is easily shown that :

AT cos2rTf o 4
A e VTN

Hence : 2
— (4T _cos?2nTf
G(f) - ( ™ ) (1-16T2f2)?
1 (4T 2 cos22nTf
(I)uu(f> - T (?) (1-16T2f2)?

16T cos22nTf
72 (1-16T2f2)?

(c) The above power density spectrum is identical to that for the MSK signal. Therefore, the
MSK signal can be generated as a staggered four phase PSK signal with a half-period sinusoidal
pulse for g(t).
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Problem 4.15:
We have that ®,,(f) = %\G(f)|2<1>ii(f) But E(7,) = 0, E(\In|2) = 1, hence : ¢;(m) =

{ (1]: Z;L ;8 } Therefore : ®;(f) =1 = Puu(f) = 7 G2,

(a) For the rectangular pulse :

inwfT in %7 T
Slnﬂ—f 6—]27rfT/2 = |G(f)‘2 :A2T2SIH 7Tf

mfT (nT)?

where the factor e=727/7/2 is due to the 7'/2 shift of the rectangular pulse from the center ¢ = 0.
Hence :

G(f) = AT

oSN 2 fT

0.9+
0.8+
0.7+
0.6+
0.5+
0.4+
0.3+
0.2+
0.1+

Sv(f)

(b) For the sinusoidal pulse : G(f) = [ sin 2 exp(—j2n ft)dt. By using the trigonometric

exp(jz)—exp(—jz)

identity sinx = it is easily shown that :

2j
2AT cosmTf o 5 2AT\? cos?nTf
G1) = EE T e ) _( - ) T TaE
Hence : e 2 Tf
cos
=) Ta—arp)
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(c) The 3-db frequency for (a) is :

sin 27 T 1 0.44
% =5 = faw=—"7
(7 fsanT') 2

T
(where this solution is obtained graphically), while the 3-db frequency for the sinusoidal pulse
on (b) is :
cos 2nT 1 0.59
—f 5 =5 = faw = —
(1 —4T172f2) 2

T
The rectangular pulse spectrum has the first spectral null at f = 1/T, whereas the spectrum
of the sinusoidal pulse has the first null at f = 3/27 = 1.5/T. Clearly the spectrum for the
rectangular pulse has a narrower main lobe. However, it has higher sidelobes.

Problem 4.16 :

u(t) = X cos 2w ft — Y sin 27 ft
Elu(t)] = E(X)cos2r ft — E(Y)sin 2w ft
and :

Guu(t,t+7) = E{[Xcos2nft —Ysin2rft][Xcos2nf(t+7)—Ysin2nf(t+ 7)]}
= FE(X?)[cos2nf(2t 4+ 7) + cos 2w f7] + E (Y?) [— cos 2 f (2t + T) + cos 27 f 7]

—E(XY)sin2r f(2t 4 1)
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For u(t) to be wide-sense stationary, we must have : F [u(t)] =constant and ¢, (t, t47) = ¢uu (7).
We note that if E(X) = E(Y) = 0, and E(XY) = 0 and E(X?) = E(Y?), then the above
requirements for WSS hold; hence these conditions are necessary. Conversely, if any of the
above conditions does not hold, then either E [u(t)] #constant, or ¢y, (t,t + 7) # ¢uu(T). Hence,
the conditions are also necessary.

Problem 4.17 :

The first basis function is :

_ _ _ ] -1/V3 0<t<3
94(t)_\/g—4_\/§_{ 0, 0w, }

Then, for the second basis function :

2/3, 0<t<2
€43 —/ = —1/V3 = g4(t) = s3(t) — casgalt) = { —4/3, 2<t<3 }
0, 0.W
Hence :
gy [ V6 0st<2
g93(t) = Nt —2(/)7%, 2§O?5W§3

where Fj3 denotes the energy of g4(t) : Es = [ (g4(t))” dt = 8/3.
For the third basis function :

Cq9 — / g4 dt =0 and C3g — / (t)dt =0

Hence :
93(t) = s2(t) — ca2ga(t) — c3295(t) = 52(2)

, 1/v2, 0<t<1
92(t) = %:(0) { —1/V2, 1<t<2 }

0, 0.W

and

where : & = [2 (s5(t))* dt = 2.
Finally for the fourth basis function :

041_/ £)ga(t)dt = —2/V/3, c31—/ (t)dt = 2/V/6, cn =0

Hence :
g1 (t) = 51(t) — ca194(t) — c3195(t) — ca192(t) =0 = g1(t) =0
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The last result is expected, since the dimensionality of the vector space generated by these
signals is 3. Based on the basis functions (g»(t), g3(t), g4(t)) the basis representation of the

signals is :
S4 =
S3 =
So =

S1 =

Problem 4.18 :

(0,0,\/5) =& =3
0,1/8/3,—1/V3) = & =3
v2,0,0) = & =2
2/V/6,-2/V/3,0) = & =2

S1 = \/E,O)
So = | — 5,0)
S3 = O, \/E)
Sy = O,—\/E)
4 f2
S3
. A
s 5
S4
X

As we see, this signal set is indeed equivalent to a 4-phase PSK signal.

Problem 4.19 :

(a)(b) The signal space diagram, together with the Gray encoding of each signal point is given

in the following figure :
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The signal points that may be transmitted at times t = 2nT" n = 0,1, ... are given with blank
circles, while the ones that may be transmitted at times t = 2nT + 1, n = 0,1, ... are given
with filled circles.

Problem 4.20 :

The autocorrelation function for ua(t) is :
Suaua(t) = 5Eualt + 7)ux(t)]
= I S CE(ILI) Eu(t 4T —mT — At (t —nT — A)]
= 13 S di(m—n)Eu(t+7—mT — A)u(t —nT — A)]

— 1y hu(m) S Elu(t+7 —mT —nT — A)u*(t —nT — A)]

= % S o Di(m) o f(;f %u(t +7—mT —nT — A)u*(t —nT — A)dA
Let a = A+nT, da =dA, and a € (—00,00). Then :
unua (1) = 32 dulm) 22 [T Lult + 7 — mT — a)u*(t — a)da
= % ) gbii(m)% [ ut+7—mT —a)u*(t —a)da

Thus we have obtained the same autocorrelation function as given by (4.4.11). Consequently
the power spectral density of ua(t) is the same as the one given by (4.4.12) :

Busua(f) = 7 [GU) @il f)
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Problem 4.21 :

(a) B, = I, + I,,—1. Hence :

]n In—l Bn
1 1 2
1 -1 0
—1 1 0
-1 -1 =2

The signal space representation is given in the following figure, with P(B, = 2) = P(B, =
—-2)=1/4, P(B,=0)=1/2.

H=

Fay
©

-2 0 2

(b)
¢BB(m> = F [Bn—l—mBn] =L [(In—l—m + In—l—m—l) (In + In—l)]
= ¢iu(m) + ¢u(m — 1) + ¢u(m + 1)
Since the sequence {I,,} consists of independent symbols :

EllLiw E[l,)=0-0=0, m#0
Guilm) = { B2 =1, m=0 }
Hence :
2, m=0
ngBB(m) = { 1, m= =1 }
0, 0O.W
and

Opp(f) = Yoo osp(m)exp(—j2rfmT) =2+ exp(j2n fT) + exp(—j2n fT)
= 2[1+cos2nfT] = 4cos?nfT
A plot of the power spectral density ®p(f) is given in the following figure :

Power spectral density of B
5 T T

45

a4t

3.5

3k

25

. I I I I I I I I I .
-05 -04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4 0.5
Normalized frequency fT
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(c) The transition matrix is :

-1 1 O 1 2
1 -1 0 -1 -2
1 -1 0 1 0
1 1 2 -1 0
1 1 2 1 2

The corresponding Markov chain model is illustrated in the following figure :
1/2

1/2 1/2

S 1 y

O O O =

AN / °

Problem 4.22 :

(a) I, = a,—a,_o, with the sequence {a, } being uncorrelated random variables (i.e £ (ap4man) =
d(m)). Hence :

bii(m) = ElLiymln] = E{(anim — Gnym—2) (an — n_2)]
= 26(m)—0(m—2)—d(m+2)

2, m=0
= -1, m=+2
0, 0.W.

(b) ®uu(f) = 7 |G(/)* ®is(f) where :

C,u(f) = S0 du(m)exp(—j2nfmT) =2 — exp(jadn fT) — exp(—jan fT)
= 2[1 —cosdr fT] = 4sin?2n fT

and

sinw fT 2
wfT )

()P = (ATY? (
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Therefore :

. 2
By (f) = 4A2T (%) sin 227 fT

(c) If {a,} takes the values (0,1) with equal probability then E(a,) = 1/2 and E(ap1man) =

{ 1721: Eig } = [1 4+ d(m)] /4. Then :

¢zz(m> = F [In—l—mln] - 2¢aa(0> - ¢aa(2) - ¢aa(_2)
= L[20(m) — 8(m — 2) — 6(m + 2)]
and
Pii(f) = X ¢ii(mg exp(—j2m fmT) = sin 27 fT
o (f) = AT (222LL) sin 227 f T

Thus, we obtain the same result as in (b) , but the magnitude of the various quantities is reduced
by a factor of 4 .

Problem 4.23 :

x(t) = Re [u(t) exp (j27 fot)] where u(t) = s(t) £+ 75(¢). Hence :

U(f) = S(f)£55(f) wmm&ﬁz{_ﬁﬁkﬁig}

S ES), f>0 1 [ 25(f)or0, f>0
U“”‘{wﬁxsuxf<o}—{0maaﬂ,f<o}

Since the lowpass equivalent of x(t) is single-sideband, we conclude that x(¢) is a single-sideband
signal, too. Suppose, for example, that s(¢) has the following spectrum. Then, the spectra of
the signals u(t) (shown in the figure for the case u(t) = s(t)+75(t)) and z(t) are single-sideband
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1
-B 0 B
U(f)
2
0 B
X(f)
_fC_B _fC fc fc‘i'BO{e

Problem 4.24 :
We may use the result in (4.4.60), where we set K =2, p; = py =1/2:

£

i=1

o0

) =25 >

l=—00

5(1-3)+ X1 S8 - 2gRelsi s3]

To simplify the computations we may define the signals over the symmetric interval —7/2 <
t <T/2. Then :

T

Si(f) = — lsinﬁ(f - fi)T B sin(f + fi)T

m(f — fi)T m(f+ fi)T

29
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(the well-known rectangular pulse spectrum, modulated by sin 2 f;t) and :
|S(f)‘2 _ <Z)2 <Sin7r(f B fi)T>2 + <Sin7r(f+ fi)T>2
' S \2

m(f = fi)T m(f+ fi)T
where the cross-term involving the product

sinm(f—fi)T  sinw(f+f)T

T T FrT is negligible when f; >> 0.

Also :
g (L) _ 7 |sinm(E—F)T  sinm(f455)T
T 2j | w(E—2)T m(L+2)T

T | sin(rl—"*) sin(mi+ ")
(ml=T3) (ml4-T34)

= Z2(-1)"* (sinZ) /m (17 — n?/4)

= T i

and similarly for Sy(£) (with m instead of n). Note that if n(m) is even then Sy (%) = 0 for
all [ except at [ = £n(m)/2, where 51(2)(%) = i%. For this case

2

i (D) s(r- k) = o (1) ws (e gy wo (5 ) wo (e )]

i=1

1 [o¢]
7,2
The third term in (4.4.60) involves the product of S;(f) and Ss(f) which is negligible since they
have little spectral overlap. Hence :

w(f) =1 [6(7 =gz ) + 8 (F+am) +0 (1 - 52) +5 (5= 20) |+ 55 [1S0)F + 18201

In comparison with the spectrum of the MSK signal, we note that this signal has impulses in
the spectrum.

Problem 4.25 :

MFSK signal with waveforms : s;(t) =sin 2%, i =1,2,.,.M 0<t<T

The expression for the power density spectrum is given by (4.4.60) with K = M and p; = 1/M.
From Problem 4.23 we have that :

iy L fsinn(f = f)T _ sina(f+ fi)T
= l (f— T w(f+ )T 1

2]
for a signal s;(t) shifted to the left by 7'/2 (which does not affect the power spectrum). We also
have that :
s (ﬁ) [ £T/2), =i
‘\T/) 0, 0.W.
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Hence from (4.4.60) we obtain :

() = 2 (3) (5) S~ F) +5(7 + o)
4 (%) ZMS( I§
—2 T TN () Re [0S ()]

= (&) 207 = £+ 80 + 1] + i SIS
— 7 L i Re [Si(£)S;(f)]

Problem 4.26 :

QPRS signal v(t) =3, (B, + jCu) u(t —nT), B, =1L, + I,_1, Cph, = Jy + Jpn_1.

(a) Similarly to Problem 4.20, the sequence B, can take the values : P(B, = 2) =
—2)=1/4, P(B, =0)=1/2. The same holds for the sequence C,,; since these two sequences

are independent :
P{Bn:iaCn:j}:P{Bn: 1}P{Cn:]}

Hence, since they are also in phase quadrature the signal space representation will be as shown
in the following figure (next to each symbol is the corresponding probability of occurrence) :

A

Cn
1/16 1/8 o 1/16
0 D
1/8 1/4 1/8 Bn
1/16 1/8 o 1/16
0 D
2 *

(b) If we name Z,, = B, + jC,, :
bzz(m) = SE[(Bnim +JCnim) (Bn jC )l

N[00 | =

64

{E [BpymBn] + E [CrimChl} = 5 (¢8(m) + ¢cc(m)) = ¢pp(m) =



since the sequences B, C,, are independent, and have the same statistics. Now, from Problem
4.20 :

2, m=20
¢pp(m) =14 1, m==£1 } =dcc(m) = dzz(m)
0, 0.W

Hence, from (4-4-11) :

6u(r) = 7 Y Gpp(m)o(r —mT) = 6,u(r) = 64(7)

m=—0oQ

Also :
Balf) = Bl ) = 0u(f) = o U B )

since the corresponding autocorrelations are the same . From Problem 4.20 : ®pp(f) =
4cos?mfT, so

Blf) = Buclf) = () = o [T cosnfT

Therefore, the composite QPRS signal has the same power density spectrum as the in-phase
and quadrature components.

(c) The transition probabilities for the B, C, sequences are independent, so the probability of
a transition between one state of the QPRS signal to another state, will be the product of the
probabilities of the respective B-transition and C-transition. Hence, the Markov chain model
will be the Cartesian product of the Markov model that was derived in Problem 4.20 for the
sequence B, alone. For example, the transition probability from the state (B, C,) = (0,0) to
the same state will be : P(B41 = 0|B,, = 0) - P(Cpq1 = 0|C,, = 0) = 335 =  and so on. Below,
we give a partial sketch of the Markov chain model; the rest of it can be derived easily, from
the symmetries of this model.
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1/4 l—| 14
1/4 / LN

— ()
1/4
\ 1/4 1/8
e 1/16
(29 (09

CHCEL

(2

¢,

Problem 4.27 :

The MSK and offset QPSK signals have the following form :

v(t) = [anu(t — 2nT) — jbyu(t — 2nT — T)]

0.

3 Tt < t <

- 0, 0.W.

The derivation is identical to that given in Sec. 4.4.1 with 27 substituted for 7. Hence, the
result is: )
¢vv (T) = T Zz:—oo ¢Zl(m)¢uu(7— - m2T)
= 37 Lm=—oo (04 + 03) 0(m) $uu (1 — m2T)

= % Puu(T)
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()’U’U ’ = I/ ’

For the rectangular pulse of QPSK, we have :

(buu(T):QT( —%), 0<|r| <2T

For the MSK pulse :

Gu(T) = [ ult+ T)u*(t)dt = 2T T sin 2t 2T sin ”(;T) dt
T (1 M) coS 7;;‘ + T sin 7;';'

Problem 4.28 :

(a) For simplicity we assume binary CPM. Since it is partial response :

q(T) = ()dt—1/4
(2T) Tutydt =1/2,  q(t)=1/2, t>2T

so only the last two symbols will have an effect on the phase :

o(t;I) = 2wh Z”:_oo Lig(t —kT), nT <t<nT+T
= IS0 I+ (Lig(t — (n—1)T) + Lyg(t — nT)),

It is easy to see that, after the first symbol, the phase slope is : 0 if I,, [,,_; have different signs,
and sgn(l,)n/(2T) if I, I,,_; have the same sign. At the terminal point t = (n 4 1)T the phase
is :

é((n+1)T =3 Z I + I

k:—oo

Hence the phase tree is as shown in the following figure :

67



t=0 t=T t=2T t=3T t=4T

/4

S /4

3 /4

—37/4

—57/4

—Tr/4

(b) The state trellis is obtained from the phase-tree modulo 2

t=0 t=T t=2T t=3T t=4T
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(c) The state diagram is shown in the following figure (with the (1, 1,—1) or (I,,—1 ,,) that cause
the respective transitions shown in parentheses)

(-1.1) (-1,-1) (-1,1)

" 5$‘QAQ/) -

g3 =Tr/4 O C>‘s po =7/4

('1771)

Problem 4.29 :

o(t; 1) = 2wh z": Ivq(t — KT)

k=—o00
(a) Full response binary CPFSK (¢(T") = 1/2):
(i) h = 2/3. At the end of each bit interval the phase is : 2721 >0 I, = Z ¢ I;. Hence
the possible terminal phase states are {0, 27/3, 47/3}.
(ii) h = 3/4. At the end of each bit interval the phase is : 2w32 S0 I, = 3T 70 I;. Hence
the possible terminal phase states are {0, 7/4, 7/2, 3n/4, 7, 5w /4, 3n/2, Tm/4}

(b) Partial response L = 3, binary CPFSK : ¢(T") = 1/6, ¢(2T) = 1/3, ¢(3T) = 1/2. Hence, at
the end of each bit interval the phase is :

n—2 n—2 7Th

mh Y Iy+2rh(I,1/3+1,/6) =7h > I+ 5 (21,4 + I,

k=—o00 k=—o00

The symbol levels in the parenthesis can take the values {—3,—1,1,3}. So:
(i) h = 2/3. The possible terminal phase states are :

{0,27/9,47/9,27/3,87/9,107/9, 47 /3, 147 /9, 167 /9}
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(ii) h = 3/4. The possible terminal phase states are : {0,7/4,7/2,3n /4,7, 5n /4,37 /2, Tn/4}

Problem 4.30 :

The 16-QAM signal is represented as s(t) = I, cos 2m ft+Q),, sin 27 ft, where [,, = {£1,£3}, @, =
{£1,£3}. A superposition of two 4-QAM (4-PSK) signals is :

s(t) = G [A,, cos 2m ft + By, sin 27 ft] + C,, cos 27 ft + C,, sin 27 ft

where A, B, Cy, D,, = {£1}. Clearly : I, = GA,+C,, Q, = GB,+ D,,. From these equations
it is easy to see that G = 2 gives the requires equivalence.

Problem 4.31 :

We are given by Equation (4.3-77) that the pulses ¢k () are defined as

-1
ce(t) = so(t) H solt + (n+ Lay,)], 0<t<T- mgn[L(Q — Q. — N

n=1
Hence, the time support of the pulse ¢ (t) is
0<t< T~mnin[L(2 — Q) — N

We need to find the index n which minimizes S = L(2 — ay,,) — n, or equivalently maximizes
S1 = Lay, +n:
n= argmrzlix[Lak,n +nl, n=1,.,.L—1, ap, =0,1

It is easy to show that
n=~L-—1 (1)

if all ag,, n=0,1,...,L — 1 are zero (for a specific k), and
n=max{n:a, =1} (2)

otherwise.

The first case (1) is shown immediately, since if all ax,, n = 0,1,...,L — 1 are zero, then
max, 51 = max,n, n = 0,1,...,L — 1. For the second case (2), assume that there are n, ns
such that : ny < ny and ag,, = 1, agn, = 0. Then Si(n1) = L + ny > na(= Si(ng)), since
ny —ny < L — 1 due to the allowable range of n.

So, finding the binary representation of k&, k = 0,1,...,27'—1, we find 7 and the corresponding
S(n) which gives the extent of the time support of ¢ (¢):

k=0 = a,k7L_1:0,...,ak72:0, ak71:0 = n=L—-1 = S=L+
k=1 = Qag,L-1 :0,...,ak72:0, Qg1 =1 = n=1 = S=L-—
]{322/3 = ak,L_lzo,...,aM:l, ak71:0/1 = n=2 = S=L- 2
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and so on, using the binary representation of the integers between 1 and 2871 — 1.

Problem 4.32 :

se(t) = Ies(t) = Sp(f) = LS(f),  E(L) = i, of = E(If) — i}

2 2

K K
SooeSe(N)| = 1SN Y ple| = pF IS()I
k=1 k=1
Therefore, the discrete frequency component becomes :
2 oo 2
b s (p_n
B X 5 -7)

n=—oo

The continuous frequency component is :

L (L= po) |Se(F)IF = 25 ey pipi Re [Si(£) S5 ()]

92 LIZ+IT I
2

=z 1SN [25:11% |1 = i v} Uk:ﬂ — F X Xy pip; [S(f)]

= LIS(OP [SE pr 11l = SEL R I = S Sicy iy 1S(F)] (LI + I 1)
= LIS S pe 10l - [T i}
= Z1S()P

Thus, we have obtained the result in (4.4.18)

Problem 4.33 :

The line spectrum in (4.4.60) consists of the term :

s (7)) o (r-7)

k=1

1 (o]
Ly

n=—oo

Now, if =K prsp(t) =0, then =K ppSi(f) = 0, Vf. Therefore, the condition - & ppsi(t) =0
is sufficient for eliminating the line spectrum.

Now, suppose that =K ppsi(t) # 0 for some ¢ € [tg,t;]. For example, if si(t) = I;.s(t), then
SE prsk(t) = s(t) S K prly, where K pli, = p; # 0 and s(t) is a signal pulse. Then, the
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line spectrum vanishes if S(n/T) = 0 for all n. A signal pulse that satisfies this condition is

shown below :

4 s(t)

In this case, S(f) =T (Sm:ﬁf

Problem 4.34 :

x

) sin7T' f, so that S(n/T) = 0 for all n. Therefore, the condition
S K prsi(t) = 0 is not necessary.

(a) Since : pi, =0, 02 =1, we have : ®(f) = %|G(f)|*. But :

G(f)

GNP

(bss(f)

T sinnfT/2 —jorfT/4 _ TsinnfT/2 —jor f3T/4
2 wfT/2 2 wfT/2

B e T 0] sinw T)2)

sin 7rfT/2 —jfT
)T 173 J =

()

()

(b) For non-independent information sequence the power spectrum of s(t) is given by : ®.4(f) =
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:lr ‘G(fNQ Oy (f). But :

¢bb(m) = K [bn-i-mbn]
= Elanimn) + kE [anim—10,] + kE [ansman_1] + E*E [ay1m—10,_1]

1+k, m=0
— k, m::tl
0, 0.W.

Hence : -
P (f) = D dw(m)e P =1+ k> 4 2k cos 2 fT

We want :
P (1/T)=0= Op(1/T) =0=1+k*+2k=0=k = —1

and the resulting power spectrum is :

sin 27 fT/2

2
T2 ) sin 27 fT

-

(c) The requirement for zeros at f = [/4T, | = +1,42, ... means : $y,(I/4T) =0 =1+ k* +
2k cosl/2 = 0, which cannot be satisfied for all [. We can avoid that by using precoding in the
form :b,, = a, + ka,_4. Then :

1+k% m=0
Op(m) = k, m=44 = Ou(f) =1+ k*+ 2k cos2n f4T
0, 0.W.

and , similarly to (b), a value of K = —1, will zero this spectrum in all multiples of 1/47.

Problem 4.35 :

0 1/2 0 1/2 1 0 0 —1

p_| 0 01212 0o 1 -1 0

1212 0o ol T 0o-1 1 o0

/2 0 1/2 0 -1 0 0 1

By straightforward matrix multiplication we verify that indeed :

1
Pip=—-
p=—7F
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Problem 4.36 :

(a) The power spectral density of the FSK signal may be evaluated by using equation (4-4-60)
with K" = 2 (binary) signals and probabilities py = p; = 3. Thus, when the condition that the
carrier phase 6y and and 6; are fixed, we obtain

T2 Z |So ) + 5 )|25(f——)+—\50() Si(f)I”

n=—oo

where Sy(f) and Si(f) are the fourier transforms of sq(¢) and s1(¢). In particular :

So(f) = /T so(t)e 7™t qt

/ cos(2m fot + B)e? > dt, Jo=[fc— f

TE, [SIHWT(JC — fo)  sinaT(f + fO)] oIS ifo
2 7(f — fo) m(f + fo)

Similarly :

P

_ TE, [sintT(f — f1) SinWT(f"‘fl)] —jnfT i
V2 l T T Y VI A

where f1 = f.+ f . By expressing ®(f) as

B(1) = 75 3 [ISGP + ISP + 2Relso(7)i ()] 57 -~ 1)

n=—oo

o [1S0F)P +15:(F)1 — 2Relsu()S ()]

we note that the carrier phases 6, and 6, affect only the terms Re(S5,57). If we average over the
random phases, these terms drop out. Hence, we have :

a(f) = 4;2 > [iSolm + 1P 67— 2

n=—oo

b (10000 + 1S:()P]

where :

sinaT(f — fi)  sinaT(f + fi) [

TE, n
(f — fx) 7(f + fr)

Sk = =

. k=01
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Note that the first term in ®(f) consists of a sequence of samples and the second term constitutes
the continuous spectrum.

(b) Note that :

TE,
2

IS(F)F = ey ey

<sin7rT(f— f,g)>2 . <sin7rT(f+fk)>2}

because the product
sin7T(f — fi) _ sinwT(f + fi) _

(f — fx) - 7(f + fx) ~0

‘ 2

decays proportionally to approx# for f > f..

if fr is large enough. Hence |Sk(f) T

Consequently, ®(f) exhibits the same behaviour.
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CHAPTER 5

Problem 5.1 :

(a) Taking the inverse Fourier transform of H(f), we obtain :

R

j2n f j2n f

— sgn(t) —sgn(t — T) = 211 <’5 ;%)

where sgn(z) is the signum signal (1 if z > 0, -1 if 2 < 0, and 0 if x = 0) and II(z) is a
rectangular pulse of unit height and width, centered at z = 0.

(b) The signal waveform, to which A(t) is matched, is :

s(t) = h(T — t) = 211 <%> — o1 (% _t> — h(t)

T T

T
-3
T

where we have used the symmetry of 11 ( 5

) with respect to the t = L axis.

Problem 5.2 :

(a) The impulse response of the matched filter is :

4 - COS( 27T —
h<t>_s<T—t>_{5<T {)cos(2nf(T~1)) 0<t<T

otherwise
(b) The output of the matched filter at t =T is :
T
91) = b))y = | AT =)s(r)dr
A? T
— S [ (=P cosnfT —7))dr
0
2 T
= %/ v? cos? (27 fov)dv
0
A% 03 v? 1 . veos(dmfu)] |7
e lE " <4 x2nf. 8x (27ch)3> s feo) e ),
A2 T3 T2 1 . T cos(4m f.T')
B l? " <4 x2nf.  8x (27rfc)3> S fD) oy
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(c) The output of the correlator at t = T is :

q(T) = /OT s*(1)dr

_ A2 T 2 2 d

= ﬁ/o 77 cos” (27 for)dT
However, this is the same expression with the case of the output of the matched filter sampled
at t = T. Thus, the correlator can substitute the matched filter in a demodulation system and

vice versa.

Problem 5.3 :

(a) In binary DPSK, the information bit 1 is transmitted by shifting the phase of the carrier
by 7 radians relative to the phase in the previous interval, while if the information bit is 0 then
the phase is not shifted. With this in mind :

Data : 1 10
T

100010110
Phasef: (7r) 0 = 0000 m 07«
Note : since the phase in the first bit interval is 0, we conclude that the phase before that was

.

(b) We know that the power spectrum of the equivalent lowpass signal u(t) is :

Bua(f) = 7 GO @l f)

where G(f) = A Si?rﬁT, is the spectrum of the rectangular pulse of amplitude A that is used,
and ®;;(f) is the power spectral density of the information sequence. It is straightforward to
see that the information sequence I, is simply the phase of the lowpass signal, i.e. it is /™ or

¢’% depending on the bit to be transmitted a, (= 0,1). We have :
I, = edfn — eimanpifn—1 _ eI D

The statistics of I,, are (remember that {a,} are uncorrelated) :

E[l,] = B[d"2w] = I, Ee™] =[], [3¢/™ — 3¢/°] = [[,0 =0
B [‘]n|2} — E ejﬂzk ake_j”Zk ak} =1
EllLnI?] = E LD SNETIEEL) DA a’v] =F [ejﬂzz;nﬂak] =i, Ele™] =0

Hence, I, is an uncorrelated sequence with zero mean and unit variance, so ®;;(f) = 1, and

Cu(f) = %IG(f))P = A2TenLl
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A sketch of the signal power spectrum ®.(f) is given in the following figure :

Power spectral density of s(t)
T T

Problem 5.4 :

(a) The correlation type demodulator employes a filter :

1
s ogth}

0 ow
as given in Example 5-1-1. Hence, the sampled outputs of the crosscorrelators are :
r=Sn+n, m=20,1

where sqg = 0, s; = AvT and the noise term n is a zero-mean Gaussian random variable with
variance :

N,
7o
The probability density function for the sampled output is :
1 2
prlse) = e
1 _e-avm?
p(rls1) = 7TNoe No

Since the signals are equally probable, the optimal detector decides in favor of sq if

PM(r, s9) = p(r|so) > p(r|s1) = PM(r,s;)
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otherwise it decides in favor of s;. The decision rule may be expressed as:

or equivalently :

S0
PM(r,s (r—AVT)?—r? _ (2r—AVT)AVT
M =€ No —=e No z 1
PM(I‘, Sl)
S1
S1
r z —AVT

S0

The optimum threshold is %A\/T

(b) The average probability of error is:

Ple)

where

1 1
5P(e|so) + §P(e|sl)

1 oo 1 [3AVT
5/%Aﬁp(r\so)dr+§/_oo p(r|sy)dr

1 oo 1 2 1 sAVT 1 _eoavEy
§/§A\/T 7TN0€ NOdr+§ . \/W—N()e Nodr

1 22 1 (3 AVT 1 2
6_7d$+§/ PV o e 2dx

1 roo
5/%1/%0,4\/? V2T V2w

- Q B\/NZOA\/T] = Q[VSNR]

LA
NR = 2
SNR = 2

Thus, the on-off signaling requires a factor of two more energy to achieve the same probability
of error as the antipodal signaling.

Problem 5.5 :

Since { f,(t)} constitute an orthonormal basis for the signal space : 7(t) = X0, 7, £ (1), sm(t) =

79



SN Snfa(t). Hence, for any m :

Clr,sm) = 2] r(t)sm(t)dt — [ s2 (t)dt

m

= 2 fOT izvzl Tnfn(t) Zl]\;l Smlfl(t)dt - fOT izvzl Smnfn(t) Zl]\;l Smlfl(t>dt

= 2 Zr]yzl T'n Zl]\il Smi f(;f fu(t) fi(t)dt — 1]1\7:1 Smn Zl]il Smil fOT fu(t) fi(t)dt

_ N N 2
= 2 Y on=1TnSmn — 2an=1Smn

where we have exploited the orthonormality of {f,(t)} : [T fu(t)fi(t)dt = 6,;. The last form is
indeed the original form of the correlation metrics C(r,s,,).

Problem 5.6 :
The SNR at the filter output will be :

ly(T)I’

SNR = ———
E |n(T)f]

where y(t) is the part of the filter output that is due to the signal s;(t), and n(t) is the part due
to the noise z(t). The denominator is :

ElnDP] = Ji Jy Elz(a)z"(0)] (T = a)hi (T = b)dadb
2Ny Jy (T — )] dt
so we want to maximize : )
I su®)h(T = t)d]

SNR = . ;
Ny JT (T — 1)) dt

From Schwartz inequality :

‘/OT sl(t)hl(T—t)dt> < /OT\hl(T—t)Edt/OT|sl(t)|2dt

Hence : T c
= 9N Si t N max

and the maximum occurs when :

si(t) = hi(T — 1) & hy(t) = s5(T — t)
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Problem 5.7 :

Ny = Re [ / L) f;(t)dt]

(a) Define a,, = [y 2(t)f% (t)dt. Then, N, = Re(a,) = % [a, +aZ,].

E(N,,,) = Re l /O "B ) f,;;(t)dt] —0

since, F [z(t)] = 0. Also :

B (Nﬁw) _E [a%l + (a;)j + Qama;’;l}

But E(a?) = E UOT I z(a)z(b)f;(a)f;(b)dadb} = 0, since E'[z(a)z(b)] = 0 (Problem 4.3), and
the same is true for F [(afnﬂ = 0, since F [z*(a)z*(b)] = 0 Hence :

E(N2,) = E|%] =1 [T [ El2(a)2*(0)] £i(a) fm(b)dadb
= Ny foT|fm(a)|2 da = 2E Ny

(b) For m # k :
am+al, ax+aj
E[NpNiy] = B[t tto]

— E {amak—i-afnak—l—amaz-l—ainaZ}

4

But, similarly to part (a), E [anax] = E [a},a;] = 0, hence, E [Ny, Ni,| = E {M} . Now :

Elamai] = Jy Jo Elz(a)z"(0)] £;.(a) fi(b)dadb
= 2No Jy fr(a)fi(a)da =0

since, for m # k, the waveforms are orthogonal.
Similarly : F [a},ax] = 0, hence : E [N, Ng,] = 0.

Problem 5.8 :

(a) Since the given waveforms are the equivalent lowpass signals :

& =3 Jg Is1()]° dt = JA% [ dt = A*T/2
& =3 Iy Isa2(t)]" dt = $A% [f dt = A°T/2
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Hence 51 = 52 =£&. Also P12 = % fOT sl(t)sg(t)dt =0.

(b) Each matched filter has an equivalent lowpass impulse response : h;(t) = s;(T" —t) . The
following figure shows h;(t) :

A hl(t> A h2(t)
A A
> >
T T
-A
x
(c)
N hi(t) = sa(t) i ha(t) * s2(t)
AT
A2T)2
> > b
0 T 2T 0 T 2T
—A2T/2
x
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(d)

‘foT s1(7)sa(7)dT A fOT s1(7)s2(7)dT
AT

APT/2

x

(e) The outputs of the matched filters are different from the outputs of the correlators. The
two sets of outputs agree at the sampling time t = T..

(f) Since the signals are orthogonal (p12 = 0) the error probability for AWGN is P, = @ (, / N%) ,
where £ = A*T'/2.

Problem 5.9 :
(a) The joint pdf of a,b is :

L s [@m)2p-m?]
2702

Pap(a,b) = pyy(a —my, b —m;) = p.(a —m,)p, (b —m;) =

(b) u=+va2+b, ¢=tan"'b/a = a=wucosd, b= using The Jacobian of the transforma-
da/Ou Oa/d¢
ob/Ou  Ob/O¢

tion is : J(a,b) = ‘ = u, hence :

u 6—2(%2[(ucos¢—mr)2+(usin¢—mi)2]
2102
L [u? M2 —2uM -0
_ e 302 u?+ uM cos(¢p—0)
2102

pu¢(u> ¢) =

where we have used the transformation :

{M—\/m%+m§ }i{m,«—Mcosﬁ}

0 = tan ~tm;/m, m; = M sin 6
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(c)
pulu) = /0 7 Pug(u, @)do

w2 M2 2
_ u 6_#]2” 6—# [—2uM cos(¢—€)}d¢
2mo? 0

_ ﬂe—"z;‘;—gﬂ i /27r 6uM Cos(¢—6)/02 d¢
0

Problem 5.10 :

s(t) + 2(t)
() U = Re [[f r(t)s*(t)dt], where r(t) =

—s(t) + 2(t) } depending on which signal was

2(t)

sent. If we assume that s(t) was sent :

U= Re [/OT s(t)s*(t)dt] + Re [/OT z(t)s*(t)dt] _9B+N

where £ = L [ s(t)s*(t)dt, and N = Re [fOT z(t)s*(t)dt} is a Gaussian random variable with
zero mean and variance 2FE N, (as we have seen in Problem 5.7). Hence, given that s(t) was
sent, the probability of error is :

P61:P(2E+N<A):P(N<_(QE_A)):Q@%)

When —s(t) is transmitted : U = —2FE 4+ N, and the corresponding conditional error probability
is :

P62=P(—2E+N>—A):P(N>(QE_A)):Q<2E—A>

2Ny E
and finally, when 0 is transmitted : U = N, and the corresponding error probability is :

pe3:P(N>AorN<—A)ZQP(N>A):2Q<\/%>

0

(b) . 2 2F — A A
Pe= 5 (Pat Pt Pug) = 3 [Q <m> te (\/Wﬂ
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(c) In order to minimize P, :
dP,

dA
where we differentiate Q(x) = [.° \/% exp(—t2/2)dt with respect to x, using the Leibnitz rule :

4 (ff(ox) g(a)da) = —L4(f(x)). Using this threshold :

=52 (me) -39 (av)

=0=A=F

Problem 5.11 :

(a) The transmitted energy is :

& = S |si(t))Pdt = AT/2
& = 1 [T se(t))?dt = A2T)2

(b) The correlation coefficient for the two signals is :

p= % /OT s1(t)s5(t)dt = 1/2

Hence, the bit error probability for coherent detection is :
& | &
P, = —(1— = —
2 Q( No( P)) Q( 2]\70)

(c) The bit error probability for non-coherent detection is given by (5-4-53) :
1
Pane = Qu(a,b) = 5 (“7")2 1y (ab)
where @1(.) is the generalized Marcum Q function (given in (2-1-123)) and :
2
= o (1= V=) = i (- 9)
b:\/ﬁ (1+v1—\p\2> =/ (1+ %)
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Problem 5.12 :

The correlation of the two signals in binary FSK is:

_ sin(2rAfT)
- 2rAfT

To find the minimum value of the correlation, we set the derivative of p with respect to Af
equal to zero. Thus:

Jp 0= cos(2rAfT)2aT  sin(2rAfT)

IAS 27 AST N

and therefore :
2nAfT = tan(2nAfT)

Solving numerically (or graphically) the equation z = tan(z), we obtain « = 4.4934. Thus,

0.7151
T

ITAST = 4.4934 = Af =

and the value of p is —0.2172.
We know that the probability of error can be expressed in terms of the distance d;5 between the

signal points, as :
di
P, = —=
@ 2N
where the distance between the two signal points is :
diy = 2&(1 — p)
and therefore :

Pe:Q[ M]:Ql Lﬂé},]

2Ny Ny

Problem 5.13 :

(a) It is straightforward to see that :

Set I : Four — level PAM
Set IT : Orthogonal
Set III : Biorthogonal
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(b) The transmitted waveforms in the first set have energy : A% or 2942, Hence for the first

set the average energy is :

RN }2) 5
81—-4<22A +2:04%) =254

All the waveforms in the second and third sets have the same energy : %A?Hence :

Ey = E; = A2)2

(c) The average probability of a symbol error for M-PAM is (5-2-45) :

(M -1) 6Eav 3 A?
Pypan = Y Q( (M2—1)N0> —QQ( No)

(d) For coherent detection, a union bound can be given by (5-2-25) :

Pyopin < (M —1)Q (M) =30Q ( QA—]\Z)

while for non-coherent detection :

P47O7“th7nc S (M - 1) P27nc = 3%6_55/2]\[0 — ge—A2/4No 29

(e) It is not possible to use non-coherent detection for a biorthogonal signal set : e.g. without
phase knowledge, we cannot distinguish between the signals () and wug(t) (or us(t)/u4(t)).
(f) The bit rate to bandwidth ratio for M-PAM is given by (5-2-85) :

R
(W)1 =2logoM = 2log.4 =4

For orthogonal signals we can use the expression given by (5-2-86) or notice that we use a symbol
interval 4 times larger than the one used in set I, resulting in a bit rate 4 times smaller :

(E) _210g2M_1
W/, M

Finally, the biorthogonal set has double the bandwidth efficiency of the orthogonal set :

R
(),
W/s
Hence, set I is the most bandwidth efficient (at the expense of larger average power), but set 111
will also be satisfactory.
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Problem 5.14 :

The following graph shows the decision regions for the four signals :

LU A=Ul> +|U2| R
B=Ul<—|U2|
C=U2>+|U1| C A
D=U2< —|Ul|
U, W

Y
Y

x

As we see, using the transformation W7 = U; + Uy, Wy = Uy — U, alters the decision regions to :
(W1 >0,Wy >0 — s1(t); W1 > 0,5 <0 — s5(t); etc.). Assuming that s;(¢) was transmitted,
the outputs of the matched filters will be :

U1 - 28 + Nlr
U2 = N2r

where Ny, Ny, are uncorrelated (Prob. 5.7) Gaussian-distributed terms with zero mean and
variance 2E Ny. Then :

Wi = 2€ + (N1 + Ny,)

Wy = 2€ 4+ (N1, — Nay)
will be Gaussian distributed with means : E [W;] = E [W,] = 2€, and variances : E [W}] =
E [W2] = 4ENy. Since Uy, U, are independent, it is straightforward to prove that Wi, W are
independent, too. Hence, the probability that a correct decision is made, assuming that s (t)
was transmitted is :

Py = P[Wy>0]P[Wy>0]=(P[W, >0
— (=P <) = (1-0 ()

= (1-e(yR) =(-e(/R)

where & = £/2 is the transmitted energy per bit. Then :

Py =1— Py =1— (1 -Q (\/%))2 - 2Q< %) ll -39 (%)]
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This is the exact symbol error probability for the 4-PSK signal, which is expected since the
vector space representations of the 4-biorthogonal and 4-PSK signals are identical.

Problem 5.15 :

(a) The output of the matched filter can be expressed as :
y(t) = Re {v(t)ejz’rfct}
where v(t) is the lowpass equivalent of the output :

: [ A~/ dr = AT (1— 47}, 0<t<T
t) = / h(t —T)dr =< "0 T
v(t) = f, so(mhlt = 7)dr { ST Aemt=DITdr = AT(e — 1)e /T, T <t

(b) A sketch of v(t) is given in the following figure :

V()

(c) y(t) = v(t) cos2m fot, where f. >> 1/T. Hence the maximum value of y corresponds to the
maximum value of v, or Ymax = Y(T') = Vpax = v(T) = AT(1 —e™1).

(d) Working with lowpass equivalent signals, the noise term at the sampling instant will be :
T
ow(T) = [ A(r(T = 7)dr
0
The mean is : E [ox(T)] = [ E[2(7)] (T — 7)dr = 0, and the second moment :
E[lox(T)?] = E[ff 2(r)MT = 7)dr | 2*(w)h(T — w)duw]
= 2Ny Jy B*(T —7)dr
= N()T (1 - 6_2>
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The variance of the real-valued noise component can be obtained using the relationship Re[N| =
L (N + N*) to obtain : 0%, = 1E [Jun(T)*] = INoT (1 - e7?)

2
(e) The SNR is defined as :

e ATe—1
EUUN(T)ﬂ Ny e+1

(the same result is obtained if we consider the real bandpass signal, when the energy term
has the additional factor 1/2 compared to the lowpass energy term, and the noise term is

ok, = 3E [ (D))

(f) If we have a filter matched to s¢(t), then the output of the noise-free matched filter will be :

T
VUmax = 0(T') = / s2(t) = A*T
0
and the noise term will have second moment :

Ellox(T)] = E g 2()so(T = 7)dr [§ 2*(w)so(T — w)dw]
2Ny fOT si(T — 7)dr
= 2N AT

giving an SNR of :
|VUmax]” AT
Elon(D)] 2N

Compared with the result we obtained in (e), using a sub-optimum filter, the loss in SNR is

e-1) (1)} :
equal to : (m) (5) = 0.925 or approximately 0.35 dB

Problem 5.16 :

(a) Consider the QAM constellation of Fig. P5-16. Using the Pythagorean theorem we can find
the radius of the inner circle as:

1
2, 2 2
a“+a" =A"=a=—7A
V2

The radius of the outer circle can be found using the cosine rule. Since b is the third side of a
triangle with a and A the two other sides and angle between then equal to § = 75°, we obtain:
143

2

W =a?+ A% —2aAcosTh’ = b = A
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(b) If we denote by r the radius of the circle, then using the cosine theorem we obtain:
A
2-V2

A? =72 4% — 2rcosds’ = r =

(c) The average transmitted power of the PSK constellation is:

2
1 A A?
PSK S ( 2_\/§> PSK 22

whereas the average transmitted power of the QAM constellation:

1/ A2 (1+3)? 24 (14 /3)?

The relative power advantage of the PSK constellation over the QAM constellation is:

. PPSK 8
aln = = =1.5927 dB
ST PoaM 2+ 1+ V32— VR

Problem 5.17 :

(a) Although it is possible to assign three bits to each point of the 8-PSK signal constellation
so that adjacent points differ in only one bit, (e.g. going in a clockwise direction : 000, 001,
011, 010, 110, 111, 101, 100). this is not the case for the 8-Q AM constellation of Figure P5-16.
This is because there are fully connected graphs consisted of three points. To see this consider
an equilateral triangle with vertices A, B and C. If, without loss of generality, we assign the all
zero sequence {0,0,...,0} to point A, then point B and C' should have the form

B={0,...,0,1,0,...,0t  C={0,...,0,1,0,...,0}

where the position of the 1 in the sequences is not the same, otherwise B=C. Thus, the sequences
of B and C differ in two bits.

(b) Since each symbol conveys 3 bits of information, the resulted symbol rate is :

16
R:90>< 0

s 5 = 30 x 10° symbols/sec
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Problem 5.18 :
For binary phase modulation, the error probability is
2&,
P = _ =
- a|%] -
With P, = 107% we find from tables that

[A2T
~ 4.74 = A?T = 44.9352 x 1071°
0

If the data rate is 10 Kbps, then the bit interval is 7' = 10~* and therefore, the signal amplitude
is

A = v44.9352 x 10-10 x 10% = 6.7034 x 1073

Similarly we find that when the rate is 10° bps and 10° bps, the required amplitude of the signal
is A =212 x 1072 and A = 6.703 x 1072 respectively.

Problem 5.19 :

(a) The PDF of the noise n is :
A il

p(n) = 56_

where \ = ? The optimal receiver uses the criterion :

A A
rlA Al Al > >
p(rlA4) — e AMr=Al=rAl 2 z

o] — A) 0

l=r
—A —A

The average probability of error is :
1 1
P(e) = §P(6\A) + §P(e| — A)

1 /0 1 foo

= 5[ _solAdr 5 [ fr - Ayr
2/ 2 Jo
I Ar—A| Lorees \rta

= —/ Age dr—i——/ g€ dr
2J - 2 Jo

—A 00
= %/oo e"““dm—l—%/f‘ e Ml dy
1

_ 1 —v3a
= —e AA = —€ o

2 2
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(b) The variance of the noise is :

n

)\ 0o
o? = 5/_00 e Mol da
21 2 9

= — =0

OO—)\m2
= )\/0 e xdx:)\A3 2

Hence, the SNR is:
A2
SNR = —

2
o
and the probability of error is given by:

For P(e) = 107° we obtain:
In(2x 107°) = —vV2SNR = SNR = 58.534 = 17.6741 dB

If the noise was Gaussian, then the probability of error for antipodal signalling is:

Ple) =Q [\/%’] = Q[VSNR]

where SNR is the signal to noise ratio at the output of the matched filter. With P(e) = 107°
we find vV SNR = 4.26 and therefore SNR = 18.1476 = 12.594 dB. Thus the required signal to
noise ratio is 5 dB less when the additive noise is Gaussian.

Problem 5.20 :

The constellation of Fig. P5-20(a) has four points at a distance 2A from the origin and four
points at a distance 2v/2A4. Thus, the average transmitted power of the constellation is:

P, = % [4 x (24) + 4 x (2\/§A)2} = 6A?

The second constellation has four points at a distance v/7A from the origin, two points at a
distance v/3A and two points at a distance A. Thus, the average transmitted power of the
second constellation is:

1

B, g

[4x (VA +2 x (V3A) + 247 = g,aﬁ

Since P, < P, the second constellation is more power efficient.

93



Problem 5.21 :

The optimum decision boundary of a point is determined by the perpedicular bisectors of each
line segment connecting the point with its neighbors. The decision regions for this QAM con-
stellation are depicted in the next figure:

| 0| O] ©

Problem 5.22 :

One way to label the points of the V.29 constellation using the Gray-code is depicted in the
next figure.
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O 0110

0 0111

O 0101

0 0100

1101 1111 1110 1100 0000 0001 0011 0010
@) O O 0) 0) @) 0] o

O 1000
01001
O 1011

O 1010 ®

Problem 5.23 :

The transmitted signal energy is

where T is the bit interval and A is the signal amplitude. Since both carriers are used to transmit
information over the same channel, the bit SNR, %’ is constant if A?T is constant. Hence, the
desired relation between the carrier amplitudes and the supported transmission rate R = % is

4 _ [T _ [R
A, \VT. VR,

With
R. 10 x 10 o1
R, 100 x 103
we obtain A
£ =0.3162
As
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Problem 5.24 :
(a) Since my(t) = —mgs(t) the dimensionality of the signal space is two.

(b) As a basis of the signal space we consider the functions:

1 T
— 0 <t < =
1
- 0<t<1 VT 2
A { OT otherwise Ja(t) —vr oz <tS
0 otherwise

The vector representation of the signals is:

ms = [0, —\/T]

(c) The signal constellation is depicted in the next figure :

® (07 \/T)

(d) The three possible outputs of the matched filters, corresponding to the three possible trans-
mitted signals are (r1,73) = (VT +n1,n3), (n1, VT +n3) and (ny, —/T + ny), where ny, ny are
zero-mean Gaussian random variables with variance % If all the signals are equiprobable the
optimum decision rule selects the signal that maximizes the metric (see 5-1-44):

C(r,m;) = 2r - m; — |m,|?
or since |my|? is the same for all 4,

C'(r,m;) =r-m;

Thus the optimal decision region R; for m; is the set of points (r1,r3), such that (ry, 7o) - m; >
(7’1,7"2) i 110)) and (7"1,7’2) - 10 > (7’1,7"2) - 1mM3. Since (7"1,7’2) 1My = \/T’f’l, (7"1,7’2) 1Mo = \/T’f’g and
(r1,79) - m3 = —/Try, the previous conditions are written as

re>re and T > —To
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Similarly we find that Ry is the set of points (11, 79) that satisfy ro > 0, 7o > r; and Rg is the
region such that ro < 0 and ro < —ry. The regions Ry, Ry and R3 are shown in the next figure.

Ry

(e) If the signals are equiprobable then:
P(ejm;) = P(Jr — my|? > |r — my[*|m;) + P(|Jr — my|* > |r — m3|*|m,)
When m, is transmitted then r = [v/T + n;, ny] and therefore, P(elmy,) is written as:
P(e|my) = P(ny —ny > VT) + P(ny +ny < —VT)

Since, ny, ny are zero-mean statistically independent Gaussian random variables, each with
variance %, the random variables © = ny — ny and y = n; + ny are zero-mean Gaussian with
variance Ny. Hence:

z2

e MNodr +

p 1 00 1 —T _id
fry J— - 2N,
(¢fmy) V27N, /ﬁ V27N, /_oo € e

- el el -/

When m, is transmitted then r = [ny, ng + VT | and therefore:

Plelmy) = P(ny —ny > VT) + P(ny < —VT)

- elx]-el\5]

Similarly from the symmetry of the problem, we obtain:

P(elmy) = Plelmy) = Q [\/% Q [ fV—T]

Since @[-] is momononically decreasing, we obtain:

ol <elix
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and therefore, the probability of error P(elm;) is larger than P(e|ms) and P(e|mj3). Hence, the
message m; is more vulnerable to errors. The reason for that is that it has both threshold lines
close to it, while the other two signals have one of the their threshold lines further away.

Problem 5.25 :

(a) If the power spectral density of the additive noise is S,(f), then the PSD of the noise at
the output of the prewhitening filter is

Su(f) = Su(NIH, ()
In order for S,(f) to be flat (white noise), H,(f) should be such that

(b) Let hy(t) be the impulse response of the prewhitening filter H,(f). That is, h,(t) =
F~H,(f)]. Then, the input to the matched filter is the signal 5(¢) = s(t)xh,(t). The frequency
response of the filter matched to §(t) is

Sn(f) = §*(f)e 12t == S*(f)HI(f)e 7210
where ¢y is some nominal time-delay at which we sample the filter output.

(c) The frequency response of the overall system, prewhitenig filter followed by the matched
filter, is

GU) = Su1) ) = Syt = T et

Sn(f)
(d) The variance of the noise at the output of the generalized matched filter is
S(HI?
o? = Dldr = [~ ISUE 5
/ —o0 Sp(f)

At the sampling instant ¢ = ty = T', the signal component at the output of the matched filter is

yT) = [ Y(PeITa = [ srg(T - ydr

SNR = yig) - E({}‘;df

Hence, the output SNR is
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Problem 5.26 :

(a) The number of bits per symbol is

4800 4800

K R 2400

Thus, a 4-QAM constellation is used for transmission. The probability of error for an M-ary
QAM system with M = 2%, is

o= (=21 ) e o))

With Py; = 107° and k& = 2 we obtain

— | =5x10 — = 9.7682
@ l NO] TN,
(b) If the bit rate of transmission is 9600 bps, then

9600
2400

In this case a 16-QAM constellation is used and the probability of error is

2
1 3x4x&E
PM_1_<1_2(1_Z>Q[\/ 15><N0D
3x& 1 e &
N =-x1 =2 — 95,
Ql 15xN0] 3 X 0 :>N0 5.3688

(c) If the bit rate of transmission is 19200 bps, then

Thus,

19200
2400

In this case a 256-QAM constellation is used and the probability of error is

1 3X X E ?
PM_1_<1_2<1_E>Q“ 255><N0D

With Py; = 107> we obtain

2]
— = (59.8922
N 659.89
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(d) The following table gives the SNR per bit and the corresponding number of bits per symbol
for the constellations used in parts a)-c).

k 2 1 8
SNR (db) | 9.89 | 14.04 | 28.19

As it is observed there is an increase in transmitted power of approximately 3 dB per additional
bit per symbol.

Problem 5.27 :

Using the Pythagorean theorem for the four-phase constellation, we find:

d
Pl =d*=r =—

V2

The radius of the 8-PSK constellation is found using the cosine rule. Thus:
d
2—142

The average transmitted power of the 4-PSK and the 8-PSK constellation is given by:

d®> =713+ 13 — 2r3cos(45°) = ry =

d2 2
A
2 ’ 22

Thus, the additional transmitted power needed by the 8-PSK signal is:

P47av =

2

P = 10log,, - =5.3329 dB

(2—V2)d

We obtain the same results if we use the probability of error given by (see 5-2-61) :

Py =20Q {\/27% sin %}

where 7, is the SNR per symbol. In this case, equal error probability for the two signaling
schemes, implies that
T 8,5 sin 7

= s 8in? = = 10log;o 22 = 20log;) —2 = 5.3329 dB

Va,s sin? = -
4 8 Va,s sin ¢

Since we consider that error ocuur only between adjacent points, the above result is equal to
the additional transmitted power we need for the 8-PSK scheme to achieve the same distance d
between adjacent points.
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Problem 5.28 :

For 4-phase PSK (M = 4) we have the following realtionship between the symbol rate 1/T', the
required bandwith W and the bit rate R = k- 1/T = ©°2M (sce 5-2-84):

= Togal — R = WlogaM = 2W = 200 kbits/sec

For binary FSK (M = 2) the required frequency separation is 1/27" (assuming coherent receiver)
and (see 5-2-86):

R R 2WlogsM

W p—
logg M M

= W = 100 kbits/sec

Finally, for 4-frequency non-coherent FSK, the required frequency separation is 1/7, so the
symbol rate is half that of binary coherent FSK, but since we have two bits/symbol, the bit ate
is tha same as in binary FSK :

R =W =100 kbits/sec

Problem 5.29 :

We assume that the input bits 0, 1 are mapped to the symbols -1 and 1 respectively. The
terminal phase of an MSK signal at time instant n is given by

y
O(n;a) = §Zak—|—00
k=0

where 6, is the initial phase and a; is £1 depending on the input bit at the time instant k.
The following table shows 6(n;a) for two different values of 6y (0, 7), and the four input pairs
of data: {00,01,10,11}.

O(n;a)

>
S
S
S
=
=
<
S
e
=

533 3cocoo
_ O = Ol O = O
1
—| =
1
—| =
¥ a3 o ooi]
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Problem 5.30 :

(a) The envelope of the signal is

|s(2)]

VIse(®)]2 + [s,(t)]2

B 2&, , [ Tt 28, 9 ( mt )
-\ ® (2:1},) T o
_ 25

- =

Thus, the signal has constant amplitude.

(b) The signal s(t) is equivalent to an MSK signal. A block diagram of the modulator for
synthesizing the signal is given in the next figure.

A2n N )
4 A
Serial Serial / C s(t)
— Parallel vy cos(ZE) cos (27 f.t)
data an | Demux T ' _

>
>

GO
ok

A2n+1

(c) A sketch of the demodulator is shown in the next figure.

tZQTb

—¥ Threshold

Y
Parallel to
Serial

A

t =21,
I ()t AN Threshold

Y |
@‘_ ol [
Y
GO+
\ 4
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Problem 5.31 :

Based on (5-3-7), we obtain the 4 phase states :
O, ={0,7/2,7,31/2}

The states in the trellis are the combination of the phase state and the correlative state, which
take the values I,,_; = {£1}. The transition from state to state are determined by

s
en—i-l = en + §In—1

and the resulting state trellis and state diagram are given in the following figures, where a solid
line corresponds to I,, = 1, while a dotted line corresponds to I,, = —1.

(0 In—1)
(0,1)
(0,-1)
(r/2,1)
(r/2,-1)
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(3m/2,1)

0,+1)

@2, 1)

The treatment in Probl. 4.27 involved the terminal phase states only, which were deter-
mined to be {n/4,3w/4,57/4,7w/4}. We can easily verify that each two of the combined
states, which were obtained in this problem, give one terminal phase state. For example
(On, In—1) = (37/2,—1) and (0,,1,—1) = (m,+1), give the same terminal phase state at
t=(n+1T:

o((n+1)T51) =6, +0(t;1) =6, + 2nhl,_1q(2T) + 2whl,q(T) =
o((n+1)T0) =0, + 2,1+ 51, =2+ 21, =5r/4 or Tr/4

Problem 5.32 :

(a)
(i) There are no correlative states in this system, since it is a full response CPM. Based on
(5-3-6), we obtain the phase states :
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(ii) Based on (5-3-7), we obtain the phase states :
L 44 21

(b)

(i) The combined states are S,, = (0,,, I,,_1, [,,_2) , where {, ]n_l/n_g} take the values +1. Hence
there are 3 x 2 x 2 = 12 combined states in all.

(ii) The combined states are S,, = (6, I,—1, I,_2) , where {, In—l/n—2} take the values 1. Hence
there are 8x2 x 2 = 32 combined states in all.

Problem 5.33 :

A biorthogonal signal set with M = 8 signal points has vector space dimensionallity 4. Hence,
the detector first checks which one of the four correlation metrics is the largest in absolute value,
and then decides about the two possible symbols associated with this correlation metric,based
on the sign of this metric. Hence, the error probability is the probability of the union of the
event F; that another correlation metric is greater in absolute value and the event F, that the
signal correlation metric has the wrong sign. A union bound on the symbol error probability
can be given by :
Py < P(Ey) + P(E,)

But P(Es) is simply the probability of error for an antipodal signal set : P(FE3) = @ (,/%)
and the probability of the event E; can be union bounded by :

P(By) <3[P(|Cy| > |C1])] = 3[2P(Cy > C1)] = 6P (Cy > Cy) = 6Q < %)

where (; is the correlation metric corresponding to the i-th vector space dimension; the proba-
bility that a correlation metric is greater that the correct one is given by the error probability for
orthogonal signals @) ( ﬁ—z)(since these correlation metrics correspond to orthogonal signals).

Hence :
&, 2&,
< s
resee(|5)+e()5)

(sum of the probabilities to chose one of the 6 orthogonal, to the correct one, signal points and
the probability to chose the signal point which is antipodal to the correct one).

Problem 5.34 :
It is convenient to find first the probability of a correct decision. Since all signals are equiprob-
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able,
M

Z P(Cls;)

1= 1
All the P(C|s;), i = 1,..., M are identical because of the symmetry of the constellation. By
translating the vector s; to the origin we can find the probability of a correct decison, given that
s; was transmitted, as :

P(Cls;) = /_°° F(ny)dny /_°° f(nQ)an.../_O; Flny)dny

where the number of the integrals on the right side of the equation is N, d is the minimum
distance between the points and :

Hence :

P(Cls)) = < O;f(n)dn>N—<1—/_% (n)dn)N

and therefore, the probability of error is given by :

P 1- P(C 1 o~ L 1 —d 3
() = 1-P(C) = —;ﬂ —@[ mD
=1 1 d )
N _< _QMN_OD
Note that since :
N d d2

E—ZSmZ—ZQ NZ

=1
the probability of error can be written as :

ro-1-(- /)

N

Problem 5.35 :

Consider first the signal :
== Z cké(t — kZTC)

k=1
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The signal y(t) has duration T'= nT, and its matched filter is :

git) = y(T'—t)=ynT.—1t) ické nT. — kT, —t)

= Xj: C—it10((i = )T, —t) = Z Cnip10(t — (i — 1)T.)

i=1

that is, a sequence of impulses starting at ¢ = 0 and weighted by the mirror image sequence of

{c;}. Since, . .
= ot —kT.) =p(t) x> _ crd(t — kT,

k=1 k=1
the Fourier transform of the signal s(t) is :

S(f) = P(f) Y cpe 2T
k=1
and therefore, the Fourier transform of the signal matched to s(t) is :
H(f) — S*(f) —j2nfT _ S*(f) —j2rfnTe.

_ P*(f) Zn: CkejQﬂfche—j%rfnTc
k=1

= P*(f) Z Cpipre 2T
i=1

= P(f)Flg)]

Thus, the matched filter H(f) can be considered as the cascade of a filter,with impulse response
p(—t), matched to the pulse p(¢) and a filter, with impulse response g(¢), matched to the signal
y(t) = > p_; cxd(t — kT.). The output of the matched filter at t = nT, is (see 5-1-27) :

[ s = Z/ 2(t — KT,)di
= Tcici

where we have used the fact that p(t) is a rectangular pulse of unit amplitude and duration T..

Problem 5.36 :

The bandwidth required for transmission of an M-ary PAM signal is

R

=——H
2log, M g
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Since,

R_8x10° samples .8 bits _ 64 x 10° bits
sec sample sec
we obtain
16 KHz M=4
W =1<¢ 10667 KHz M =38
8 KHz M =16

Problem 5.37 :

(a) The inner product of s;(t) and s;(¢) is

/ si(t)s;()dt = / S cuplt — K1) S eqp(t — IT,)dt
> T k=1 =1
= D > cucy /_ p(t — kT.)p(t — IT,)dt

1

=
Il
-
Il
—

I
NE
NE

CinCi1€pOk

=
Il
—
-
Il

1

I
S
NE

Cik.Cjk

k=1

The quantity >5p_; cikcjr is the inner product of the row vectors C; and C;. Since the rows of
the matrix H,, are orthogonal by construction, we obtain

/ " slt)s,(0dt = £,3° Ay = né,d,
e k=1

Thus, the waveforms s;(t) and s;(¢) are orthogonal.

(b) Using the results of Problem 5.35, we obtain that the filter matched to the waveform

si(t) = zn: cap(t — kT,)

k=1

can be realized as the cascade of a filter matched to p(t) followed by a discrete-time filter matched
to the vector C; = [ci1, . . ., Cin). Since the pulse p(t) is common to all the signal waveforms s;(t),
we conclude that the n matched filters can be realized by a filter matched to p(t) followed by n
discrete-time filters matched to the vectors C;, i =1,...,n.
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Problem 5.38 :
(a) The optimal ML detector (see 5-1-41) selects the sequence C; that minimizes the quantity:
= (re — \/&Cu)?
k=1
The metrics of the two possible transmitted sequences are

r,C) _irk—f S (re — /&)’

k=w+1

and

g

D(r,C,) = Z(Tk—\/gb + Z (ri + 1/ &)?

k=1 k=w+1

Since the first term of the right side is common for the two equations, we conclude that the
optimal ML detector can base its decisions only on the last n — w received elements of r. That
is

C,
. >
Z(Tk—\/gb)Q— Yo (et &) < 0
k=w+1 k=w+1
Cy
or equivalently
¢,
z: Tk z 0
k=w+1 ng

(b) Since rj, = /ECyi, + ny, the probability of error P(e|Cy) is

P(elC)) = P(\/é’:(n—w)jL zn: nk<0)

k=w+1
= P > m< —(n—w)\/gb
k=w+1
The random variable v = Y p_, . 7 is zero-mean Gaussian with variance o2 = (n — w)o?.
Hence
VE (n—w) x? Ey(n —w)
P(e|lC / ————)dr = —
(elC) = [or(n — w)o? 27r(n—w)02> r=0 [ o2
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Similarly we find that P(e|Cy) = P(e|C,) and since the two sequences are equiprobable

Ein—w
maz@[—LTl
o
(c) The probability of error P(e) is minimized when W is maximized, that is for w = 0.
This implies that C; = —C, and thus the distance between the two sequences is the maximum

possible.

Problem 5.39 :
ri(t) = si(t)e’? + z(t). Hence, the output of a correlator-type receiver will be :
ro= Jy msp@)dt = [ (su(t)e’® + 2(1)) sy (t)dt

= &0 Jy sult)si(t)dt + Jg =(t)si(¢)dt

= 122 + ny. + jnis = 26 cos ¢+ ny, + 5 (2E sin ¢ + nyy)
where ny. = Re [fOT z(t)sy (t)dt} , s = Im [fOT 2(t)s) (t)dt}. Similarly for the second correlator
output:

ro = Jo n®)sip(dt = Ji (sn(t)ei? + 2(t)) sip(t)dt
= &0 Jy su(t)sh(t)dt + Jy 2(t)sh(t)dt
= eIP2Ep* + Noe + Jnos = €192E |p| €779 + nye + jng,

= 2&|p|cos (¢ — ag) + nac + 7 (2€ |p| sin (¢ — ag) + nas)
where ns. = Re [fOT z(t)s}}(t)dt} , Mos = Im [fOT z(t)s}é(t)dt} :

Problem 5.40 :

n;,. = Re {fOT z(t)sz"i(t)dt} , Nis = Im [fOT z(t)s}"l-(t)dt} , 1 =1,2. The variances of the noise terms
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are:

Elmen] = E|[Re [y 2(t)sj(t)dt] Re [Ji =(t)sf; (t)dt]

1

4

E{ (1 =ttt + 7 = sn(t)de)”|

— 12T [T Bl2(a)=* (1)) s (8)s5y (a)dtda

= iQ . 2N0 fOT S (t)Szkl (t)dt = QN()S

where we have used the identity Re [z] = 1 (2 + 2*), and the fact from Problem 5.7 (or 4.3) that
Elz(t)z(t+7)] =0, E[z*(t)z*(t + 7)] = 0. Similarly :

E [nQCnQC] =L [nlsnls] =L [n28n28] = 2]\'[05

where for the quadrature noise term components we use the identity : I'm [z] = - (z — 27).
The covariance between the in-phase terms for the two correlators is :

Elmenz = $E[(J5 2(O)siy (00t + 5" 2 (@su(t)de) (J 2(0)sip(0)dt + Ji 2" (D)sia(t)lt)]
= 0

because the 4 crossterms that are obtained from the above expressions contain one of :

BL0)a(t +7)] = B (07t + 1] = [ sultsi(dt= [ sa(B)sitde = 0
Similarly : E [nicnes| = F [nisnes] = E [nisna] = 0.

Finally, the covariance between the in-phase and the quadrature component of the same corre-
lator output is :

Elmens = LB 20)sp @)t + [ 2 (0)su(t)dt) (5 2(0)s ()dt — J3 == (8)sn(t)dt)]

= & (I I B E@=(0)] sh@)siOada + JF I B[z (0)2°(0)] sula)sdida)
T (I AT B = (@)2(0)] sua)siy (Ddtda — T T E[2*(a)=(0)] su(a)si, () dtda)

— L (B 2a)2(0)] sh(a)si (t)dtda+ [T T B [=*()2* (1)) su(a)shdtda)

=0
Similarly : FE [na.nes| = 0.
The joint pdf is simply the product of the marginal pdf’s, since these noise terms are Gaussian
and uncorrelated, and thus they are also statistically independent :

p(nlm N2c, Nis, 77,25) = p(nlc)p(n2c)p(nls)p(n2s)
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where, e.g : p(n1c) = =g exp(—ni./ANoE).

Problem 5.41 :

The first matched filter output is :

T

ry = /OT ri(T)hy (T — 7)dr = /OT ri(P)si (T — (T — 7))dr = /0 ri(7)s5, (T)dr

Similarly :

T

ro = /OT ri(T)ho(T — 7)dT = /OT ri(1T)s)(T — (T — 7))dT = /0 r(T)s)5(T)dT

which are the same as those of the correlation-type receiver of Problem 5.39. From this point,
following the exact same steps as in Problem 5.39, we get :

ry = 2Ecos¢+ ni.+ 7 (2Esin ¢ + nyy)
ry = 2&|p|cos (P — ap) + na. + 7 (2€ |p| sin (¢ — ap) + nas)

Problem 5.42 :

(a) The noncoherent envelope detector for the on-off keying signal is depicted in the next figure.

t=T
G ol = [
r(t) \/% cos(2m f.t) r ‘
_g VT
t=T Threshold
%—» g(.)dT_\r (+)? - Device

(b) If s(t) is sent, then the received signal is r(t) = n(t) and therefore the sampled outputs .,
rs are zero-mean independent Gaussian random variables with variance % Hence, the random

variable r = /72 + r2 is Rayleigh distributed and the PDF is given by :

ro_a2  2r _2
p(r]so(t)) = 2 TN o
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If s1(t) is transmitted, then the received signal is :

r(t) = \/??cos(Qﬂfct + ¢) + n(t)

Crosscorrelating r(t) by \/% cos(27 f.t) and sampling the output at ¢t = T, results in

re = /OTT(t)\/%COS(QWfCt)dt

/OT 2{ cos(27 fot + @) cos(2m ft)dt + / \/gcos(%rfct)dt

2\/3,

=2 "L cos(2m2ft + 6) + cos(6)) dt + n,

= \/gbcos(gzﬁ) +n,

where n.. is zero-mean Gaussian random variable with variance
component we have :

No

5. Similarly, for the quadrature

rs =1/Epsin(@) + ns

The PDF of the random variable r = \/ r24r?2= \/ &y + n2 + n? follows the Rician distibution :

ro_rttg & or _r’+& 2rv/&
plrkn(0) = Sy =0 (5] = e (Y

(c) For equiprobable signals the probability of error is given by:

P(error) = %/_VT p(r|si(t))dr + 2/ (r|so(t))dr

Since r > 0 the expression for the probability of error takes the form

P(error) = 2/ (r|s1(t))dr + = / (r|so(t)

\% _rt+E g 1 o0 r2
_ 2/TT :jb < 02b>d7”+2 Le QO-QdT

The optimum threshold level is the value of Vi that minimizes the probability of error. However,
when fv—‘; > 1 the optimum value is close to: @ and we will use this threshold to simplify the
analysis. The integral involving the Bessel function cannot be evaluated in closed form. Instead
of Iy(x) we will use the approximation :

€$

[Q(II?) ~

ﬁ
=)
8
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which is valid for large x, that is for high SNR. In this case :

Vr Tt +Sb rv &
T ] d / /20
2 / 0 < ) " 2 \/ 27TO'2\/€71,

This integral is further simplified if we observe that for high SNR, the integrand is dominant in
the vicinity of v/&, and therefore, the lower limit can be substituted by —oo. Also

T 1
\ 2702\/E, “V 2m0?
and therefore :

V&
1/ 2 #6—(T—\/?b)2/202d7, ~ 1/ —(r \/_b)2/202d7,
2 Jo 2102/, 2 \/27T<72

albn

Finally :
1 5,,] 1 e 2r _»2
P(error) = =Q |{/—— e Nodr
(error) 2 l 2N, | 2J¥& N,
1 & _&
< = 7 _ IN,
= 2Q[ 2NJ+26 '

Problem 5.43 :
(a) D = Re (V,uVyy) where Vi, = X, + 5. Then :

D = Re((Xm+ij)(Xm—l_ij—l))
— Xme—l_'_YmYm—l

Xm+Xm—1 2_ Xm_Xm—l 2+ Ym+ym—l 2_ Ym_Ym—l 2
2 2 2 2

(b) Vi, = Xy, + jYi, = 2aE cos(0 — ¢) + j2aE sin(d — ¢) + N rear + Nk imag- Hence :

Ul — Xm"l‘X'mfl

2 )
U2 — Ym“l‘mel

)

E
mel

Uy = Zn—gmsl  F
E

2
Yin—Ym—
U4:m2ml,



The variance of Uy is : E [Uy — E(U1)* = E [§ (N pea + Nm_l,real)r = E[Nprea]” = 26N,
and similarly : E[U; — E(U;)]> = 2ENy, i = 2,3,4. The covariances are (e.g for Uy, Us):
cov(Uy,Uy) = E[(Uy — E(Uy)) (Uy — E(Uy))] = F [i (Nir + Np—1) (Nomi + Nm—l,i)} = 0, since
the noise components are uncorrelated and have zero mean. Similarly for any i, j : cov(U;, U;) =

0 . The condition cov(U;, U;) = 0, implies that these random variables {U;} are uncorrelated,
and since they are Gaussian, they are also statistically independent.

Since Uz and U, are zero-mean Gaussian, the random variable Ry = /U2 + U? has a Rayleigh
distribution; on the other hand R; = /U? + U3 has a Rice distribution.

(c) Wy = U? + U3, with Uy, U, being statistically independent Gaussian variables with means
2aF cos(0—¢), 2aE(sin 0 —¢) and identical variances 0> = 2E Ny. Then, W, follows a non-central
chi-square distribution with pdf given by (2-1-118):

1

— a w a
plwy) = 4EN06 (40” B2+ 1)/4EN°IO <ﬁ0\/w1> ,wy >0

Also, Wy = U2 + U2, with Us, U; being zero-mean Gaussian with the same variance. Hence, W,
follows a central chi-square distribution, with pfd given by (2-1-110) :

1 €_w2/4ENO

p(w2):4ENO 9 wQZO

@ P, = P(D<0)=P(W, —W,<0)
= Jo© P(wz > wilwi)p(wy)duy
= 5" (Jis plwe)dws) plw)duwy
= JoT e/ HENop(wy)duw,
= V(J0)lo=j/aEn

1 jvda? B2 )
= T 2ju0?) eXp(1—2jw2 |v=j/4EN,

% 6—a2E‘/Ng
where we have used the characteristic function of the non-central chi-square distribution given
by (2-1-117) in the book.
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Problem 5.44 :

I <t <
o(t) = S [Loult — 2KTy) + jJgu(t — 2kTy — T)] where u(t) = {“nﬂ” O_t_j%}.Nme

0, 0.W.
that LT .
u(t —Tp) :Sinﬂ%ﬂb) = —cos;—Tb, T, <t <3T,
Hence, v(t) may be expressed as :
. 7T(t — 2]€Tb) . 7T(t — 2]€Tb)
— I sin - 2V0) g cpg i 2V
; l L SIN QTb JJE COS QTb
The transmitted signal is :
t — 2kT, t — 2kT,
Re [ 32”‘ } Zk: [[k sin MT})I)) cos 27 fot + Jy cos m( o, ') sin 27cht]
(a)
(2k+2)T, / Threshold
f%Tb Odt Detector >,
Sampler I
t=(2k+2)T;
Input

N s
smz—ncos%rfct

(2k+2)Ty / Threshold

Detector R
Sampler

t=(2k+2)T)

.
cosQ—Tbsm27rfct &

(b) The offset QPSK signal is equivalent to two independent binary PSK systems. Hence for
coherent detection, the error probability is :

Pe:Q<m> Y= N 2/ t)|* dt

(c) Viterbi decoding (MLSE) of the MSK signal yields identical performance to that of part
(b).
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(d) MSK is basically binary FSK with frequency separation of Af = 1/2T. For this frequency
separation the binary signals are orthogonal with coherent detection. Consequently, the error
probability for symbol-by-symbol detection of the MSK signal yields an error probability of

Pe:Q(\/%)

which is 3dB poorer relative to the optimum Viterbi detection scheme.
For non-coherent detection of the MSK signal, the correlation coefficient for Af = 1/2T is :

o] = sin /2
Pr= /2
From the results in Sec. 5-4-4 we observe that the performance of the non coherent detector

method is about 4 dB worse than the coherent FSK detector. hence the loss is about 7 dB
compared to the optimum demodulator for the MSK signal.

=0.637

Problem 5.45 :

(a) For n repeaters in cascade, the probability of i out of n repeaters to produce an error is
given by the binomial distribution

P = ( h )pi(l —p)"

However, there is a bit error at the output of the terminal receiver only when an odd number
of repeaters produces an error. Hence, the overall probability of error is

Fu=Poa = 2 (?)pi(l—p)”‘i

i=odd
Let P..en be the probability that an even number of repeaters produces an error. Then
Peen = 3 < ZL )pi(l —p)"
and therefore, :
Peven + Poaa = 3 ( 7; )p"(l —p)" T =(p+l-p) =1
One more relation between P,y a;_do P,qq can be provided if we consider the difference P.yen —
P,4q. Clearly,

Paen— Poas = Y ( A >pi(1 i 3 < " )pi(l oy

i=even i=odd

> (1) e 5 (1) -

i=even i=odd

= (I-p—p)"=(01-2p)"

ll=
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where the equality (a) follows from the fact that (—1)" is 1 for 7 even and —1 when i is odd.
Solving the system

Peven+Podd =1
Peven_Podd - (1_2p)n

we obtain ]
Pn = Podd = 5(1 - (1 - 2p)")
(b) Expanding the quantity (1 — 2p)", we obtain

(n—1)

(1—2p)" =1—n2p+ 2 ()" 4

Since, p < 1 we can ignore all the powers of p which are greater than one. Hence,

1
P, ~ 5(1 —14n2p) =np=100x10"%=10""

Problem 5.46 :

The overall probability of error is approximated by (see 5-5-2)

pro - a5

Thus, with P(e) = 1075 and K = 100, we obtain the probability of each repeater P, =

Q [,/%} = 1078 The argument of the function @[] that provides a value of 1078 is found

from tables to be
[2E;
— =5.61
N, 5.6

Hence, the required fv—‘; is 5.612/2 = 15.7

Problem 5.47 :

(a) The antenna gain for a parabolic antenna of diameter D is :
mD\?
R =1 \
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If we assume that the efficiency factor is 0.5, then with :

)\:E:3><108

we obtain :

Gr=Gr =45.8458 = 16.61 dB

(b) The effective radiated power is :

EIRP = PrGp = Gy = 16.61 dB

(c) The received power is :
_ PrGrGg

()

Pr =2.995 x 107? = —85.23 dB = —55.23 dBm

Note that :

actual power in Watts
10—3

dBm = 10log,, < ) = 30 + 10log,,(power in Watts )

Problem 5.48 :

(a) The antenna gain for a parabolic antenna of diameter D is :
wD\?
i ()
R=1 \
If we assume that the efficiency factor is 0.5, then with :

3 x 108
)\:%:Tiog:O.Bm and D=1m

we obtain :

Gr=Gr=>5483=1739dB

(b) The effective radiated power is :

EIRP = PrG7p = 0.1 x 54.83 = 7.39 dB
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(c) The received power is :

_ PrGrGp

(5

Py =1.904 x 107 = —97.20 dB = —67.20 dBm

Problem 5.49 :

The wavelength of the transmitted signal is:

3 x 108
A= Qo 0
The gain of the parabolic antenna is:
7D\? 710\?
=n|{—) =06(—) =6. 10° = 58.18 dB
Gr n( >\> 06(0'03) 6.58 x 10” = 58.18

The received power at the output of the receiver antenna is:

_ PrGrGr 3 x 10" x 6.58 x 10°

Pr — -
T (rd) T (4% 3.14159 x 200y

=222%x 107" = —-126.53 dB

Problem 5.50 :

(a) Since T' = 300°K,, it follows that
No=kT =1.38 x 1072 x 300 = 4.14 x 10~*' W/Hz

If we assume that the receiving antenna has an efficiency n = 0.5, then its gain is given by :

2
D\? 3.14159 x 50
Gr=n (W—) — 0.5 (22227 KO0 5483 % 10° = 57.39 B
A 100

Hence, the received power level is :

PrGrGr 10 x 10 x 5.483 x 10°
pp = roToR DX U X X 78125 x 10713 = —121.07 dB

(47r§)2 (4 x 3.14159 x %)2

(b) If £ =10 dB = 10, then

R x 1071 = 1.8871 x 107 = 18.871 Mbits/sec

Py <5b )‘1 78125 % 10718
C No\No/  414x 107
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Problem 5.51 :

The wavelength of the transmission is :

c  3x108
A= =22 o5
Fax 109 o

If 1 MHz is the passband bandwidth, then the rate of binary transmission is R, = W = 10° bps.
Hence, with Ny = 4.1 x 1072! W/Hz we obtain :
Pg &

N Rbﬁo — 10% x 4.1 x 1072 x 10"° = 1.2965 x 1013

The transmitted power is related to the received power through the relation (see 5-5-6) :

_ PrGyGhp P < d>2

Pp = — Pr= 8 (48
T iy T GG TN

Substituting in this expression the values Gp = 10%%, G = 10°, d = 36 x 10° and \ = 0.75 we

obtain
Pr =0.1185 = —9.26 dBW
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CHAPTER 6

Problem 6.1 :
Using the relationship 7(t) = XN, 7, fu(t) and s(t;9) = SN, 5, () f,(t) we have :
LIt~ s(EO)Fdt = (SN — sa(@)) ful)] dt
e IS YN (50 (8)) (i — 5 () fu0) fn ()t
= SN SN (= 5a() (i — 5 (1))
= SN (50 () — 5 (1))
= S T [ — sa(W)

where we have exploited the orthonormality of the basis functions f,,(t) : [5, fu(f) fin(t)dt = Oy

and o2 = %

Problem 6.2 :

A block diagram of a binary PSK receiver that employs match filtering is given in the following
figure :

Received signal Matched filter Sampler and Output data
> @ >| h(t) =g(T 1) Detector

A
| Carrier phase cos(2m fot + B)
recovery
- Symbol
" | synchronization
&

As we note, the received signal is, first, multiplied with cos(2m f.t + é) and then fed the matched
filter. This allows us to have the filter matched to the baseband pulse ¢(t) and not to the
passband signal.
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If we want to have the filter matched to the passband signal, then the carrier phase estimate is
fed into the matched filter, which should have an impulse response:

ht) = s(T—t)=g(T —t)cos(2r fo(T — t) + ) )
= g(T —t)[cos(2m . T)cos(=2m f.t + ¢) + Sin(QWfCTj)sin(—Qﬂfct + ¢)

g(T — t)cos(=2m fot + ¢) = g(T — t)cos(2m fot — @)

where we have assumed that f.7" is an integer so that : cos(2r f.T) = 1, sin(2rf.T) = 0. As we
note, in this case the impulse response of the filter should change according to the carrier phase
estimate, something that is difficult to implement in practise. Hence, the initial realization
(shown in the figure) is preferable.

Problem 6.3 :

(a) The closed loop transfer function is :
_ G(s)/s  G(s) 1
1+G(s)/s s+G(s) s24++v2s+1
The poles of the system are the roots of the denominator, that is
—V2+2-14 11
P12 = =——F=xj—=
2 V2 TV2

Since the real part of the roots is negative, the poles lie in the left half plane and therefore, the
system is stable.

H(s)

(b) Writing the denominator in the form :

D = 5>+ 2(w,s +w?

L

we identify the natural frequency of the loop as w, = 1 and the damping factor as { = 75

Problem 6.4 :

(a) The closed loop transfer function is :

He - GO G K 4
° C1+G(s)/s  s+G(s) msPt+s+ K 2+ Ls4+ B

The gain of the system at f =0 is :
[H(0)] = [H(s)|s=0 = 1
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(b) The poles of the system are the roots of the denominator, that is

—1:|:\/1 —4KT1

27’1

P12 =

In order for the system to be stable the real part of the poles must be negative. Since K

is greater than zero, the latter implies that 7 is positive. If in addition we require that the

damping factor ¢ = \/;_K is less than 1, then the gain K should satisfy the condition :

1
K>—
47’1

Problem 6.5 :

The transfer function of the RC circuit is :

B Rg—i-é B 1+ RyCs L4 s
Ri+ R4z 1+ (Ri+R)Cs 1+ms

G(s)

From the last equality we identify the time constants as :

To = RQC, T = (Rl + RQ)C

Problem 6.6 :

Assuming that the input resistance of the operational amplifier is high so that no current flows
through it, then the voltage-current equations of the circuit are :

Vi = —AV

1\ .

V-V, = <Rl+a)z
Vi—Vy = iR

where, Vi, V5 is the input and output voltage of the amplifier respectively, and Vj is the signal
at the input of the filter. Eliminating ¢ and V;, we obtain :

Ri+4&

Va o TR™
Vi1l Rutg
L+ 3 AR

If we let A — oo (ideal amplifier), then :

E71+R10371+Tgs
Vi  RCs m7s
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Hence, the constants 77, 7 of the active filter are given by :

1 :RO, ngRlc

Problem 6.7 :

In the non decision-directed timing recovery method we maximize the function :
Ap(m) =D ym(7)
m
with respect to 7. Thus, we obtain the condition :

dAr(r) dym(T)
dr _Q;ym(ﬂ dr =0

Suppose now that we approximate the derivative of the log-likelihood Ay (7) by the finite differ-
ence :

dAL(T) -~ AL(T + 5) — AL(T - (5)
dr 26
Then, if we substitute the expression of Ay (7) in the previous approximation, we obtain :

dAL(7) S Yr (T4 0) = 3, 45, (T — 0)
dr 20

_ 2_15 > [(/r(iﬁ)g(t—mT—7'—(5)dt>2 — (/T(t)g(t—mT—TjL(S)dt)z}

where g(—t) is the impulse response of the matched filter in the receiver. However, this is the
expression of the early-late gate synchronizer, where the lowpass filter has been substituted by
the summation operator. Thus, the early-late gate synchronizer is a close approximation to the
timing recovery system.

Problem 6.8 :

An on-off keying signal is represented as :
s1(t) = Acos(2r ft + ¢.), 0 <t <T (binary 1)
So(t) =0, 0 <t <T (binary 0)

Let r(t) be the received signal, that is r(t) = s(t;¢.) + n(t) where s(t; ¢.) is either s;(¢) or
so(t) and n(t) is white Gaussian noise with variance 2. The likelihood function, that is to be
maximized with respect to ¢. over the inteval [0, T, is proportional to :

Mo = |- [0 - st
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Maximization of A(¢.) is equivalent to the maximization of the log-likelihood function :

2

A6 = o [ ) = st o)

= o [ i [Crostei - o [ s

Since the first term does not involve the parameter of interest ¢, and the last term is simply a
constant equal to the signal energy of the signal over [0, 7] which is independent of the carrier
phase, we can carry the maximization over the function :

V() = [ riw)s(ts o

Note that s(¢; ¢.) can take two different values, s;(f) and s5(t), depending on the transmission
of a binary 1 or 0. Thus, a more appropriate function to maximize is the average log-likelihood

Be) = / )51 (¢ dt+2/ so(t)dt

Since sy(t) = 0, the function V(¢,) takes the form :

_ 1 /T
V(pe) = 5/ r(t)Acos(2m ft + ¢ )dt
0
Setting the derivative of V(¢.) with respect to ¢. equal to zero, we obtain :

IV (¢.)

3o, =0 = 2/ t)Asin(27 f.t + ¢.)dt

T

T
= COS Q.= /0 r(t)Asin(27 ft)dt + sin ¢~ /0 r(t)Acos(27 f.t)dt

Thus, the maximum likelihood estimate of the carrier phase is :

Cg ML = — arctan IOTT(t) sin(2m f t)dt
67 T (t) cos(2r )i
Problem 6.9 :
(a) The wavelength X is :
3 x 108 B 3
w0 M1

Hence, the Doppler frequency shift is :

100 Km/hr 100 x 103 x 10

u
S -
Ip =5 3 m 3 x 3600

Hz = £92.5926 Hz
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The plus sign holds when the vehicle travels towards the transmitter whereas the minus sign
holds when the vehicle moves away from the transmitter.

(b) The maximum difference in the Doppler frequency shift, when the vehicle travels at speed
100 km/hr and f =1 GHz, is :

Afpoa. = 2fp = 185.1852 Hz

This should be the bandwith of the Doppler frequency tracking loop.

(c) The maximum Doppler frequency shift is obtained when f = 1 GHz + 1 MHz and the
vehicle moves towards the transmitter. In this case :

3 x 108
W= m =02
)\mm 109 T 106 m 0.2997 m
and therefore : 100 x 108
foo =2 "7 _ 996853 Hz

0.2997 x 3600
Thus, the Doppler frequency spread is By = 2fp,. = 185.3706 Hz.

Problem 6.10 :
The maximum likelihood phase estimate given by (6-2-38) is :

1 Im [Ei{:_ol I:yn]
Re S5 i)

QgML = —tan "

where y,, = f,ig“)T r(t)g*(t — nT)dt. The Re(y,), Im(y,) are statistically independent compo-

nents of y,,. Since r(t) = e 9* Y, I,g(t — nT) + 2(t) it follows that y, = I,e ¢ + z,, where the
pulse energy is normalized to unity. Then :

K-1 K-1
Z Iyn = Z [‘In|2 e 70+ [;Zn}
n=0 n=0
Hence :
K1 ' r
E {Im [Z (1?79 + [;;zn]H = —K|L| sing
n=0
and

K—1 ' o
E {Re [Z “In|2 e 1%+ I;zn”} =-K ‘In‘ oS ¢

n=0
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—1—sing

osp = ¢, and hence, g%ML is an unbiased estimate of the

Consequently : F {ngL} = —tan
true phase ¢.

Problem 6.11 :

The procedure that is used in Sec. 5-2-7 to derive the pdf p(©,) for the phase of a PSK signal
may be used to determine the pdf p(¢y,r). Specifically, we have :

Re [zK 11* ]

CgML = —tan

where y, = [P r(£)g*(t — nT)dt and r(t) = e3¢ Y, Ig(t — nT) + 2(t). Substitution of r(¢)
into y,, yields : vy, = I,e % + z,. Hence :

K-1 ) K-1 ) K-1
Z I:Lyn = 6_]¢ Z |In| + Z I:L'Zn
n=0 n=0 n=0

U+jV=Ce® +2=Ccosp+x+j(y— Csing)

where C' = S5 1|1, \ and z = XX I*2, = 2 + jy. The random variables (x,y) are zero-mean,
Gaussian random variables with variances o2.Hence :

p(U, V) _ 5 1 26—[(U—Ccos ¢)2—(V—Csinq§)2]
ye

By defining R = vU? + V2 and ¢y, = tan _1% and making the change in variables, we obtain
p(R, QASML) and finally, p((/zASML) = ;" p(r, ngL)dr. Upon performing the integration over R, as in
Sec. 5-2-7, we obtain :

p(dur) = L e-rsin®us /OO re—(r=vBios ) /2,
2m 0

where v = C?/20*. The graph of p(dary) is identical to that given on page 271, Fig. 5-2-9. We
observe that E(¢y) = ¢, so that the estimate is unbiased.

Problem 6.12 :

We begin with the log-likelihood function given in (6-2-35), namely :

As(d) = Re{[]\lfo /Tor(t)s;‘(t)dt] ej¢}
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where s;(t) is given as : s/(t) = X, Ing(t —nT) + 5>, Jou(t — nT — T/2). Again we define

Yo = Jig VT e (1) (t = nT)dt. Also, let = @, = [T 00 r(t)si(t —nT — T/2)dt. Then :
AL(¢) — {63¢ {ZK lj*yn _sz IJ* }}

= Re[Acos ¢+ jAsin @]
where A = S5y, — i KL e, Thus @ Ap(¢) = Re(A) cos ¢ — Im(A)sin¢ and :

dAdLaggb) = —Re(A)sing — Im(A)cos¢p =0 =
A T K-1 T*  — K— 1 J*
¢ML::—tm11 nzb: nYn = J 2n= }

Re [0 Tiyn — 5 505 1J* a]

Problem 6.13 :

Assume that the signal u,,(t) is the input to the Costas loop. Then wu,,(t) is multiplied by
cos(2m f.t + ¢) and sin(27 f.t + (b) where cos(27 f.t + gb) is the output of the VCO. Hence :

Une (1)
= Angr(t) cos(2m ft) cos(2m fot + @) — Angr(t) sin(27 f.t) cos(2m fot + ¢)

An0t ) con(amasit + )+ con(@)] - 2220 [sin(amas + ) sn(3)

Upns (1)
= Apgr(t) cos(2m fot) sin(27 fut + ) — Amgr(t) sin(2m fot) sin(2m fot + B)

Amng(t) {sin(27r2fct +¢) + Sin(qg)} — Amng(t) [cos(qg) — cos(2m2f.t + qg)}
The lowpass filters of the Costas loop will reject the double frequency components, so that :
Yme(t) Amng(t) cos(¢) + AmZT(” sin()
matt) = 2280 gy - A9 o

Note that when the carrier phase has been extracted correctly, QAS = 0 and therefore :

Yme(t) = AmgT(t>v Yms(t) = —Amng<t)

If the second signal, y,,s(t) is passed through a Hilbert transformer, then :

) Apdr(t)  Apgr(t
yms(t) _ 2T( ) _ 2T( )
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and by adding this signal to y,,.(t) we obtain the original unmodulated signal.

Problem 6.14 :
(a) The signal r(t) can be written as :

r(t) = =£y2Pscos(2mft + ¢) + \/2P.sin(2n f.t + ¢)

= \/msin<27rfct+¢+antan_1< %))
o ()
= \/Esm 27 f.t + ¢ + a, cos Lo
Pr

where a,, = +1 are the information symbols and Py is the total transmitted power. As it is
observed the signal has the form of a PM signal where :

P
0, = a, cos ! < P_T>

Any method used to extract the carrier phase from the received signal can be employed at the
receiver. The following figure shows the structure of a receiver that employs a decision-feedback
PLL. The operation of the PLL is described in the next part.

t:Tb

v(t) o % OTb(.)dt _&, Threshold [+

DFPLL

Y

cos(2m fot + @)

(b) At the receiver (DFPLL) the signal is demodulated by crosscorrelating the received signal :

r(t) = \/ﬁsin (27rfct + ¢ + a, cos™! (\/%)) +n(t)

with cos(27 fot + ¢) and sin(27 fot + ¢). The sampled values at the ouput of the correlators are :

r = % {\/QPT — ns(t)] sin(¢p — qg +6,) + %nc(t) cos(¢p — qg +6,)
ry — % {\/QPT _ ns(t)] cos(d— b+ 6,) + %nc(t) sin(é — & — 6,)
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where n.(t), ns(t) are the in-phase and quadrature components of the noise n(t). If the detector
has made the correct decision on the transmitted point, then by multiplying by cos(6,) and
ro by sin(f,,) and subtracting the results, we obtain (after ignoring the noise) :

ricos(f,) = %\/ﬁ {sin((b — $) cos?(0,) + cos(¢ — &) sin(6,,) cos(@n)}
rosin(f,) = %\/ﬁ {cos(gzb &) cos(6,,) sin(f,) — sin(¢ — @) sin2(9n)}
e(t) = mrycos(6,) —rysin(f,) = \/ﬁsm

The error e(t) is passed to the loop filter of the DFPLL that drives the VCO. As it is seen only
the phase 6, is used to estimate the carrier phase.

(c) Having a correct carrier phase estimate, the output of the lowpass filter sampled at ¢t = T,
is :

1
= +—4/2Pr(1— —
2\/ T( PT)+n

where n is a zero-mean Gaussian random variable with variance :

o2 = [/Tb /Tb 7) cos(2m ft + ¢) cos(2m for + ¢)dtdr
= 70 /0 cos® (27 fot + ¢)dt
T4

Note that T, has been normalized to 1 since the problem has been stated in terms of the power
of the involved signals. The probability of error is given by :

P(error) = Q [\/ QJIVDOT (1 - P%)]

The loss due to the allocation of power to the pilot signal is :

P,

SNRioss = 10logy (1 . P_T)

When P./Pr = 0.1, then SNRjss = 10log,,(0.9) = —0.4576 dB. The negative sign indicates
that the SNR is decreased by 0.4576 dB.
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Problem 6.15 :

The received signal-plus-noise vector at the output of the matched filter may be represented as

(see (5-2-63) for example) :
n = \/Esej(en_(b) + Nn
where 0, = 0,7/2,7,37/2 for QPSK, and ¢ is the carrier phase. By raising r, to the fourth
power and neglecting all products of noise terms, we obtain :
4 3
i o~ (V&) et0m9) 1 4(VE) N,
3 .
~ (VE) VBT +an,]
If the estimate is formed by averaging the received vectors {rt} over K signal intervals, we have
the resultant vector U = K+/E,e 79 + 427{;1 N,,. Let ¢4 = 4¢. Then, the estimate of ¢4 is :
. Im(U)
= —tan 19—~
1= —tan R
N, is a complex-valued Gaussian noise component with zero mean and variance o? = Ny/2.

Hence, the pdf of ¢, is given by (5-2-55) where :

2
- (KVE) K, Ke,
7T 16(2Ko?)  16KN, 16N

To a first approximation, the variance of the estimate is :
1 16

o2~

94 - Vs - KES/NO

Problem 6.16 :

The PDF of the carrier phase error ¢., is given by :

1 2%
e) = —€ ¢
P(?e) V2ro,

Thus the average probability of error is :

Peo= [ Paoploods.

= [z Q [ QFE/Z) cos? ¢e] p(¢e)d¢e

1 o0 o0 1 9 ¢2
S 2 P | dedg,
27TO'¢ [m/,/%cos2¢eexp[ 2 <x +O'35>‘| . ¢
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Problem 6.17:

The log-likelihood function of the symbol timing may be expressed in terms of the equivalent
low-pass signals as

A(t) = R NLOITO r(t sl*(t;T)dt]
R | iy r(8) S 19" (¢ = nT — 7)dt]
= R[5, L ya(7)]

where y,,(7) = [, 7(t)g*(t —nT — 7)dt.
A necessary condition for 7 to be the ML estimate of 7 is

dAL(T) = 0 =
i D0 Ly (1) + 0 Ly (1)) = 0 =
Sou L Ly (7) + 3, Lny,* (1) = 0
If we express y,(7) into its real and imaginary parts : y,(7) = a,(7) + jb,(7), the above

expression simplifies to the following condition for the ML estimate of the timing 7

Z%[[n]%an(ﬂ +>° %[[n]%bn(ﬂ -0

Problem 6.18:

We follow the exact same steps of the derivation found in Sec. 6.4. For a PAM signal I,* = I,
and J, = 0. Since the pulse g(t) is real, it follows that B(7) in expression (6.4-6) is zero,
therefore (6.4-7) can be rewritten as

AL(¢7 T) - A(T) CO8 ¢
where

A(T) = 5 X Ln()

Then the necessary conditions for the estimates of ¢ and 7 to be the ML estimates (6.4-8) and
(6.4-9) give

QgMLZO

and
d

Z In% [yn(T)]T:f'ML =0

n
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Problem 6.19:

The derivation for the ML estimates of ¢ and 7 for an offset QPSK signal follow the derivation
found in Sec. 6.4, with the added simplification that, since w(t) = g(t — T/2), we have that
To(T) = yn(T + T/2).
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CHAPTER 7

Problem 7.1 :

- P(yz‘|$‘)
I(z;Y) =S 9 Py|z;) log —1=22
Since
q—1
ZP(%)— Z P(XJ>:1
J=0 P(x;)#0
we have :

I[(X;Y) = SI20Plaj)(23Y) = Spg,yz0 CP(x))
= CZP A0 P([E]) C = maXp(m].) [(X; Y)

Thus, the given set of P(x;) maximizes (X;Y) and the condition is sufficient.

To prove that the condition is necessary, we proceed as follows : Since P(z;) satisfies the
condition Z?;é P(z;) =1, we form the cost function :

q—1

> Plzj) -1

J=0

C(X)=I(X;Y) =\

and use the Lagrange multiplier method to maximize C(X). The partial derivative of C'(X)
with respect to all P(Xj) is :

le] _
S = art (im0 P ”(“YJ — AT Pl) +
= I(Ika )+Z Pz )ap(mk)l(ijY)_AZO
But :
_ - i) Plyilz;) OP(y;
E?Zé P(‘%])%I(IE% Y) = - 1Og € Z?:(l) (IE]) EZQ 0 P(yz‘x]) p(yﬁx)]) _[%(Z‘h)])z 85(%2)
- _10g62i [Zq 1 P(z;) y(ly)zm)} P(yil)
— —logex 2y 28 P(yifa) = — loge
Therefore:
0
I(zY +ZP% x>I(xj;Y)—)\:0:>I(mk;Y):)\—l—loge, Vo,
k

Now, we consider two cases :
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(i) If there exists a set of P(zy) such that :

q—1 aC(X)
kzzop(xk) 1, 0< P(xx) <1, k=0,1,....¢g— 1 and 9P (ay) 0

then this set will maximize I(X;Y), since I(X;Y) is a convex function of P(z). We have :
C = maxpy,) [(X;Y) =Y P(z;)I(z;;Y)

Y12 P(x;) [\ +loge] = A+ loge = I(x;;Y)

This provides a sufficient condition for finding a set of P(z) which maximizes I(X;Y), for a
symmetric memoryless channel.

(ii) If the set {P(xy)} does not satisfy 0 < P(x) < 1, k = 0,1,...,¢ — 1, since I[(X;Y) is a
convex function of P(zy), necessary and sufficient conditions on P(xy) for maximizing I(X;Y)
are :

AI(X;Y)

DI(X;Y)

= u, for P(zy) > 0, TP ()

< u, for P(zg) =0

Hence :
I Y) = i+ loge, Plry) #0
I(zx;Y) < p+loge, P(xy) =0

is the necessary and sufficient condition on P(xy) for maximizing 1(X;Y) and u+ loge = C.

Problem 7.2 :
(a) For a set of equally probable inputs with probability 1/M, we have :

IwiY) = TUG" P(yilzy) log Bz

= Plyelun) log TR + S Pluilo) log 7

But Vi
ML 1 1 1 P 1
P(y;) = P(yilz;) = MP(?MZEZ) + sz(yi|%) Vi (1 —p+ (M- 1)M _ 1) Y
5=0 j#i
Hence

I@iY) = (1-p)log G2 + (M — 1)5 log 2!
= (1- )1og(M(1—p))+P10g(p )
= logM + (1 —p)log(1l — )+p10g(M—)
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which is the same for all £ = 0,1,...M — 1. Hence, this set of {P(zy) = 1/M} satisfies the
condition of Probl. 7.1.

(b) From part (a) :

C =logM + (1 —p)log(l —p)+plog <M— 1)

A plot of the capacity is given in the following figure. We note that the capacity of the channel

is zero when all transitions are equally likely (ie. when 1 —p = %5 = p = % or: p =
05, M=2; p=0.75,M =4; p=0.875 M =28).
Problem 7.2
3 T
25 M=8
2
15 M=4

Capacity (bits/channel use)

. . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Error probability p

Problem 7.3 :

In all of these channels, we assume a set of {P(z;)} which, we think, may give the maximum
I(X;Y) and see if this set of {P(z;)} satisfies the condition of Probl. 7.1(or relationship 7-1-
21). Since all the channels exhibit symmetries, the set of { P(z;)} that we examine first, is the
equiprobable distribution.

(a) Suppose P(x;) = 1/4,¥i. Then : P(yy) = P(y1|x1)P(x1) + P(y1|z4) P(z4) = 1/4. Similarly
P(y;) =1/4,Vj . Hence :

4 ( )
yjlT1) 1/2 1/2
I(x;Y E P(y;|z1) log ————= = log + l =log2=1
s / P(y;) 1/4 1/4

Similarly : I(x;;Y) = 1,4 = 2,3,4. Hence this set of input probabilities satisfies the condition
of Probl. 7.1 and :
C' =1 bit/symbol sent (bit/channel use)
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(b) We assume that P(x;) =1/2, i =1,2. Then P(y;) = 3 (:1,) + %) = 1 and similarly P(y;) =
1/4, 5 =2,3,4. Hence :
4

P(y;la1) 1/3 1/6
)1 Plyslen) o1, 2L o — 0.081
I(z1;Y Z (yjlz1) log Ply,) Og1/4+ 05173 = 0.0817

and the same is true for I(x9;Y"). Thus :

C' = 0.0817 bits/symbol sent

(c) We assume that P(z;) = 1/3, ¢ = 1,2,3. Then P(y;) = %(% + 3+ %) =+ and similarly
P(y;) =1/3, 7 =2,3. Hence :

3 ( .
yilz1) 1/2 1/3 1/6
I(z;Y P(y;|xy) logiz—lg——i— l l = 0.1258
! ; e P(y;) 1/3 1/3 8173
and the same is true for I(x9;Y), I(x3;Y"). Thus :

C' = 0.1258 bits/symbol sent

Problem 7.4 :

We expect the first channel (with exhibits a certain symmetry) to achieve its capacity through
equiprobable input symbols; the second one not.

(a) We assume that P(x;) = 1/2, ¢ = 1,2. Then P(y;) = 3 (0.6 +0.1) = 0.35 and similarly
P(y3) = 0.35,. P(y2) = 0.3. Hence :
3

P(y;|z1) 0.6 0.3 0.1
Vlog i) 0 610g — 1 0.31og ~= + 0.11log —— = 0.2858
GRS X:: (yjlz1) log P(y;) 0835 T U0y Tl e g

and the same is true for I(z5;Y"). Thus, equally likely input symbols maximize the information
rate through the channel and :

C' = 0.2858 bits/symbol sent

(b) We assume that P(z;) = 1/2, @ = 1,2. Then P(y;) = 1 (0.6 +0.3) = 0.45, and similarly
P(y2) = 0.2, P(y3) = 0.35. Hence :

> P(
yjlz1) 0.6 0.3 0.1
Ylog T 0 610g — 1 0.310g ~= + 0.110g —— = 0.244
I(zY) =3 Plyjlar) log P(y;) 08 g5 TUms g T g e

Jj=1

138



But :

1

3
Ply;|s) log —2i1*2)
[y ; (o) oz = P(y]) 8005 0.2 8035

Since I(x1;Y) # I(x2;Y) the equiprobable input distribution does not maximize the information
rate through the channel. To determine P(z1), P(x2) that give the channel capacity, we assume
that P(z1) = a, P(z3) = 1 — a; then we find P(y;), express I(X;Y) as a function of a and set
its derivative with respect to a equal to zero.

Problem 7.5 :

(a) Relationship (7-1-31) gives :

C' = Wlog (1 + = ) = 25.9 Kbits/ sec

W Ny

(b) From Table 3-5-2 we see that logarithmic PCM uses 7-8 bits/sample and since we sample
the speech signal at 8 KHz, this requires 56 to 64 Kbits/sec for speech transmission. Clearly,
the above channel cannot support this transmission rate.

(c) The achievable transmission rate is :
0.7C' = 18.2 Kbits/ sec

From Table 3-5-2 we see that linear predictive coding (LPC) and adaptive delta modulation
(ADM) are viable source coding methods for speech transmission over this channel.

Problem 7.6 :

(a) We assume that P(x;) = 1/2, i = 1,2. Then P(y) = 5 (%(1 —-p)+ %p) = 1 and similarly
P(y;) =1/4, j =2,3,4. Hence :

I(z;Y) = X5 1P(yj|x1)logp(y(3‘x)l)—2%(1—p)log( /)/ +22plog’1’f1

= 1+plogp+(1—p)log(l—p)
and the same is true for I(z2;Y"). Thus, equiprobable input symbols achieve the channel capacity

C=1+plogp+ (1 —p)log(l — p) bits/symbol sent
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(b) We note that the above capacity is the same to the capacity of the binary symmetric channel.
Indeed, if we consider the grouping of the output symbols into a = {y1, 42} and b = {ys,ys} we
get a binary symmetric channel, with transition probabilities: P(a|z1) = P(y1|z1) + P(ys|z1) =
(1 —p), P(alzg) = p, ete.

Problem 7.7 :

We assume that P(x;) = 1/3, i = 1,2,3. Then P(y1) = 3 ((1—p)+p) = 3 and similarly
P(y;) =1/3, j =2,3. Hence :

I(w;Y) = S3_; P(yjla)log 55 = (1 p)log G2 + plog £

= log3+ plogp+ (1 —p)log(l — p)

and the same is true for I(x9;Y), [(x3;Y). Thus, equiprobable input symbols achieve the
channel capacity :

C =log3+plogp+ (1 —p)log(l — p) bits/symbol sent

Problem 7.8 :

(a) the probability that a codeword transmitted over the BSC is received correctly, is equal to
the probability that all R bits are received correctly. Since each bit transmission is independent
from the others :

P(correct codeword) = (1 — p)*

(b)

P( at least one bit error in the codeword) = 1 — P(correct codeword) =1 — (1 — p)f

(<) n
P( n, or less errors in R bits) =) <R>pz(1 —p)fti
i=1 \?
(d) For R=5, p=0.01, n,=5:

(1—-p)f=0.951
1 — (1—p)f = 0.049

S (F)p (1= p) =1 (1 - p)* = 0.049
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Problem 7.9 :

Let X = (X1, Xs,..,X,), Y = (Y1,Y,...,Y,). Since the channel is memoryless : P(Y|X) =
[T, P(Y;|X;) and :

I(X;Y) = YxXyP(X,Y)log L%

, P(Y;|X;)
= Yx>2y P(X,Y)log I_LPT
For statistically independent input symbols :

L I(XGY) = S, S, Sy, P(X, V) log XD

| X5)

= Yx2yP(X,Y)log %

Then :

n P(Y;
X Y) =S, (X5 Y)) = Yx Sy PX,Y)log L0

P(Y;) P(Y;
= Sy P(Y)log 1500 — 5y py) n 80 1o

[[, P(v)

< Ty P(Y) (L2 — 1) toge

= OCyILPY,)—>XyP(Y))loge=(1—-1)loge=0

where we have exploited the fact that : Inu < u — 1, with equality iff u« = 1. Therefore :
I(X;Y) <Y, I(X;;Y;) with equality iff the set of input symbols is statistically independent.

Problem 7.10 :

P(X=0)=a, P(X=1)=1—a. Then: PY =0)=(1—p)a, PY =¢) =p(l —a+a) =
p, PY =1) = (1 -p)(1—a)

(a)

P(yj|z;
I(X;Y) = $2, 55, Plyle)Pla;) log 2]

= a(l—p)loga(l p)+aplog —|—(1—a)plog +(1—a)(l- )logu_;ﬁ

= —(1—-p)laloga+ (1 —a)log(l —a)

Note that the term — [aloga + (1 — a)log(1 — a)] is the entropy of the source.
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(b) The value of a that maximizes I(X;Y) is found from :

dI(X;Y)
da

:0:>10ga+gloge—log(1—a)—1 aloge:O:>a:1/2
a a

With this value of a, the resulting channel capacity is :

C =1(X;Y)|a=1/2 = 1 — p bits/channel use

(c) I(x;y) = log %. Hence :

I(O;O):log(ll_ﬁzl

Problem 7.11 :

(a) The cutoff rate for the binary input, ternary output channel is given by :

> P/ P(ilj)

2
R3 = max < —log Z
P; o)

=0

To maximize the term inside the brackets we want to minimize the argument S of the log
2
function : S =Y7, [ ]I-ZOP]- P(z\])} . Suppose that Py = 2, P, =1 — 2. Then :

S = (ayT=p—a+(1-2)yp) +(ava+(d-ova)’+ (eypt(1-a)VI-p—a)
= 2(1—a-2vp—pP—ap)a®—2(1—a—2y/p—p" —ap)x+1

By setting : % = 0, we obtain = 1/2 which corresponds to a minimum for S, since %ﬂle /2 >
0. Then :

1 20— —ap
Rg——logS——log{ rat — ap}—1—10g(1—|—a+2\/p(1—p—a))
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(b) For 3 = 0.65,/Ny/2, we have :

p*JLig%mﬁ(x+vhv/ 0) = Q[0.65+ \/2E./No |
0= = [Py exp(—(z + VE)?/No) = Q [\/2E./Noy — 0.65| — Q [\/2E/No + 0.65]

The plot of Rj3 is given in the following figure. In this figure, we have also included the plot of
Ry = 2 As we see the difference in performance between continuous-output

log——m=——.
08 1+exp(—+/ Ec/No)

(soft-decision-decoding , R ) and ternary output (R3) is approximately 1 dB.

Problem 7.11
T

10°

Bits

107

SNR (dB)

Problem 7.12 :

The overall channel is a binary symmetric channel with crossover probability p. To find p note
that an error occurs if an odd number of channels produce an error. Thus :

n e
k=odd
Using the results of Problem 5.45, we find that :

1

S = (1 =200

p:2

and therefore :

C=1-H(p)

If n — oo, then (1 — 2¢)” — 0 and p — 5. In this case

C=1lmCn)=1-H(z)=0

n—~o0
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Problem 7.13 :

(a) The capacity of the channel is :

Cr = max[H(Y) - H(Y|X)]

But, H(Y|X) = 0 and therefore, Cy = maxp(,) H(Y') = 1 which is achieved for P(0) = P(1) = 3.

(b) Let ¢ be the probability of the input symbol 0, and thus (1 — ¢) the probability of the input
symbol 1. Then :
HY|X) = > P)HY|X =)

= qH(Y|X =0)+(1—@H(Y|X =1)
= (1-qHY[X=1)=(1-¢)H(05)=(1—-q)

The probability mass function of the output symbols is :

PY=¢) = ¢gPY=¢|X=04+1-qPY =¢X=1)
= ¢+ (1—¢)0.5=0.5+0.5¢
P(Y=d) = (1-¢)0.5=0.5—0.5q

Hence :
Cy = mélx[H(Oﬁ +0.59) — (1 — q)]

To find the probability ¢ that achieves the maximum, we set the derivative of Cy with respect
to q equal to 0. Thus,

9C, 05 1
Y% ) = 1= [05108,(0.5 4 0.5¢) + (0.5 + 0.5¢) —— 0 —
9 0-51085(0-5+0.59) + (0.5 +0.5) === 1 5

—0.5 i]
0.5 —0.5g1In2
= 14 0.5logy(0.5—0.5¢) — 0.510g,(0.5 + 0.5¢)

—[-0.510g,(0.5 — 0.5¢) + (0.5 — 0.5¢)

Therefore :
0.5—-0.5¢

og, L0 =050 5 3
5205105 1= 3

and the channel capacity is :
1 2
Cy=H(-)— - =0.3219
)= H(z) -

(c) The transition probability matrix of the third channel can be written as :
1 1
Q= §Q1 + §Q2
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where Q1, Q. are the transition probability matrices of channel 1 and channel 2 respectively. We
have assumed that the output space of both channels has been augmented by adding two new
symbols so that the size of the matrices Q, Q; and Qs is the same. The transition probabilities
to these newly added output symbols is equal to zero. Using the fact that the function I(p; Q)
is a convex function in Q we obtain :

C = mgxI(X;Y) = m;xx[(p; Q)
I(p:5Qu +5Qu)
= maxI(p;= —
D p; 2 1 9 2
1 1
< Z . - .
= 9 m}?X[(pa Ql) + 9 mgux[(p, QQ)
1 1
= -1+ =C
1Tt
Since Q; and Qs are different, the inequality is strict. Hence :

1 1
C< 501 +§OQ

Problem 7.14 :

The capacity of a channel is :

C= I;l(ég(](X; Y)=max[H(Y)— H(Y|X)] = max[H(X) — H(X|Y)]

p(z) p(z)
Since in general H(X|Y) > 0 and H(Y|X) > 0, we obtain :
C < min{max[H (Y)], max[H (X)]}

However, the maximum of H(X) is attained when X is uniformly distributed, in which case
max[H (X)] = log|X|. Similarly : max[H(Y)] = log|)| and by substituting in the previous
inequality, we obtain

C < min{max[H (Y)], max[H (X)]} = min{log|Y|,log |X|}
= min{log M,log N}

Problem 7.15 :

(a) Let g be the probability of the input symbol 0, and therefore (1 — ¢) the probability of the
input symbol 1. Then :

H(Y|X) ZP H(Y|X = 1)
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= qH(Y|X=0)+(1—qH(Y|X =1)
= (- QHY[X=1)=(1-qH()

The probability mass function of the output symbols is :
PY=0) = ¢PY=0X=0)+(1—-¢P(Y =0/X=1)

= qg+(1—-q)(1—€)=1—¢€+gqe
PY=1) = (1—q)e=¢€—qe

Hence :
C' = max[H(e — ge) — (1 — q)H(e)]

To find the probability ¢ that achieves the maximum, we set the derivative of C' with respect to
q equal to 0. Thus :

9C
S0 = 0= H(e) + elogy(e — qge) — elogy (1 — € + ge)
q
Therefore : o
€ — qe H(e e+2 7 (e—1)
log, = — (9 == q = O
1 —e+qe € e(1+27)
and the channel capacity is
9~ H(e)2— "
¢=0 IO) IO)
1+2 = e(1+277<)
(b) If € — 0, then using L’Hospital’s rule we find that
H H c
im0 _ o, g A2
e—0 € e—0 €

and therefore
liII(l)C(E) =H(0)=0

If e = 0.5, then H(e) =1 and C' = H($) — 2 = 0.3219. In this case the probability of the input
symbol 0 is
H(e)

e+2 < (e—1) 054025x(05-1) 3
c(1+2772)  05x(1+025) 5

If e =1, then C' = H(0.5) = 1. The input distribution that achieves capacity is P(0) = P(1) =
0.5.
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(c) The following figure shows the topology of the cascade channels. If we start at the input
labeled 0, then the output will be 0. If however we transmit a 1, then the output will be zero
with probability

PY=0X=1) = (I-¢+e(l—e)+(1—e)+-
= (I-e)(l+ete+-)
1—€"

— 11—
1—c¢ ¢

= 1l—e¢

Thus, the resulting system is equivalent to a Z channel with ¢; = €".

(d) As n — oo, € — 0 and the capacity of the channel goes to 0.

Problem 7.16 :

The SNR is :
2P P 10

No2W — 2W ~ 109 x 106
Thus the capacity of the channel is :

SNR = =10*

C = Wlog,(1 + ) = 10%log, (1 + 10000) ~ 13.2879 x 10° bits/sec

NoW

Problem 7.17 :

The capacity of the additive white Gaussian channel is :

1
C==lo (1 + )

2 ST N
For the nonwhite Gaussian noise channel, although the noise power is equal to the noise power in
the white Gaussian noise channel, the capacity is higher, The reason is that since noise samples
are correlated, knowledge of the previous noise samples provides partial information on the
future noise samples and therefore reduces their effective variance.
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Problem 7.18 :

(a) The capacity of the binary symmetric channel with crossover probability € is :
C=1-Hfe)
where H (€) is the binary entropy function. The rate distortion function of a zero mean Gaussian

source with variance o2 per sample is :

2

1log, & D < o?
R(D)={ 27"92D =
(D) { 0 D > o?
Since C' > 0, we obtain :
1 o? o?
and therefore, the minimum value of the distortion attainable at the output of the channel is :
2
o
Drmin = Sa=rtey

(b) The capacity of the additive Gaussian channel is :

1 P
C':ilog2 <1+;>

n

Hence : ) ) ) )
o o o
—log, —<(C = —<D=— <D
2% p = 220 = 1+Z =
The minimum attainable distortion is :
D o
min 1 _'_ Uﬂz

(c) Here the source samples are dependent and therefore one sample provides information about
the other samples. This means that we can achieve better results compared to the memoryless
case at a given rate. In other words the distortion at a given rate for a source with memory
is less than the distortion for a comparable source with memory. Differential coding methods
discussed in Chapter 3 are suitable for such sources.

Problem 7.19 :

(a) The entropy of the source is :
H(X) = H(0.3) = 0.8813
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and the capacity of the channel :
C=1-—H(0.1)=1-10.469 = 0.531

If the source is directly connected to the channel, then the probability of error at the destination
is :

P(error) = P(X=0PY =1X=0+P(X=1)PY =0X=1)
= 03x01+07x01=0.1

(b) Since H(X) > C, some distortion at the output of the channel is inevitable. To find the
minimum distortion, we set R(D) = C. For a Bernoulli type of source :

| H(p)—H(D) 0< D <min(p,1—p)
R(D) = { 0 otherwise

and therefore, R(D) = H(p) — H(D) = H(0.3) — H(D). If we let R(D) = C' = 0.531, we obtain
H(D) =0.3503 = D = min(0.07,0.93) = 0.07
The probability of error is :

P(error) < D =0.07

(c) For reliable transmission we must have : H(X) = C = 1—H (e). Hence, with H(X) = 0.8813
we obtain
0.8813=1— H(e) = € < 0.016 or € > 0.984

Problem 7.20 :

Both channels can be viewed as binary symmetric channels with crossover probability the prob-
ability of decoding a bit erroneously. Since :

Q { 2?&]} antipodal signalling
Pb = 60 ' '
Q [\/ Fﬂ orthogonal signalling

the capacity of the channel is :

_[1-H(Q]

-l

} ) antipodal signalling

")
2lo|z)E

D orthogonal signalling
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In the next figure we plot the capacity of the channel as a function of ]f,—l:) for the two signalling
schemes.

Antipodal Signalin

Capacity C
o
a1

/,xO/rthogonaI Signalling

Problem 7.21 :

(a) Since for each time slot [mT, (m + 1)T] we have fi(t) = £ f2(t), the signals are dependent
and thus only one dimension is needed to represent them in the interval [mT, (m+ 1)T]. In this
case the dimensionality of the signal space is upper bounded by the number of the different time
slots used to transmit the message signals.

(b) If fi1(t) # afa(t), then the dimensionality of the signal space over each time slot is at most
2. Since there are n slots over which we transmit the message signals, the dimensionality of the
signal space is upper bounded by 2n.

(c) Let the decoding rule be that the first codeword is decoded when r is received if
p(r[x1) > p(r(xs)
The set of r that decode into x; is
Ry = {r: p(r[x1) > p(r|xz)}

The characteristic function of this set y;(r) is by definition equal to 0 if r ¢ R; and equal to 1
if r € Ry. The characteristic function can be bounded as

s (zo(r\xQ))%

p(r[x1)
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This inequality is true if x(r) = 1 because the right side is nonnegative. It is also true if x(r) =0
because in this case p(r|x2) > p(r|x;) and therefore,

L oplrhe) <p<r\><2>>%

p(r[x1)

Given that the first codeword is sent, then the probability of error is

P(error|x;) = /“./RN . p(r|xq)dr

= [ ] plbx) L =@
o [ e (2222
= [ f i

(d) The result follows immediately if we use the union bound on the probability of error. Thus,
assuming that x,, was transmitted, then taking the signals x,,,, m’ # m, one at a time and
ignoring the presence of the rest, we can write

Plerrorx,) < Y / /R o) p(rl ) dr

D=

(e) Let r = x,, +n with n an N-dimensional zero-mean Gaussian random variable with variance
per dimension equal to 02 = % Then,

p(rlx,) =pmn)  and  p(rlxm) =p(n+Xm, — Xw)

and therefore :

/ /¢p |xm (<l )dr

_L 1 _lebxmexy?
N 2Ny ~ e 2Ng dn
RN z (WNO)T
fcrm =3, 112 1 2P xm—x, s 12/24 20 (xm =% )
= e N // we 2No dn
RN (7TN0)7
x| 1 a4 2 ml g2
= e No // € No dn
RN (7TNO)?

2
_ ‘xm*xm/ |
= (& 4No
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Using the union bound in part (d), we obtain :

P(error|z,,(t) sent) < e o

Problem 7.22 :

Equation (7.3-2) gives that the cutoff rate Ry with two quantization levels is
1 1 2
Ry, = max —logy Y [Z pm\/P(out\in)]
o out=0 Lin=0
By naming the argument of the log, function as S, the above corresponds to

Ry = —log, min S

Pin

Suppose the probabilities of the input symbols are py = =, p; = 1 — x. Also, the probability of
error for the BSC is p, where p is the error rate for the modulation method employed. Then

S = VTP (L= a) ol + [oy/B+ (L= ) T3P
= 22°(1 - 2y/p(1 - p)) — 20(1 = 2,/p(1 - p)) +1

By taking the first derivative of S w.r.t. x we find that the extremum point is

% =0=42(1 —2\/p(1 —p)) —2(1 —=2y/p(1 —=p)) =0 =z =1/2

and the corresponding S is

1+ 2y/p(1—0p)

2

min S = Sj,—1/2 =

Hence,
Ry = —logy min S =1 — log, [1 + /4p(1 —p)]

The plot of the comparison between Ry and R, is given in the following figure:
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RyvsR, for BSC
1 T T

0.9

0.8

0.7

bits/dimension
o o ) o
w S (&2 (=2}

o
N

0.1

0
-10 -5 0 5 10 15
1, (08)

As we see, the loss in performance when a two-level hard decision (instead of a soft-decision) is
employed is approximately 2 dB.

Problem 7.23 :

The plot with the cutoff rate Ry for the BSC, when the three different modulation schemes are
employed is given in the following figure:

R, for BSC
1 T — =

—— Antipodal
091 — =~ Orthogonal s J
DPSK /

0.8

0.7

bits/dimension
o o o o o
N w S~ (52 (<2}

o
[

0 Il Il Il Il
-10 -5 0 5 10 15
1, (@®)

As we see, orthogonal signaling is 3 dB worse than antipodal signaling. Also, DPSK is the worst
scheme in very low SNR’s, but approaches antipodal signaling performance as the SNR goes up.
Both these conclusions agree with the well-known results on the performance of these schemes,
as given by their error probabilities given in Chapter 5.
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Problem 7.24 :

Remember that the capacity of the BSC is

C = plog, 2p + (1 — p) log,(2(1 — p))

where p is the error probability (for binary antipodal modulation for this particular case). Then,
the plot with the comparison of the capacity vs the cutoff rate Ry for the BSC, with antipodal
signaling, is given in the following figure:

CvsR, for BSC
1 T T T

09 7

08 : q

0.7 : 4

bits/dimension
o o o o o
N w S wn o
T T T T T
L L L L L

o
[
T
I

0 L L L L
-10 -5 0 5 10 15
7, (@8)

We notice that the difference between the hard-decision cutoff rate and the capacity of the
channel is approximately 2.5 to 3 dB.

Problem 7.25 :

From expression (7.2-31) we have that
M M ;
o = oy (32 3 e /%)
=1 m=1

and, since we are given that equiprobable input symbols maximize Ry, p; = p,, = 1/M and the
above expression becomes

R o —l 1 MU _dl2 /4N0
0 — 082 M2 Z Z e m
=1 m=1

The M-ary PSK constellation points are symmetrically spaced around the unit circle. Hence,
the sum of the distances between them is the same, independent of the reference point, or
M e~%n/4No ig the same for any [ =0,1,...M — 1. Hence,

m=
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Ry = —logy (g Sl e fim/4%0
= logy M — log, Zl]\il e i /Ao

The distance of equally spaced points around a circle with radius /& is d,, = 2v/& sin 2. So

M
RO = 10g2 M — log2 Z 6—(5c/No) sin? mr
=1

The plot of Ry for the various levels of M-ary PSK is given in the following figure:
Ry for M-ary PSK
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CHAPTER 8

Problem 8.1 :

(a) Interchanging the first and third rows, we obtain the systematic form :

1001110

G=|01001T11

0011101

(b)

1011000
el |11 10100
H_{PM_ 1100010
0110001

(c) Since we have a (7,3) code, there are 2® = 8 valid codewords, and 2* possible syndromes.
From these syndromes the all-zero one corresponds to no error, 7 will correspond to single errors
and 8 will correspond to double errors (the choice is not unique) :

Error pattern Syndrome
000 0

OO R KFHFPF R REFEFFREFEFODODOOOOO
O R P OO OO OO o oo
SO O R OO oo oo
— O OO R OO0 OoO0oO kOO Oo
— OO OO R OO~k OoOO0o
O R OO OO R OO oOoo oo
— O O OO OO R OO0 o oo
—_— O OO R KRR RPRPRORFRLROOOO
O RO OO R RPRPREFHE P EPRLROKF,OOO
— OO, R PR ORRFRMHLHOOOR~O
— = P OO 0O, OFFPOOOoFO

(d) We note that there are 3 linearly independent columns in H, hence there is a codeword C,,
with weight w,, =4 such that C,,H” = 0. Accordingly : dmi, = 4. This can be also obtained by
generating all 8 codewords for this code and checking their minimum weight.
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[0000].

101 — C = 1010011. Then : CH”

(e) 101 generates the codeword :

Problem 8.2 :

|

1000101
0100111
0010110
0001O0T1T1

G, =

1011000
01 01100
0010110
0001011

G, =

Message X,,
0000

0001O0T1T1
0010110
0011101
0100111
0101100
0110001
0111010
1000101
1001110
1010011

0001011
0010110
0011101
0101100
01 001T11
0111010
01 100¢O01

0 001

0010

0011

0100

0101

0110

0111

1011000
1010011
1001110
1000101

1 000
1 001

1010
1011

1011000
1100010
1101001

1110100
1111111

1100
1101

1110100
1111111

1100010
1101001

1 110
1 111

As we see, the two generator matrices generate the same set of codewords.

Problem 8.3 :

7):

The weight distribution of the (7,4) Hamming code is (n

[(1+2)" +7(1+2)°(1 — 2)]
8 + 5623 + 562" + 827]

14+ 723+ 724 + 27

1
8
1

Hence, we have 1 codeword of weight zero, 7 codewords of weight 3, 7 codewords of weight 4,

and one codeword of weight 7. which agrees with the codewords given in Table 8-1-2.
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Problem 8.4:

(a) The generator polynomial for the (15,11) Hamming code is given as g(p) = p* + p+ 1. We

will express the powers p' as :

Pt = Qi(p)g(p) + Ri(p) | = 4,5,...14, and the polynomial R;(p)

will give the parity matrix P, so that G will be G = [I;|P]. We have :

© 00 N O Ut~

—
[en]

—
—

— =
w N
Il

SIIE SIS IE SIS I S LSS
=
I

9(p)+p+1

py(p) +p° +p

p’9(p) +p* +p’

(P° + Dg(p) +p° +p+1

(»* +p+1)g(p )+p?+1

(p° +p° +)9(p )+p>+p

(p° +p +p*+1)g(p) +p* +p+1

(p* +p +p +p)g(p)+p3+p2+p

(»° +p +p +p +1)g(p) +1° +p* +p+1
»” +p° +p° +p Rt ) +p° +p* +1
(P +p"+p° +p'+p* +p+ Dglp) +p° +1

Using Ry(p) (with [ = 4 corresponding to the last row of G,... | = 14 corresponding to the first
row) for the parity matrix P we obtain :

[l elololoNBoNoNoNell S

0000O0OO0O0OO0OO0OO0OT1TTU0®O0TI1
100000O0OO0OO0OO0OCTT1TO0T1
01 0000O0O0OO0OO0O1T1T11
co01000O0O0OO0OO0O1T1T1O0
00010O0O0O0OO0OO0OO0T1T11
000010O0O0OO0OO0O1TO0T1®O0
0000O0O1O0OO0OO0OO0OO0OT1TO0T1
0000O0OO0OT1TO0OO0OO0O1O0T11
0o0000O0OO0O1O0O0O1T1O0O0
0o0000O0OO0OO0O1O0O0OT1T1OQ0
0o000O0O0OO0OO0OO0O1TO0OO0T11]

(b) In order to obtain the generator polynomial for the dual code, we first factor p® + 1 into :
p®T! = g(p)h(p) to obtain the parity polynomial h(p) = (p'® +1)/g(p) = p'* +p* + p" + p° +
p® + p* + p + 1. Then, the generator polynomial for the dual code is given by :

ph(p

U = 148 ph B B+ p!0 4t
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Problem 8.5 :

We can determine G, in a systematic form, from the generator polynomial g(p) = p* + p? + 1:

P = u)+p-+mwm+ﬂf+p 1000110 1011100
4 2 o

’ ( Dg(p) +p +p+1 0010111 0111001
P = glp) 4 p?+1 0001101

Hence, the parity check matrix for the extended code will be (according to 8-1-15) :

10111000
H - 11100100
01110010
11111111

and in systematic form (we add rows 1,2,3 to the last one) :

10111000 10001101
11100100 010007111
He=l0 1110010/ %=|00101110
11010001 00011011

Note that G.s can be obtained from the generator matrix G for the initial code, by adding an
overall parity check bit. The code words for the extended systematic code are :

Message X, Codeword C,,

00 00 0O000OO0OO0OO0OTODTO
0001 00011011
0010 001 01110
0011 00110101
0100 01 000T1T11
01 01 01 011100
01 10 01 101001
0111 01 1 10O0T1P0
10 00 10001101
1 001 10010110
1 010 10100011
1 011 1 01 110060
1100 11001010
1 1 01 110100 01
1110 11100100
1111 11111111
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An alternative way to obtain the codewords for the extended code is to add an additional check
bit to the codewords of the initial (7,4) code which are given in Table 8-1-2. As we see, the
minimum weight is 4 and hence : d;, = 4.

Problem 8.6 :

(a) We have obtained the generator matrix G for the (15,11) Hamming code in the solution of
Problem 8.4. The shortened code will have a generator matrix G obtained by G, by dropping
its first 7 rows and the first 7 columns or :

10001011

G 01001100

100100110

0001O0O0T11

Then the possible messages and the codewords corresponding to them will be :

Message X, Codeword C,,
0000 000O0O0OO0OTO 0O O
0001 00010O0T1°1
0010 001 0O0T1T1O0
0011 001 101O0T1
0100 01 001100
0101 01011111
0110 01101010
0111 01111001
1000 10001011
1 001 10011000
1 010 10101101
1 011 10111010
1100 11000111
1101 11010100
1110 11100001
1 111 1 1110010

(b) As we see the minimum weight and hence the minimum distance is 3 : dy,;, = 3.

Problem 8.7 :

(a)

gip)= @'+’ + P +p+ D)@ +p+ 1)P*+p+1) =p +p°+p° +p* +p*+p+1
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Factoring p!, | = 14,...10, into p' = g(p)Qi(p) + Ri(p) we obtain the generator matrix in
systematic form :

p =@'+p*+1)gp)+p°+p" +p' +pP+p+1

p =@ +p)gp)+p° +*+p" +° +p' +p* +p

P2 =@+ Dglp) + 8+ "+ + "+ +p+1 =

Pt =pgp) +p° +p° + 7+ +p P +p

P =glp)+p*+p° +p*+p* +p+1
1000010100110T171
010001 111010110

G={0010001111010T11
00010100110T1T1T10
000010100T1T10T1T1°1

The codewords are obtained from the equation : C,, = X,,G, where X,, is the row vector
containing the five message bits.

(b)
dmin =7

(c) The error-correcting capability of the code is :

dmin_1
p= | o =3
=]

(d) The error-detecting capability of the code is : dpn — 1 = 6.

(e)

gip) = PP+ 1)/ +p+ 1) =p2+p +p" +p" +p" + 0+ + PP+ p+ 1

Then :
P =p+1gp) +p2+p"t +p°+ 8+ + 07+ PP+ + 1
B=gp)+p2+p" +p" +p "+ +p* + PP +p+1

Hence, the generator matrix is :

G 101 101101101101

/01 1011011011011
and the valid codewords :

X Codeword C,,

00 0000O0OO0OOOOOODOOODQ

01 01 1011011011011

10 1 01 101101101101

11 11 0110110110110
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The minimum distance is : dp;, = 10

Problem 8.8 :

The polynomial p” +1 is factors as follows : p"+1 = (p+1)(p*+p?+1)(p*+p+1). The generator
polynomials for the matrices Gi, Gy are : gy(p) = p>+p*+1, go(p) = p>+p+1. Hence the parity
polynomials are : hy(p) = (p’+1)/g1(p) = p*+p*+p*+1, ha(p) = (p"+1)/g2(p) = p*+p*+p+1.
The generator polynomials for the matrices Hy, Hy are : p*hi(p™!) = 1+p+p*+p?, piha(p™!) =
1+ p* + p* + p*. The rows of the matrices Hy, Hy are given by : p'p*hy2(p™!), i =0,1,2, so :
1011100 1110100
H=|0101T1T1SF®0 H,=|01 11010
0010111 0011101

Problem 8.9 :

We have already generated an extended (8,4) code from the (7,4) Hamming code in Probl. 8.5.
Since the generator matrix for the (7,4) Hamming code is not unique, in this problem we will
construct the extended code, starting from the generator matrix given in 8-1-7 :

e 1110100
O — —H=]/0111010
0010110 1101001
0001011
Then :
11101000
01110100
He = 1 1010010
11111111
We can bring this parity matrix into systematic form by adding rows 1,2,3 into the fourth row :
11101000
01110100
Hes = 11010010
1 0110001
Then :
1 0001011
a 01001110
“ 100101101
00010111
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Problem 8.10 :

1
0

S = O

0110 1 011
0 011 1100
1101 0110

S = O
— o O
 —

Then the standard array is :

000 001 010 011 100 101 110 111
000000 001101 010011 011110 100110 101011 110101 111000
000001 001100 010010 011111 100111 101010 110100 111001
000010 001111 010001 011100 100100 101001 110111 111010
000100 001001 010111 011010 100010 101111 110001 111100
001000 000101 011011 010110 101110 100011 111101 110000
010000 011101 000011 001110 110110 111011 100101 101000
100000 101101 110011 111110 000110 001011 010101 011000
100001 101100 110010 111111 000111 001010 010100 011001

For each column, the first row is the message, the second row is the correct codeword corre-
sponding to this message, and the rest of the rows correspond to the received words which are
the sum of the valid codeword plus the corresponding error pattern (coset leader). The error
patterns that this code can correct are given in the first column (all-zero codeword), and the

corresponding syndromes are :

000000 000
000001 001
000010 010
000100 100
001000 101
010000 011
100000 110
100001 111

We note that this code can correct all single errors and one two-bit error pattern.

Problem 8.11 :

G=10101110|=H=
0010111 1110010
1010001
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Then, the standard array will be :

000
0000000
0000001
0000010
0000100
0001000
0010000
0100000
1000000
1100000
1010000
1001000
1000100
1000010
1000001
0010001
0001101

For each column,

001
0010111
0010110
0010101
0010011
0011111
0000111
0110111
1010111
1110111
1000111
1011111
1010011
1010101
1010110
0000110
0011010

the first row is the message,

010
0101110
0101111
0101101
0101010
0100110
0111110
0001110
1101110
1001110
1111110
1100110
1101010
1101100
1101111
0111111
0100011

corresponding syndromes are :

We note that this code can correct all single errors, seven two-bit error patterns, and one three-

011
0111001
0111000
0111011
0111101
0110001
0101001
0011001
1111001
1011001
1101001
1110001
1111101
1111010
1111001
0101001
0110101

E;
0000000
0000001
0000010
0000100
0001000
0010000
0100000
1000000
1100000
1010000
1001000
1000100
1000010
1000001
0010001
0001101

100
1001011
1001010
1001001
1001111
1000011
1011011
1101011
0001011
0101011
0011011
0000011
0001111
0001001
0001010
1011010
1000110

the second row is the correct codeword corre-
sponding to this message, and the rest of the rows correspond to the received words which are
the sum of the valid codeword plus the corresponding error pattern (coset leader). The error
patterns that this code can correct are given in the first column (all-zero codeword), and the

SZ' - EZHT

0000
0001
0010
0100
1000
0111
1110
1011
0101
11000
0011
1111
1001
1010
0110
1101
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101
1011100
1011101
1011110
1011000
1010100
1001100
1111100
0011100
0111100
0001100
0010100
0011000
0011110
0011101
1001101
1010001

110
1100101
1100100
1100111
1100001
1101101
1110101
1000101
0100101
0000101
0110101
0101101
0100001
0100111
0100100
1110100
1101000

111
1110010
1110011
1110000
1110110
1111010
1100010
1010010
0110010
0010010
0100010
0111010
0110110
0110000
0110011
1100011
1111111



bit error pattern.

Problem 5.12 :

The generator matrix for the systematic (7,4) cyclic Hamming code is given by (8-1-37) as :
e 1110100
- ~H=0111010
0010110 1101001
0001011

Then, the correctable error patterns F; with the corresponding syndrome S; = E;HT are :

S; E;

000 0000000
001 0000001
010 0000010
011 0001000
100 0000100
101 1000000
110 0100000
111 0010000

Problem 8.13 :

We know that : e; + ey = C, where C is a valid codeword. Then :
Sl + SQ = elHT + EQHT = (e1 + GQ)HT = CHT =0

since a valid codeword is orthogonal to the parity matrix. Hence : S; + Sy = 0, and since
modulo-2 addition is the same with modulo-2 subtraction :

Si—S,=0=S5,=S,

Problem 8.14 :

(a) Let g(p) = p®+ p® + p* + p? + 1 be the generator polynomial of an (n, k) cyclic code. Then,
n — k = 8 and the rate of the code is



The rate R is minimum when % is maximum subject to the constraint that R is positive. Thus,
the first choice of n is n = 9. However, the generator polynomial g(p) does not divide p? + 1
and therefore, it can not generate a (9,1) cyclic code. The next candidate value of n is 10. In
this case

P+ 1=g(p)(p*+1)

and therefore, n = 10 is a valid choice. The rate of the code is R = % =& =

(b) In the next table we list the four codewords of the (10, 2) cyclic code generated by g(p).

Input | X(p) | Codeword
00 0 0000000000
01 1 0101010101

10 P 1010101010

11 | p+1 | 1111111111

As it is observed from the table, the minimum weight of the code is 5 and since the code is

linear dyi, = Wmin = 5.

(c) The coding gain of the (10,2) cyclic code in part (a) is

2

:dminR:5X—:1

Gcoding 10

Problem 8.15 :

(a) For every n
pPrl=(p+ )" " T A p D)

where additions are modulo 2. Since p + 1 divides p™ + 1 it can generate a (n, k) cyclic code,
where k =n — 1.
(b) The i*" row of the generator matrix has the form

g=[0 -~ 010 - 0 p]

where the 1 corresponds to the i-th column (to give a systematic code) and the p; 1,7 =1,...,n—
1, can be found by solving the equations

P" '+ pi1=p" " mod p+ 1, 1<i1<n—-1
Since p"~¢ mod p + 1 = 1 for every 4, the generator and the parity check matrix are given by
1 -0 | 1
G=|: . : C H=[11 --- 1] 1]
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(c) A vector ¢ = [¢g, ¢, ...
condition cH' = 0. But,

,Cn) is a codeword of the (n,n — 1) cyclic code if it satisfies the

1

1
cH' =0=c

Sl =atata

1

Thus, the vector ¢ belongs to the code if it has an even weight. Therefore, the cyclic code
generated by the polynomial p + 1 is a simple parity check code.

Problem 8.16 :

(a) The generator polynomial of degree 4 = n — k should divide the polynomial p° + 1. Since
the polynomial p® + 1 assumes the factorization

P+1=p+1)’p+1)° =@+ D+ )@ +p+1)E* +p+1)
we find that the shortest possible generator polynomial of degree 4 is
g(p) =p" +p* +1
The i*" row of the generator matrix G has the form
g = [ 0

where the 1 corresponds to the i-th column (to give a systematic code) and the p; 1, ..
obtained from the relation

0010 - 0 py - pia]

-, Pia are

P+ piap® + piap®pisp + pia = p° ' ( mod p* + p® + 1)

Hence,

(p> + )pmod p* +p° +1=p*+p
p*+1mod p* +p*+1=p*+1

p’mod p* +p* +1 =
p* mod p* +p* +1

and therefore,

101010
GZ(O 1‘ 010 1)
The codewords of the code are
cc = [0 0000 0]
cc = [1 0101 0]
cs = [01 010 1]
¢, = [1 1111 1]
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(b) The minimum distance of the linear (6,2) cyclic code is dyin = Wmin = 3. Therefore, the

code can correct
dmin - 1
=1 error

€ —

Problem 8.17 :

Consider two n-tuples in the same row of a standard array. Clearly, if Y, Y5y denote the n-
tuples, Y, = C;+e, Yy = C; +e, where Cy, C; are two valid codewords, and the error pattern
e is the same since they are in the same row of the standard array. Then :

Y1+Y2:Cj+e+Ck+e:Cj+Ck:Cm

where C,, is another valid codeword (this follows from the linearity of the code).

Problem 8.18 :

From Table 8-1-6 we find that the coefficients of the generator polynomial for the (15,7) BCH
code are 721 — 111010001 or g(p) = p® + p” + p® + p* + 1. Then, we can determine the l-th row
of the generator matrix G, using the modulo R;(p) : p"~' = Qi(p)g(p) + Ri(p), I = 1,2,...,7.
Since the generator matrix of the shortened code is obtained by removing the first three rows
of G, we perform the above calculations for [ =4,5,6,7, only :

P =@+ +Dglp) +pt 0’ +p7 1
p=p*+p)gp)+p"+ 1 +p°+p*+p
pPP=@+gp)+°+p°+p"+p+1
=@+ gp)+p" +p°+p*+1

Hence :

o O O -
O O = O
O = O O
_ o O O
_ O = O
_ == O
O = = O
— O
OO O =
S O = =
O = = O
— = O

Problem 8.19 :

For M-ary FSK detected coherently, the bandwidth expansion factor is :

(E) _ M
R/ rsk N 2log oM
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For the Hadamard code : In time T (block transmission time), we want to transmit n bits, so
for each bit we have time : T, = T'/n. Since for each bit we use binary PSK, the bandwidth
requirement is approximately : W =1/T, =n/T. But T' = k/R, hence :
n W n
W=—-R=>—=—
k R K
(this is a general result for binary block-encoded signals). For the specific case of a Hadamard
code the number of waveforms is M = 2n, and also k£ = log oM. Hence :

(E) __M
R ) e 2logsM

which is the same as M-ary FSK.

Problem 8.20 :

From (8-1-47) of the text, the correlation coefficient between the all-zero codeword and the l-th
codeword is p; = 1 — 2w;/n, where w; is the weight of the l-th codeword. For the maximum
length shift register codes : n = 2" —1 = M — 1 (where m is the parameter of the code) and
w; = 2™ for all codewords except the all-zero codeword. Hence :

22m-1 I 1
om 1 om_1  M-—1

p=1-

for all 1. Since the code is linear if follows that p = —1/(M — 1) between any pair of codewords.
Note : An alternative way to prove the above is to express each codeword in vector form as

j:\/g, j:\/g, - i\/E (n elements in all)
n n n

where £ = né&, is the energy per codeword and note that any one codeword differs from each
other at exactly 2! bits and agrees with the other at 2! — 1 bits. Then the correlation
coefficient is :

S| —

" Jil [l En n M-—1

Problem 8.21 :

We know that the (7,4) Huffman code has dpy, = 3 and weight distribution (Problem 8.3) :
w=0 (1 codeword), w=3 (7 codewords), w=4 (7 codewords), w=7 (1 codeword).
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Hence, for soft-decision decoding (8-1-51) :

Py <7Q ( 2—74%) +7Q (@) +Q(y5)

or a looser bound (8-1-52) :

24
Py <15Q ( 7%)

For hard-decision decoding (8-1-82):
1

SEDY (;)ZD’”(l -p) M =1-3 (;)p’"(l —p)" " =1-Tp(l—p)" = (1-p)T

m=0

where p = Q (\/QRC%) =Q (\/%) or (8-1-90) :
Py < TAp(1 = p)]** + 7 [p(1 — p))* + [4p(1 — p)]"/”

or (8-1-91) :
Py < 14[4p(1 — p)*?

Problem 8.22 :

We assume that the all-zero codeword is transmitted and we determine the probability that we
select codeword C,, having weight w,,. We define a random variable X;, i = 1,2, ...w,, as :

X — 1, with probability p
"7\ —1, with probability 1 —p

where p is the error probability for a bit. Then, we will erroneously select a codeword C,, of
weight w,,, if more than w,,/2 bits are in error or if > X; > 0. We assume that p < 1/2 ;
then, following the exact same procedure as in Example 2-1-7 (page 60 of the text), we show
that :

g (“’i = 0) < [4p(1 - p)]""?

i=1

By applying the union bound we obtain the desired result :

Py < % [4p(1 — p)]“m/?

m=2
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Problem 8.23 :

(a) The encoder for the (3, 1) convolutional code is depicted in the next figure.

N
£

X

—
Input n=3
2 Output
3
x

(b) The state transition diagram for this code is depicted in the next figure.

() 0/000

00
0/11 1/111
7/ 0/011
01 [ 10
1/000

1/100

11
O 1/011

0/100

(c) In the next figure we draw two frames of the trellis associated with the code. Solid lines
indicate an input equal to 0, whereas dotted lines correspond to an input equal to 1.

(d) The diagram used to find the transfer function is shown in the next figure.
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D>NJ

Xy
DNJ by
D3N D2J D3J
> > >
X, XN X, X

NJ
Using the flow graph results, we obtain the system
X. = D’NJX,+ NJX,
X, = D*JX.+ DJX,

X, = DNJX.+ D?’NJX,
X, = D3JX,

Eliminating X3, X, and X, results in

_ Xu  DSNJ¥(1+NJ - D>NJ)
" X, 1-D2NJ(1+NJ*+J— D2J?)

T(D,N,.J)

To find the free distance of the code we set N = J = 1 in the transfer function, so that

D¥(1 — 2D?)
1- D*(3— D?)

T(D)=T(D,N,J)|N=y=1 = — D84+ 2D0 4 ...

Hence, dfoo = 8

(e) Since there is no self loop corresponding to an input equal to 1 such that the output is the
all zero sequence, the code is not catastrophic.

Problem 8.24 :

The code of Problem 8-23 is a (3, 1) convolutional code with K = 3. The length of the received
sequence y is 15. This means that 5 symbols have been transmitted, and since we assume
that the information sequence has been padded by two 0’s, the actual length of the information
sequence is 3. The following figure depicts 5 frames of the trellis used by the Viterbi decoder.
The numbers on the nodes denote the metric (Hamming distance) of the survivor paths (the
non-survivor paths are shown with an X). In the case of a tie of two merging paths at a node,
we have purged the upper path.
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101 001 011 110 111

00

01

10

11

The decoded sequence is {111,100,011, 100,111} (i.e the path with the minimum final metric -
heavy line) and corresponds to the information sequence {1, 1,1} followed by two zeros.

Problem 8.25 :

(a) The encoder for the (3, 1) convolutional code is depicted in the next figure.

T T

(b) The state transition diagram for this code is shown below

O 0,/000

00
0/011 1/111
/7 0/101
01 [ 10
1/100

1/010

11
Q 1/001

0/110
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(c) In the next figure we draw two frames of the trellis associated with the code. Solid lines
indicate an input equal to 0, whereas dotted lines correspond to an input equal to 1.

DNJ

Using the flow graph results, we obtain the system

X, = D3NJX, +DNJX,
X, = D*JX.+ D?JX,
Xy = DNJX,+DNJXy
Xy = D*JX,

Eliminating X,, X. and X, results in

X DTNJ?

T(D,N,J) X, 1—DNJ—D3N.J2

To find the free distance of the code we set N = J = 1 in the transfer function, so that

D7

_ 7 8 9
T H T = DD D

Tl(D) = T(D>N, J)|N:J:1 =
Hence, dfoo =7

(e) Since there is no self loop corresponding to an input equal to 1 such that the output is the
all zero sequence, the code is not catastrophic.
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Problem 8.26 :

(a) The state transition diagram for this code is depicted in the next figure.

() 0/000

00

0/01 1/111
/0/001

o1 [° 10
1/100

1/110

11
O 1/101

0/010

(b) The diagram used to find the transfer function is shown in the next figure.

Xa
2
D*NJ DJ
D*NJ /" DJ D2J
Xy X:\—/Xb X
DNJ

Using the flow graph results, we obtain the system

X, = D3NJX,+ DNJX,
X, = DJX,+DJX,

Xy, = D*NJX,+ D?NJX,
X D*JX,

Eliminating X3, X, and X results in

X DSN.J3
X, 1—D2NJ— D2NJ?

T(D,N,.J)

(c) To find the free distance of the code we set N = J =1 in the transfer function, so that

DG

_ 6 8 10
T = DO 2D 14D 4

Ti(D)=T(D,N,J)|nN=y=1 =
Hence, dfoo = 6
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(d) The following figure shows 7 frames of the trellis diagram used by the Viterbi decoder. It
is assumed that the input sequence is padded by two zeros, so that the actual length of the
information sequence is 5. The numbers on the nodes indicate the Hamming distance of the
survivor paths. The deleted branches have been marked with an X. In the case of a tie we
deleted the upper branch. The survivor path at the end of the decoding is denoted by a thick
line.

110 110 110 111 010 101 100
00

01

10

11

3 4
The information sequence is 11110 and the corresponding codeword 111 110 101 101 010 011
000...

(e) An upper to the bit error probability of the code is given by

dT(D,N,J =1)

P, < ‘
dN N=1,D=+/4p(1—p)

But

dN - dN

dI'(D,N,1) d DN | D®—-2D%1-N)
1—-2D2N|  (1—2D2N)2

and since p = 107°, we obtain

D6
m ~ 614 ° 10_14

Py <
D=+/4p(1-p)

Problem 8.27 :

(a) The state transition diagram for this code is shown below
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() 0/000

00

0/01 1/111
/0/101

01 [ 10
1/100

1/010

11
O 1/001

0/110

(b) The diagram used to find the transfer function is shown in the next figure.

DNJ
D3N J D2J
> > >
X, XN X, X
DNJ

Using the flow graph results, we obtain the system

X, = D?NJX, +DNJX,
X, = D?JX.+ D?JX,
Xy = DNJX,+DNJXy
X D*JX,

Eliminating X,, X. and X, results in

Xor DTN J?
X, 1-DNJ—DNJ?

T(D,N,J) =

(c) To find the free distance of the code we set N = J =1 in the transfer function, so that

D7

_ 7 8 9
T = DD D

Ti(D)=T(D,N,J)|n=y=1 =

Hence, df.oo = 7. The path, which is at a distance dfc. from the all zero path, is the path
X, — X.— X, — X,.

(d) The following figure shows 6 frames of the trellis diagram used by the Viterbi algorithm
to decode the sequence {111,111,111,111,111,111}. The numbers on the nodes indicate the
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Hamming distance of the survivor paths from the received sequence. The branches that are
dropped by the Viterbi algorithm have been marked with an X. In the case of a tie of two
merging paths, we delete the upper path.

00

111 111 111 111 111 111

01

10

11

The decoded sequence is {111,101,011, 111,101,011} which coresponds to the information se-
quence {x, z9, 3,24} = {1,0,0, 1} followed by two zeros.

Problem 8.28 :

(a) The state transition diagram and the flow diagram used to find the transfer function for
this code are depicted in the next figure.

00/00

00
0/10 1/01
/7 0/01
01 [ 10 DN J X
d
1/11 NJ
0/11 1/00 D*J
11 DN.J DJ DJ
> > >
Xo ;Xir\______________///:X% X
Q 1/10 D2N.J

Thus,

X, = DNJX, + D?>*NJX,
X, = DJX.+ D*JX,
X, = NJX.+DNJX,
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X = DJX,
and by eliminating X,, X, and X, we obtain

Xor D3N J?
Xy, 1—DNJ—DNJ?

T(D,N,J) =

To find the transfer function of the code in the form T(D, N), we set J = 1 in T(D, N, J).
Hence,

D3N
T(D,N) = 1— DN — D3N

(b) To find the free distance of the code we set N = 1 in the transfer function T'(D, N), so that

D3

_ 3 4 5 6, .

Ti(D) =T(D,N)|n=1 =
Hence, df oo =3

(c) An upper bound on the bit error probability, when hard decision decoding is used, is given
by (see (8-2-34))

1dT (D, N)
A < 1900
k- dN  |N=1,D=\/2p(1—p)
Since
dT(D, N) d D3N D?

AN |vo1 dN1—(D+ D3)N‘N:1 (1 — (D + D3))2
with k =1, p = 1075 we obtain

D3

_ -9
R GESIIE = 8.0321 x 10

D=/4p(1-p)

P, <

Problem 8.29 :

(a)
g1 = [10], go = [11], states : (a) =[0], (b) = [1]

The tree diagram, trellis diagram and state diagram are given in the following figures :
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00

00 b

00

(b) Redrawing the state diagram :
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a L___JND@._s] b D c

IND
JND?
X, =JND?X,+JNDX, = X, = —— X,
b J +J b = Xp 1—JND
X, J2ND3 ‘
X,=JDX S —T(D.N,J)= ——— = J?’ND?+ J?N?D* + ...
b=>Xa ( , ,J) 1—JND J +J +
Hence :
dmin:3

Problem 8.30 :
(a)

gr = [111], g2 = [101], states : (a) = [00], (b) = [01], (c) = [10], (d) = [11]
The tree diagram, trellis diagram and state diagram are given in the following figures :

00
a
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a
b
(o3
d
b
|
:
1
1 100 ul
0|
]
v
a I s ¢ L___0L_____ S d
7N,
// \
h \
\ !
\ 1
\ /’
00 N0
(b) Redrawing the state diagram :
l// \‘
\ |
" ) ND
\\ //
d
T
1
1
1
i D
. ND
:
a Lo _ND@RL__ ¢ D b D)
L} !
\ !
\\ //
N
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XC:JNDzXa—FJNXb J2ND3
Xy =JDX.+ JDXy = X, = T JINDI+J X,
X, = JNDX,+ JNDX, = NX, — JND(1+J)

X J3ND?®

X, = D%X, S —T(D.N = = J?ND> AN2DS(1
J b:>Xa (D,N,J) = JNDIT ) J +J (1+J)+
Hence :
dmin:5

Problem 8.31 :

(a)
g1 = [23] = [10011], go = [35] = [11101]
LI
\g \
N
(b)

g1 = [25] = [10101], g» = [33] = [11011], g5 = [37] = [11111]
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Input

g1 = [17] = [1111], g, = [06] = [0110], g5 = [15] = [1101]

Input

Problem 8.32 :

/

1

For the encoder of Probl. 8.31(c), the state diagram is as follows :
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101 000
110 001
100] Q10
a 111 b
00 o1
101
000 11
010 110
011 100

oF

The 2-bit input that forces the transition from one state to another is the 2-bits that characterize
the terminal state.

Problem 8.33 :

The encoder is shown in Probl. 8.30. The channel is binary symmetric and the metric for
Viterbi decoding is the Hamming distance. The trellis and the surviving paths are illustrated
in the following figure :

Stae
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Problem 8.34 :

In Probl. 8.30 we found :

JND?
T(D,N,.J) =
DN == INDa+ )
Setting J =1 :
ND*  dT(D,N) D
TN =T5Np = —an ~ (1—2ND)?

For soft-decision decoding the bit-error probability can be upper-bounded by :

1dT(D,N) 1 D? exp(—57/2)

P < ————— | N1 Deexn(— ) = ST =1,D=exp(—
b S 3TN NPk 2(1—2ND)2‘N b=epl=n/2) 1 — exp(—7/2))
PL—"

1
2

For hard-decision decoding, the Chernoff bound is :

dT(D, N) ar(i—p)] "

| o =
AN N=1,D=1/4p(1-p) { 2
1—2,/4p(1 - p)

where p = Q (\/'bec) =Q (\/'yb / 2) (assuming binary PSK). A comparative plot of the bit-error
probabilities is given in the following figure :

Py, <

107

Hard-dec. decodin

i
o
@

Bit-error probability
5
I

: Soft-dec. decoding

._.
o\
b

6 7
SNR/bit (dB)

Problem 8.35 :
For the dual-3 (k=3), rate 1/2 code, we have from Table 8-2-36 :

g1 100100 o 110100
g2 | = | 010010 |, g5 | = | 001010
g3 001001

6 100001
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Hence, the encoder will be :

%&%
A
N

N

1

i

2

Ve

13 Output Symbols

1

2

.3

AN

The state transitions are given in the following figures :

Beginning State Beginning State
0 0
12 IND(2) 24 IND(2)
1 1
03 JND 35 IND(2)
2 2
30 JND 06 JND
3 3
21 IND(2) \ 17 IND(2) \
1 2
" /] 4 /]
56 IND(2) 60 JND
5 5
47 IND(2) 71 IND(2)
6 6
74 IND(2) IND(2)
7 7
65 IND(2) 53 IND(2)
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Beginning State
0

36 IND(2)

1
27 IND(2)
2
14 IND(2)
3
35 IND \
3
4 /]
72 IND(2)
5
65 IND(2)
6
7
41 IND(2)
Beginning State
0
IND(2)
1
IND(2)
2
75 IND(2)
3
64 IND(2) \
5
4 /]
13 IND(2)
5
JIND
6
IND(2)
7

20 IND
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Beginning State

0
45 IND(2)
1
54 IND(2)
2
67 IJND(2)
3
76 IND(2) \
4
4 /]
01 JND
5
10 JND
6
IND(2)
7
32 IND(2)
Beginning State
0
61 JND(2)
1
70 IND
2
43 IND(2)
3
52 IND(2) \
6
4 /]
25 IND(2)
5
IND(2)
6
7

16 IND(2)



Beginning State Beginning State Self-loopis

73 IND(2)

62 JND(2) 11 (2

51 IND(2) 22 ID(2)
3 3
40 IND \ 33 D) \
7 0 Output
4 / 4 / node
37 IND(2) 44 D(2)

26 IND(2) 55 JD(2)

15 IND(2) 66 JD(2)

04 IND 77 D)

The states are : (1) = 000, (2) = 001, (3) = 010, (4) = 011, (5) = 100, (6) = 101, (7) =
110, (8) = 111. The state equations are :

X1 =D>NJ (Xo+ X5+ X4+ X5+ X¢+ X7) + DNJ (X; + X5)
Xo=D>NJ (Xo+ X, + X3+ X5+ Xg+ X7) + DNJ (X5 + Xy)
X3 =D>NJ (Xo+ X, +Xo+ X4+ X5+ X7) + DNJ (X3 + X§)
Xy =D>NJ (Xo+ X1+ Xo+ X3+ Xg+ X7) + DNJ (X4 + X5)
X5 =D>NJ (Xo+ X, + Xo+ X3+ X4+ Xg) + DNJ (X5 + X7)
X6 =D>NJ (Xo+ Xo+ X3+ X4+ X5+ X7) + DNJ (X; + X§)
Xy =D>NJ (Xo+ X1+ Xo+ X4+ X5+ Xg) + DNJ (X3 + X7)
X =D?J(X; + Xo+ X3+ X4 + X5+ X+ X7)

where, note that D, N correspond to symbols and not bits. If we add the first seven equations,

we obtain : :

7 7
> =7D?NJX,+2DNJ> X;+5D’NJY X,

i=1 =1 i=1

Hence :

EN|

S X, - TD?NJ
""" 1-2DNJ—5D2NJ

Substituting the result into the last equation we obtain :

X D*NJ? D*'NJ?
— =T(D,N,J) = o S—eC
Xo 1-2DNJ—5D*NJ  1—DNJ(2+5D)

which agrees with the result (8-2-37) in the book.
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Problem 8.36 :

g1 = [110], g2 = [011],

states :

The state diagram is given in the following figure :

o1

o1

(o]e]

(o]e)

10

(a) = [00], (b) = [01], (c) = [10], (d) = [11]

11

We note that this is a catastrophic code, since there is a zero-distance path from a non-zero
state back to itself, and this path corresponds to input 1.
A simple example of an K = 4, rate 1/2 encoder that exhibits error propagation is the following

1N

)/

AN

Input

Output

The state diagram for this code has a self-loop in the state 111 with input 1, and output 00.

A more subtle example of a catastrophic code is the following :
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PN

JE—— Output
Input

In this case there is a zero-distance path generated by the sequence 0110110110..., which en-
compasses the states 011,101, and 110. that is, if the encoder is in state 011 and the input is
1, the output is 00 and the new state is 101. If the next bit is 1, the output is again 00 and
the new state is 110. Then if the next bit is a zero, the output is again 00 and the new state
is 011, which is the same state that we started with. Hence, we have a closed path in the state
diagram which yields an output that is identical to the output of the all-zero path, but which
results from the input sequence 110110110...

For an alternative method for identifying rate 1/n catastrophic codes based on observation of
the code generators, please refer to the paper by Massey and Sain (1968).

Problem 8.37 :

There are 4 subsets corresponding to the four possible outputs from the rate 1/2 convolutional
encoder. Each subset has eight signal points, one for each of the 3-tuples from the uncoded bits.
If we denote the sets as A,B,C,D, the set partitioning is as follows :
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The minimum distance between adjacent points in the same subset is doubled.

Problem 8.38 :

(a) Let the decoding rule be that the first codeword is decoded when y; is received if
plyilxi) > p(yilx2)
The set of y; that decode into x; is
Yi= Ay p(yilxi) > p(yilx2)}

The characteristic function of this set x1(y;) is by definition equal to 0 if y; ¢ Y] and equal to
1 if y; € Y7. The characteristic function can be bounded as

i)\ ®
: Xl(y”§<p<yi|xl>>

This inequality is true if x(y;) = 1 because the right side is nonnegative. It is also true if
X(y:) = 0 because in this case p(y;|x2) > p(yi|x1) and therefore,

p(yilx2)\?
p(yi\X1)>

p(yilx2)

1<
p(yilx1)

— 1<
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Given that the first codeword is sent, then the probability of error is

P(error\m) = | ;_Y P(Yi|X1) = Zyp(yz'|xl)[1 — Xl(}’z‘)]
< gyp(}ﬂm) <%>5 _ gy \/p(Yi‘Xl)p(yi|X2)

= ; \/p(Yi|X1)p(Yi|X2)

where Y denotes the set of all possible sequences y;. Since, each element of the vector y; can
take two values, the cardinality of the set Y is 2".

(b) Using the results of the previous part we have

S . 1x an , p(yilx1) |p(yilx2)
P(error) < ;\/p(}’z‘){l)p(yl‘ 2)—Zp(yz)J o(y) J o0y

i=1

= ;p(yl>\l p(x1]y:) \l p(X2|y:) _ Zl 2p(yi)\/p(x1\yi)p(x2|yi)

p(x1) p(x2)

However, given the vector y;, the probability of error depends only on those values that x; and
xy are different. In other words, if ; ; = 24, then no matter what value is the k™ element of
v, it will not produce an error. Thus, if by d we denote the Hamming distance between x; and
Xs, then

p(x1|y:)p(xaly:) = p?(1 — p)*

and since p(y;) = 5=, we obtain

ol

Plerror) = P(d) = 2p% (1 — p)* = [4p(1 — p)]

Problem 8.39 :

Over P frames, the number of information bits that are being encoded is
J
kp=PY N,
j=1

The number of bits that are being transmitted is determined as follows: For a particular group
of bits 7, 7 = 1,..., J, we may delete, with the corresponding puncturing matrix, z; out of nP
bits, on the average, where z may take the values z = 0,1,...(n — 1)P — 1. Remembering that
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each frame contains N; bits of the particular group, we arrive at the total average number of
bits for each group

In the last group 7 = J we should also add the K — 1 overhead information bits, that will add
up another (K — 1)(P + M;) transmitted bits to the total average number of bits for the J*
group.
Hence, the total number of bits transmitted over P frames be
np=(K—1)(P+M;)+>_ JN;(P+ M)
j=1

and the average effective rate of this scheme will be

ke S NoP

np Y JN;(P 4 M) + (K — 1)(P+ M)

Rav

Problem 8.39 :

Over P frames, the number of information bits that are being encoded is

J
kp=P Z Ny
j=1
The number of bits that are being transmitted is determined as follows: For a particular group
of bits 7, 7 = 1,..., J, we may delete, with the corresponding puncturing matrix, z; out of nP
bits, on the average, where z may take the values z = 0,1,...(n — 1) P — 1. Remembering that
each frame contains N; bits of the particular group, we arrive at the total average number of
bits for each group

In the last group 7 = J we should also add the K — 1 overhead information bits, that will add
up another (K — 1)(P + M) transmitted bits to the total average number of bits for the J*
group.
Hence, the total number of bits transmitted over P frames be
np=(K—1)(P+M;)+>_ JN;(P+ M)
j=1

and the average effective rate of this scheme will be

ke S NP

T np Y, JNJ(P+ M)+ (K — 1)(P + M)

Rav
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CHAPTER 9

Problem 9.1 :

We want y(t) = Kx(t —tp). Then :
X(f) = > x(t)e 2 tdt

[e.e]

Y (f) = [ y(t)e *tdt = K exp(—j2m fto) X (f)

Therefore :

y B Af)= K for all f
JO(f) _ jemft ’
A(f)e?"D) = Ke O:’{ 0(f) = 2r fto£nm, n=0,1,2,.. }

Note that nmw, n odd, results in a sign inversion of the signal.

Problem 9.2 :
(a) Since cos(a + 7/2) = —sin(a), we can write :
T 0<|fl <32 }
X(f) = o v 2T
) { Pi—sin (f— )], S <Ifl <

Then, taking the first two derivatives with respect to f :

2 - _

0, otherwise

and :
372 i ol 1 1-3 1+8
X//(f) _ 232 Sln? (f - ﬁ) sy 9T < |f| < 2T
0, otherwise

Therefore the second derivative can be expressed as :

22 _
X"(f)=— I [X(f) — grect (%f) — grec‘c <#f>1

32
rect(af) = { (1)’ fl<a }

o0.wW

where :

Since the Fourier transform of dz/dt is j2n f X (f), we exploit the duality between (f,t), take
the inverse Fourier transform of X”(f) and obtain :

T27T72 lm(t) T1 1-0 T1 . 1+p

- ot
32 9wt T ot o T

— 4 (t) = —




Solving for z(t) we obtain :

= L 1 i =8 o 148
a(t) = peT [%t/T (sm 7 27t + sin 727#)}

_ 1 1 s Tt w5t
= 11T [mﬁ/T (sm T COS T)}

(b) When 5 =1, X(f) is non-zero in |f| < 1/T, and :

X(f)_§(1+coszf)

The Hilbert transform is :
£(f) = —jE (1 +coswTf), 0<f<1/T
| L +4cosnTf), -1/T<f<0
Then : .
z(t) = 7% XA(f) exp(j2m ft)dt )
= [Py X(f) exp(2n fr)dt + [" X (f) exp(j2n ft)dt

Direct substitution for X (f) yields the result :
T lsin 2nt)T — 4t2/T2]

T
W=l T

Note that Z(¢) is an odd function of t.

A

(c) No, since 2(0) = 0 and z(nT) # 0, for n # 0. Also >0° X (f + n/2T) # constant for
/< 1/21

(d) The single-sideband signal is :
x(t) cos 2w ft £ Z(t) sin 27 f.t = Re [(m(t) + j2(t)) €j27rfct}

The envelope is a(t) = /22(t) + 2%(t). For f=1:

o ! 1
T T — 42T

V(L — 8t2/T2)sin? (wt/T) + 16t4/T*

Problem 9.3 :

(a) Xp h(t — kT) = u(t) is a periodic signal with period T. Hence, u(t) can be expanded in the
Fourier series :

U(t): Z Un€j27mt/T

n=—oo
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where : 7
Up = Tf T/2 U u(t) exp(—j2mnt/T)dt

= L[, S hlt — KT) exp(—j2mnt/T)dt
= Y ok [0, h(t — KT) exp(—j2mnt/T)dt

— L[, h(t) exp(—j2mnt/T)dt = LH (%)

Then : u(t) = L300 H (2) ™/ = U(f) = 2530 H(&)5(f—2). Since x(t) =
u(t)g(t), it follows that X (f) = U(t) * G(f). Hence :

4 £ n(E)e(-3)

n=—0oo

(b)
(i) .
k_z h(kT) = u(0) = — _Z_ H( )
(ii)
th—k‘T)—u :1 Z ( >6]27rnt/T

(iii) Let

Z o(t — kT) = z h(kT)s(t — kT)
Hence : - _ N

V()= > h(kT)e 5
But

V(f) = H(f) = Fourier transform of Zk__oo o(t —kT)
= H(f) * % EZO:—OO 5(f - _) T En——oo (f - %)

(c) The criterion for no intersymbol interference is {h(kT) =0, k # 0 and h(0) = 1}. If the
above condition holds, then from (iii) above we have :

— Z f—— S h(kT)e 2 M = 1
n=-—00 k=—00

Conversely, if 7500 H(f—2) =1, Vf = Y22 _ h(kT)e7™*T" = 1, Vf. This is possible
only if the left-hand side has no dependence on f, which means h(kT) = 0, for k # 0. Then
S0 o h(KT)e 72+ = ph(0) = 1.
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Problem 9.4 :

—e
a
Hence : ]
X(0) ==, X(W —mW?/a
0)=—, X(W)=

We have : X )

2V 001 = ™ 001 = W2 = —L In(0.01

X(0) ‘ o n(0.01)
But due to the condition for the reduced ISI :

o(T)=e ™7 =001 =T = ——2 In(0.01)
Ta
Hence WT = =t In(0.01) = 1.466 or :
1.466
W =
T

For the raised cosine spectral characteristic (with roll-off factor 1) W = 1/T. Hence, the Gaussian
shaped pulse requires more bandwidth than the pulse having the raised cosine spectrum.

Problem 9.5 :

The impulse response of a square-root raised cosine filter is given by

146 '
ssr(t) = [ 10, VXl D

where X,..(f) is given by (9.2-26). Splitting the integral in three parts we obtain

_1-B
[EST(t) = /_LZT T/QJ 1+ cos <7T6T( - %)) ]27rftdf (1)
1-8
+ [ o VT 2)

1+8

ff%Hm{(fgfﬂww (3)

2T

The second term (2) gives immediately

ngmWme
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The third term can be solved with the transformation A = f — % Then

T TTA\ omy(ng 18
(3):/0 \VT/2,| 1+ cos R e 27 d)\

Using the relationship 1 + cos2A = 2cos? A = /1 + cos24 = /2| cos A| = v/2cos A, we can

rewrite the above expression as

% D) omt(A4 L8

(3) :/ VT cos | —— | /2037 4\
0 20

Since cos A = ejAJF;_jA

argument intregrals.
Similarly to (3), the first term (1) can be solved with the transformation A = f + =2 (notice
that cos(%(—f — L)) = cos(%(f + L-0))). Then again, the integral simplifies to the sum of
two simple exponential argument integrals. Proceeding with adding (1),(2),(3) we arrive at the

desired result.

, the above integral simplifies to the sum of two simple exponential

Problem 9.6 :

(a)(b) In order to calculate the frequency response based on the impulse response, we need the
values of the impulse response at ¢t = 0, £7/2, which are not given directly by the expression of
Problem 9.5. Using L’Hospital’s rule it is straightforward to show that:

2 V2 (2+7)

w(0) =5+ 2, w(xTy) = L2

Then, the frequency response of the filters with N = 10,15,20 compared to the frequency
response of the ideal square-root raised cosine filter are depicted in the following figure.
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Frequency response of truncated SQRT Raised Cosine filters

—— Ideal
- - N=10 | |

- N=15
N=20

_70 | | | I I I I B T 10l
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

YT

As we see, there is no significant difference in the passband area of the filters, but the realizable,
truncated filters do have spectral sidelobes outside their (1 4+ )/7T nominal bandwidth. Still,
depending on how much residual ISI an application can tolerate, even the N = 10 filter appears
an acceptable approximation of the ideal (non-realizable) square-root raised cosine filter.

Problem 9.7 :

(a),(b) Given a mathematical package like MATLAB, the implementation in software of the
digital modulator of Fig P9.7 is relatively straightforward. One comment is that the interpolating
filters should have a nominal passband of [—m/3,7/3]|, since the interpolation factor applied to
the samples at the output of the shaping filter is 3. We chose our interpolation filters (designed
with the MATLAB fir1 function) to have a cutoff frequency (-3 dB frequency) of /5. This
corresponds to the highest frequency with significant signal content, since with the spectrum of
the baseband signal should be (approximately, due to truncation effects) limited to (140.25) /2T,
so samled at 67" it should be limited to a discrete frequency of (2x 7+ (1+0.25)/27")/6 ~ 0.21 .
The plot with the power spectrum of the digital signal sequence is given in the following figure.
We have also plotted the power spectrum of the baseband in-phase (I component) of the signal.

200



Spectrum of baseband (In-phase part) and modulated bandpass signal
0 T T T T T T T

Baseband (1)
——  Modulated

-50

=70

Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000
Frequency (Hz)

-80

We notice the rather significant sidelobe that is due to the non-completely eliminated image of
the spectrum that was generated by the interpolating process. We could mitigate it by choosing
an interpolation filter with lower cut-off frequency, but then, we would lose a larger portion of
the useful signal as well. The best solution would be to use a longer interpolation filter.

(c)
By repeating the experiment for a total of 6 runs we get the following figure

Spectrum modulated bandpass signal over 6 runs
0 T T T T

Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000
Frequency (Hz)

We notice the smoother shape of the PSD, and we can verify that indeed the spectrum is centered
around 1800 Hz.
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Problem 9.8 :

(a) The alternative expression for s(¢) can be rewritten as

s(t) 7= R{L,1,Qt—nT)}
= R, LT g(t —nT)[cos 2 f.(t — nT) + jsin(2m f.(t — nT)]}
= R{>, I,g(t — nT)[cos2n fonT + jsin 2m f.nT|[cos 2r f.(t — nT) + jsin(2nw f.(t — nT)|}
= R{X, Ing(t — nT)[cos 2w f.nT cos 2w f.(t — nT") — sin 27 fonT sin 27 f.(t — nT)
+jsin 2n fonT cos 2w f.(t — nT) + j cos 2m fonT sin 27 f.(t — nT)|}
R{>, Ing(t — nT)[cos 27 fot + jsin 2w f.t]}
R {Zn Lg(t— nT)e%fct} = s(t)

So, indeed the alternative expression for s(t) is a valid one.

(b)

j2pfnT -j 2pfnT
e L/ e
( q(t) q(t) w
nr I ! nr
— —>
—
— —>
. | i - To
n Det ect or
A N
L
q(t) q(t)
Modulator Demodulator
(with phase rotator) (with phase derotator)

Problem 9.9 :

(a) From the impulse response of the pulse having a square-root raised cosine characteristic,
which is given in problem 9.5, we can see immediately that xso(t) = zgo(—t), i.e. the pulse
g(t) is an even function. We know that the product of an even function times and even function
has even symmetry, while the product of even times odd has odd symmetry. Hence ¢(t) is even,
while ¢(t) is odd. Hence, the product ¢(¢)¢(¢) has odd symmetry. We know that the (symettric
around 0) integral of an odd function is zero, or

[ amawa= [T g =

—00 —(1+p)/2T
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(b) We notice that when f. = k/T, where k is an integer, then the rotator/derotaror of a
carrierless QAM system (described in Problem 9.8) gives a trivial rotation of an integer number
of full circles (27kn), and the carrierless QAM/PSK is equivalent to CAP.

Problem 9.10 :

(a)
(i) xg =2, 1 = 1, xg = —1, otherwise z,, = 0. Then :
o(t) = 2sin(27ﬂ/l/t) sin(2rW(t —1/2W))  sin(2aW(t —1/W))
T 2t 2rW (t — 1/2W) 2eW (t — 1/W)
and :

X(f) = g [24 IV —em2mIW] | < W
1/2
‘X(f)|:ﬁ{6+2cos”—vg—4cos%}/ . fI<wW

The plot of | X(f)] is given in the following figure :

2

1.8r

1.6

0 0.5 1 15
fw

(i) x_.1 = —1, 2y = 2,21 = —1, otherwise x,, = 0. Then :

_ 28in(27rWt) _osinaW(t+1/2W))  sin(2aW(t —1/2W))

x(t)

2W't 20W (t + 1/2W) 2rW (t — 1/2W)
and
1 s , 1 wf 1 wf
= — 2— ]TI'f/W_ -‘r]ﬂ'f/W = — 2—2 —_— = — 1— B <
X =qpl2-e ‘ | =% S| Ty | es gy s

The plot of | X (f)] is given in the following figure :
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(b) Based

25

WIX(H)I

0.5

0.5 1 15

zof

on the results obtained in part (a) :

25

(i): x(t)

(ii): x(®

204



(c) The possible received levels at the receiver are given by :

(i)
B, =2, +1,1— I

where [, = +1. Hence :
P(B,=0)=1/4
P(B,=-2)=1/4
P(B,=2)=1/4
P(B,=-4)=1/8
P(B,=4)=1/8
(i
Bn - QIn - ]n—l - ]n—i-l
where I,, = £1. Hence :
P(B,=0)=1/4
P(B,=-2)=1/4
P(B,=2)=1/4
P(B,=-4)=1/8

Problem 9.11 :

The bandwidth of the bandpass channel is W = 4 KHz. Hence, the rate of transmission should
be less or equal to 4000 symbols/sec. If a 8-QAM constellation is employed, then the required
symbol rate is R = 9600/3 = 3200. If a signal pulse with raised cosine spectrum is used for
shaping, the maximum allowable roll-off factor is determined by :

1600(1 + 8) = 2000

which yields § = 0.25. Since ( is less than 50%, we consider a larger constellation. With a
16-QAM constellation we obtain :

and :
1200(1 + 3) = 2000

or # = 2/3, which satisfies the required conditions. The probability of error for an M-QAM
constellation is given by :
Py=1—(1-P;)?

where : -
1 3w
Pas=2(1- 7 ) @ |\ i

205



With Py = 107° we obtain P57 = 5 x 1077 and therefore using the last equation and the table
of values for the Q(+) function, we find that the average transmitted energy is :

Ep =24.70 x 107°

Note that if the desired spectral characteristic X,.(f) is split evenly between the transmitting
and receiving filter, then the energy of the transmitting pulse is :

| gwdt= [ 1Gr(nPar = [ Xoulf)df =1
Hence, the energy &,, = P,,T depends only on the amplitude of the transmitted points and the

symbol interval T'. Since T' = ﬁ, the average transmitted power is :

5[1'()
Py = =5 = 24.70 1077 x 2400 = 592.8 x 1077
If the points of the 16-QAM constellation are evenly spaced with minimum distance between
them equal to d, then there are four points with coordinates (ig, ig), four points with coordi-
nates (i%d, i%d), and eight points with coordinates (:l:%, ig), or (ig, i%d). Thus, the average
transmitted power is :

1 1 d? 9d? 10d? 5
P, = A2 A2 Y= — ax S pax _ 2
o = 5516 2 Ame + Auns) 32[X2jL R B
Since P,, = 592.8 x 10~7, we obtain
Pav
d = /4= = 0.0069

Problem 9.12 :

The channel (bandpass) bandwidth is W' = 4000 Hz. Hence, the lowpass equivalent bandwidth
will extend from -2 to 2 KHz.
(a) Binary PAM with a pulse shape that has § = % Hence :

1
—(1 = 2000
SO % = 2667, and since k = 1 bit/symbols is transmitted, the bit rate is 2667 bps.

(b) Four-phase PSK with a pulse shape that has § = 1. From (a) the symbol rate is & = 2667
and the bit rate is 5334 bps.

(¢c) M =8 QAM with a pulse shape that has § = % From (a), the symbol rate is % = 2667 and
hence the bit rate % = 8001 bps.
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(d) Binary FSK with noncoherent detection. Assuming that the frequency separation between
the two frequencies is Af = T, where % is the bit rate, the two frequen01es are f. + 2T and
fe— 2T. Since W = 4000 Hz, we may select ﬁ = 1000, or, equivalently, A 7 = 2000. Hence, the
bit rate is 2000 bps, and the two FSK signals are orthogonal.

(e) Four FSK with noncoherent detection. In this case we need four frequencies with separation
of ,} between adjacent frequencies. We select f, = f. — %, fo=f.— 2T’ fs=fo+ 2T, and
J1 = fc+ %, where o= = 500 Hz. Hence, the symbol rate is % = 1000 symbols per second and
since each symbol carries two bits of information, the bit rate is 2000 bps.

(f) M = 8 FSK with noncoherent detection. In this case we require eight frequencies with
frequency separation of % = 500 Hz for orthogonality. Since each symbol carries 3 bits of
information, the bit rate is 1500 bps.

Problem 9.13 :

(a) The bandwidth of the bandpass channel is :
W = 3000 — 600 = 2400 Hz

Since each symbol of the QPSK constellation conveys 2 bits of information, the symbol rate of
transmission is :

1 2400
R= T="5 = 1200 symbols/sec
Thus, for spectral shaping we can use a signal pulse With a raised cosine spectrum and roll-off
factor B = 1, since the spectral requirements will be 5= (1 + ) = = = 1200Hz. Hence :

T 1
Xpelf) = G+ cos(nT| )] = 1555 cos” (;4'5(‘))

If the desired spectral characteristic is split evenly between the transmitting filter G (f) and
the receiving filter Gg(f), then

Crlf) = Galf) = \/1200cos(;4‘gg), 7] < = 1200

A block diagram of the transmitter is shown in the next figure.

QOLF,;LS_K> Gr(f) 4’(?_' to Channel

cos(2m f.t)

(b) If the bit rate is 4800 bps, then the symbol rate is

4
R = % = 2400 symbols/sec
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In order to satisfy the Nyquist criterion, the the signal pulse used for spectral shaping, should
have roll-off factor # = 0 with corresponding spectrum :

X(f)=T, |f| <1200

Thus, the frequency response of the transmitting filter is Gr(f) = VT, |f| < 1200.

Problem 9.14 :

The bandwidth of the bandpass channel is :

W = 3300 — 300 = 3000 Hz

In order to transmit 9600 bps with a symbor rate R = % = 2400 symbols per second, the number
of information bits per symbol should be :

~ 9600

© 2400

Hence, a 2* = 16 QAM signal constellation is needed. The carrier frequency f. is set to 1800
Hz, which is the mid-frequency of the frequency band that the bandpass channel occupies. If a
pulse with raised cosine spectrum and roll-off factor 3 is used for spectral shaping, then for the
bandpass signal with bandwidth W :

1

Lasm = 15002 5-02
2T( 3) 5 500 = 3 =0.25

A sketch of the spectrum of the transmitted signal pulse is shown in the next figure.

3300 -1800  -300 300900 1800 3300
2700

Problem 9.15 :

The SNR at the detector is :

& BT _PB(1+p)

= =30dB
Ny Ny NoW
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Since it is desired to expand the bandwidth by a factor of 13—0 while maintaining the same SNR,
the received power P, should increase by the same factor. Thus the additional power needed is

1

Hence, the required transmitted power is :

Py = —3 + 5.2288 = 2.2288 dBW

Problem 9.16 :

The pulse z(t) having the raised cosine spectrum given by (9-2-26/27) is :

cos(mft/T)

x(t) = sinc(t/T) T 42T

The function sinc(¢/7") is 1 when ¢t = 0 and 0 when ¢t = nT'. Therefore, the Nyquist criterion
will be satisfied as long as the function g(t) is :

cos(mfBt/T) { 1 t=0

g(t) = bounded t #0

1 —4p%2)T?

The function g(t) needs to be checked only for those values of ¢ such that 43%?/T? = 1 or
bt = % However :

, cos(mft)T) Y cos(5x)
im —————~ = lim
Gt 1—ARPRJT?  ami 1 -z

and by using L’Hospital’s rule :

cos(Sx
(52) = limzsin(zm) = <o

2 2

lim

z—1 1 — x—1 2

Hence :
1 n=0
x(nT)—{ 0 n£0

meaning that the pulse x(¢) satisfies the Nyquist criterion.

Problem 9.17 :

Substituting the expression of X,.(f) given by (8.2.22) in the desired integral, we obtain :

1-8

[xaw = [0 5 |eontps =g s [ Lo

—00

2T
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148
WT[ T 1-p
AP A
/% 2 16 2T
1-8 148
2 T 1-p 2 T
— “df+T (=2 -
/_l;_ﬁ SR < T ) o 3
1-5 148
—3T T 1—-0 a7 T 1—-0
+/12+_ﬁ 6087(f+—2T Ydf + cosﬁ(f— 5T Ydf
0 T T T
= 1+/Bcos7r—xdx+/Tcos7T—xdx
-7 6 0 6
8
T T
= 1+/T cosw—xda::1+0:1
87773
T

Problem 9.18 :
Let X (f) be such that

Re[X(f)]:{ TH(sz]JrU(f) fl < % Im[X(f)]:{ V() |f] <4

otherwise 0  otherwise
with U(f) even with respect to 0 and odd with respect to f = Since x(t) is real, V'(f) is odd
with respect to 0 and by assumption it is even with respect to f . Then,

w(t) = FX(S)]
= [T xX(petar + / (et + [ X (e ay

-

— sine(t/T)+ [ [U() + 3V (N)]e " df

AH’ﬂH

ﬂ|“

T2 It qf 4+ /_i [U(f) + V()] af

1 ,
Consider first the integral [T, U(f)e??™tdf. Clearly,
T

1

T

/ T Upe s - / L U+ | T Ut

and by using the change of variables f' = f + % and [/ = f — % for the two integrals on the
right hand side respectively, we obtain

[F uinery

Sl
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. T L 1 - ! ;T L 1 . !
= [T U= e [T U e

2T 2T

1
. . 2T 1 . !
a jEt  —jt 2T / J2nf't get
(6T e T)/LU(f +om)e N df

2T

1
57 1 N
= 2j sin(—WTt) /_2? U(f + —QT)eﬂwf tdf’

2T

. 1 .
where for step (a) we used the odd symmetry of U(f’) with respect to f’ = 55, that is
1

U( = o) = ~U(f + )

For the integral f_i V(f)e? It df we have
T
[ vipera

0 . T )
= [ vine g+ [T viner

-1
T

. > 1 - / . T 2
_ —th/ZT I 2 f't g1 ]Tt/
= e L V(f —2T)e If' + e

S~

/ i q2nf't g1
3 3 V(f +2T)e df

N
S

However, V(f) is odd with respect to 0 and since V(f" + %) and V(f' — %) are even, the
translated spectra satisfy

r 1 o p 77 1 g

V(f — — ]Qﬂftd/:_/ V(f - j27rftd/

/_ (= el = = [7 V(' el
Hence,

1

o(t) = sinc(t/T)+2jsin(%t) / i

L onp
/ - ]27rftd /
LU e

T o 1 I
—94i / / g2 f't ge1
sm(—Tt) - U(f' + _QT)e df

2T
and therefore,

0m ={ 5 %0

Thus, the signal x(t) satisfies the Nyquist criterion.

Problem 9.19 :

The bandwidth of the channel is :
W = 3000 — 300 = 2700 Hz
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Since the minimum transmission bandwidth required for bandpass signaling is R, where R is
the rate of transmission, we conclude that the maximum value of the symbol rate for the given
channel is R, = 2700. If an M-ary PAM modulation is used for transmission, then in order to
achieve a bit-rate of 9600 bps, with maximum rate of R,,.x, the minimum size of the constellation
is M = 2¥ = 16. In this case, the symbol rate is :

9600
R = = 2400 symbols/sec

and the symbol interval T' = 1—1% = ﬁ sec. The roll-off factor 3 of the raised cosine pulse used

for transmission is is determined by noting that 1200(1 + ) = 1350, and hence, 8 = 0.125.
Therefore, the squared root raised cosine pulse can have a roll-off of § = 0.125.

Problem 9.20 :

Since the one-sided bandwidth of the ideal lowpass channel is W = 2400 Hz, the rate of trans-
mission is :

R = 2 x 2400 = 4800 symbols/sec
(remember that PAM can be transmitted single-sideband; hence, if the lowpass channel has
bandwidth from -W to W, the passband channel will have bandwidth equal to W; on the other
hand, a PSK or QAM system will have passband bandwidth equal to 2IW'). The number of bits

per symbol is
14400

4800

Hence, the number of transmitted symbols is 2% = 8. If a duobinary pulse is used for transmis-
sion, then the number of possible transmitted symbols is 2M — 1 = 15. These symbols have the
form

b, = 0,+2d, +4d, ..., +12d

where 2d is the minimum distance between the points of the 8-PAM constellation. The proba-
bility mass function of the received symbols is

8 — |m)|
64
An upper bound of the probability of error is given by (see (9-3-18))

1 s 2 6 k)gb av
P 2(1— — — ’
M= ( M?)QW<4> ME—1 N,
With Py; = 107% and M = 8 we obtain
kgbﬂv

0

P(b=2md) = m=0,+1,... +7

| S

= 1.3193 x 10° = &, 4, = 0.088
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Problem 9.21 :

(a) The spectrum of the baseband signal is (see (4-4-12))

_ 1 . 2 1 2
(bv(f) - T(blz(f)‘ch(f)‘ - T‘ch(f)‘
where T = ﬁ and
L 0<|f1 < 3
Xoo(f) =4 LA+ cos@rT(|f| - 7)) 7 <I|fI <+
0 otherwise

If the carrier signal has the form ¢(t) = A cos(27 f.t), then the spectrum of the DSB-SC modu-
lated signal, @ (f), is

Bu() = SO~ £+ (£ 1)

A sketch of ®y(f) is shown in the next figure.

-fc-3/4T -fc -fc+3/4T fc-3/4T fc fc+3/4T

(b) Assuming bandpass coherent demodulation using a matched filter, the received signal r(t)
is first passed through a linear filter with impulse response

gr(t) = Az, (T —t) cos(2m fo(T — t))

The output of the matched filter is sampled at ¢ = T and the samples are passed to the
detector. The detector is a simple threshold device that decides if a binary 1 or 0 was transmitted

depending on the sign of the input samples. The following figure shows a block diagram of the
optimum bandpass coherent demodulator.

r(1) Bandpass Detector
»| matched filter (Threshold [
9r(t) device)
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Problem 9.22 :

(a) The power spectral density of X (¢) is given by (see (4-4-12))

2.(/) = 72a(NICr(F)”

The Fourier transform of g(t) is

sin wae_jﬂfT

Gr(f) = Flo(t)] = AT

Hence,
|Gr(f)]* = (AT)?sinc*(fT)
and therefore,
O, (f) = A*T®,(f)sinc?(fT) = A*Tsinc®(fT)
(b) If g1(t) is used instead of ¢g(t) and the symbol interval is 7', then

o.(f) - %cpa(f)\GgT(f)IQ
%(AQT)Qsinc2( f2T) = AA*Tsinc®(f2T)

(c) If we precode the input sequence as b, = a,, + aa,_3, then

1+a® m=0
a m = +3
0 otherwise

op(m) =

and therefore, the power spectral density ®y(f) is
®y(f) =1+ a® + 2acos(2mf3T)

To obtain a null at f = %, the parameter « should be such that

1+ a® + 2acos(2m f3T) =0=a=-1

‘f:fli

(c) The answer to this question is no. This is because ®,(f) is an analytic function and unless
it is identical to zero it can have at most a countable number of zeros. This property of the
analytic functions is also referred as the theorem of isolated zeros.
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Problem 9.23 :

The roll-off factor 3 is related to the bandwidth by the expression % = 2W, or equivalently

R(1+ ) = 2W. The following table shows the symbol rate for the various values of the excess
bandwidth and for W = 1500 Hz.

g 25 | 33 | .50 | .67 | .75 | 1.00
R || 2400 | 2256 | 2000 | 1796 | 1714 | 1500

The above results were obtained with the assumption that double-sideband PAM is employed,
so the available lowpass bandwidth will be from —W = 302& to W Hz. If single-sideband
transmission is used, then the spectral efficiency is doubled, and the above symbol rates R are
doubled.

Problem 9.24 :

The following table shows the precoded sequence, the transmitted amplitude levels, the re-
ceived signal levels and the decoded sequence, when the data sequence 10010110010 modulates
a duobinary transmitting filter.

Data seq. D,: 1 00 1 01 1 0 010
Precoded seq. P,: o111 0 01 0 0 011
Transmitted seq. 1,:|-1 1 1 1 -1 -1 1 -1 -1 -1 1 1
Received seq. B,,: 0o 22 0 -20 0 -2 -2 0 2
Decoded seq. D,,: 1 00 1 01 1 0 010

Problem 9.25 :

The following table shows the precoded sequence, the transmitted amplitude levels, the re-
ceived signal levels and the decoded sequence, when the data sequence 10010110010 modulates
a modified duobinary transmitting filter.

Data seq. D,: 1 0010 1 1 0 01 O
Precoded seq. P,: o 01 0111 0 O O O 1T O
Transmitted seq. 1,,: |-1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 -1
Received seq. B,,: 2 00 20 -2 -2 0 02 0
Decoded seq. D,,: 1 0010 1 1 0 01 O
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Problem 9.26 :

Let X(z) denote the Z-transform of the sequence x,,, that is
X(z2) =) z2"

Then the precoding operation can be described as

D(z)

P(z) = XC)

mod — M

where D(z) and P(z) are the Z-transforms of the data and precoded dequences respectively.
For example, if M =2 and X(z) =1+ 27! (duobinary signaling), then

_ _D(z)
T 142t

P(2) = P(2) = D(2) — 27 'P(2)

which in the time domain is written as

Pn = dn — Pn—-1

and the subtraction is mod-2.

However, the inverse filter ﬁ exists only if zg, the first coefficient of X (z) is relatively prime
with M. If this is not the case, then the precoded symbols p, cannot be determined uniquely
from the data sequence d,,.

In the example given in the book, where xy = 2 we note that whatever the value of d,, (0 or 1),
the value of (2d,, mod 2) will be zero, hence this precoding scheme cannot work.

Problem 9.27 :

(a) The frequency response of the RC filter is

1
S ROT 1
C _ j27nRCf _ :

The amplitude and the phase spectrum of the filter are :

1 3
CUI = <1+47r2(RC)2f2> ’

The envelope delay is

0.(f) = arctan(—27RC f)

1 db.(f) 1 —27RC RC

(f) = T on df T or1l + 4m2(RC)2 f2 ] + 472(RC)2 f2
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A plot of 7(f) with RC' = 107 is shown in the next figure :

X0-7
10

9.990/
9.998/
9.997|
9.996|
$9.095
o
9.904/
9.993|
9.992|
9.901/

9-9% 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency (f)
(b) The following figure is a plot of the amplitude characteristics of the RC filter, |C(f)|. The
values of the vertical axis indicate that |C'(f)| can be considered constant for frequencies up to
2000 Hz. Since the same is true for the envelope delay, we conclude that a lowpass signal of
bandwidth Af =1 KHz will not be distorted if it passes the RC filter.

1

ICOI

0.9995 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency (f)

Problem 9.28 :

Let Gr(f) and Gg(f) be the frequency response of the transmitting and receiving filter. Then,
the condition for zero ISI implies

T, 0<I[fl < 4
Gr(H)C(f)Gr(f) = Xpelf) = L[1+cos2rT(|f| - 1), & <|fI< &
0, Il > 2

Since the additive noise is white, the optimum tansmitting and receiving filter characteristics
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are given by (see (9-2-81))

|Xee(f)]2 Xo(f)|2
Gr(f) = DB ) = D
1C(f)I2 1C ()2
Thus,
1
[1+0.307;52wa}2 2 0<|fI< 77
G = |G = T (14cos (27T (| f|=%) | 2
| T(f>| ‘ R(f>| 2(1+0.3cos27rfT)T ’ ﬁ S |f‘ S %
0, otherwise

Problem 9.29 :

A 4-PAM modulation can accomodate k = 2 bits per transmitted symbol. Thus, the symbol
interval duration is :

k 1
T = — =
9600 4800
Since, the channel’s bandwidth is W = 2400 = %, in order to achieve the maximum rate of
transmission, Ry.x = %, the spectrum of the signal pulse should be :

X(f) =TI (%)

Then, the magnitude frequency response of the optimum transmitting and receiving filter is (see
(9-2-81))

Gr(7) = Gal)| = 1+(24];0)]n(2;}){ 1+ (k)] 111< 200

0, otherwise

Problem 9.30 :

We already know that

ot = [ @un(DICal)Pdf
Pu=T [ (G
a = W T ‘
%)
D= g ="
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From these
o | Xoe ()P

d2 PavT nn ‘GR Qdf/ ‘GR | ‘C( )Pdf (4)

The optimum |Gg(f)| can be found by applying the Cauchy-Schwartz inequality

[ 7wk = [T oolvasla)]

where |Uy(f)|, |U2(f)| are defined as

[N = [y @un(NIIGR(S)

| Xre(f)]
[Gr(DIIC)

The minimum value of (1) is obtained when |U;(f)| is proportional to |Us(f)|, i.e. |Ui(f)| =
K|Uy(f)| or, equivalently, when

Ua(f)] =

| Xre ()2

where K is an arbitrary constant. By setting it appropriately,

1/2
Grlf)] = % Slew

The corresponding modulation filter has a magnitude characteristic of

X)Xl
Gr(DICHE IO

Gr(f)] = fl<w

Problem 9.31 :

In the case where the channel distortion is fully precompensated at the transmitter, the loss of

SNR is given by
: W Xoo(f)
10log L h L :/
Olog Ly, wit 1 . \C(f)P

whereas in the case of the equally split filters, the loss of SNR is given by

| Y XS
10log[L,]*, with L, —/_W 1C(f)]

Assuming that 1/7 = W, so that we have a raised cosine characteristic with g = 0, we have
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Xre(f) = [1 + cos m]

oW w

Then

[1+cos—f}
Ly = 2[0 2‘1/[/ [C()2

COS f

1 [14-cos f]
fW/22 1/4 }
5m—6
2m

Hence, the loss for the first type of filters is 10log L; = 1.89 dB.

In a similar way,
nf

_ W 1 [l4cos FF]
Ly = 2)o 5w e ,
W/2 [1+cos [14-cos T£]
= 2|/ / 21 +fW/2 21 1/2W}
_ 3r—2
21

Hence, the loss for the second type of filters is 10log[Ls]? = 1.45 dB. As expected, the second
type of filters which split the channel characteristics between the transmitter and the receiver
exhibit a smaller SNR loss.

Problem 9.32 :

The state transition matrix of the (0,1) runlength-limited code is :
11
P=(10)

det(D—X)=-MN1-XN)—-1=XN-)X-1

The eigenvalues of D are the roots of

The roots of the characteristic equation are :

1++5
2

Ao =

Thus, the capacity of the (0,1) runlength-limited code is :

+V5
2

1
C'(0,1) = log,( ) = 0.6942

The capacity of a (1, 00) code is found from Table 9-4-1 to be 0.6942. As it is observed, the two

codes have exactly the same capacity. This result is to be expected since the (0,1) runlength-
limited code and the (1,00) code produce the same set of code sequences of length n, N(n),
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with a renaming of the bits from 0 to 1 and vise versa. For example, the (0,1) runlength-limited
code with a renaming of the bits, can be described as the code with no minimum number of 1’s
between 0’s in a sequence, and at most one 1 between two 0’s. In terms of 0’s, this is simply
the code with no restrictions on the number of adjacent 0’s and no consequtive 1’s, that is the
(1,00) code.

Problem 9.33 :

Let Sy represent the state that the running polarity is zero, and S; the state that there exists

some polarity (dc component). The following figure depicts the transition state diagram of the
AMI code :

1/s(t)

0/0 %} CSBD 0/0
)

1/ —s(t

The state transition matrix is :

The eigenvalues of the matrix D can be found from
det(D— M) =0= (1-)X)?—=1=0o0r A(2—)) =0
The largest real eigenvalue is Ay.x = 2, so that :

C =1logy Apax = 1

Problem 9.34 :

Let {bx} be a binary sequence, taking the values 1, 0 depending on the existence of polarization
at the transmitted sequence up to the time instant k. For the AMI code, b is expressed as

by = ar ®bp—1 = ar D a1 Dar2D ...

where & denotes modulo two addition. Thus, the AMI code can be described as the RDS code,
with RDS (=by) denoting the binary digital sum modulo 2 of the input bits.

221



Problem 9.35 :

Defining the efficiency as :

) k

efficiency = nlog, 3
we obtain :

‘ Code H Efficiency ‘

1B1T 0.633

3B2T 0.949

4B3T 0.844

6B4T 0.949

Problem 9.36 :

(a) The characteristic polynomial of D is :

1—X 1

det(D—)\I):det’ 1 )

’:)\2—)\—1

The eigenvalues of D are the roots of the characteristic polynomial, that is

1++5
2

A2 =

Thus, the largest eigenvalue of D is A\p. = 1+2‘/5 and therefore :

1++5
2

= 0.6942

C = log,

(b) The characteristic polynomial is det(D — AI) = (1 — \)? with roots A\;» = 1. Hence,

C =log, 1 = 0. The state diagram of this code is depicted in the next figure.
1

(c) As it is observed the second code has zero capacity. This result is to be expected since with
the second code we can have at most n + 1 different sequences of length n, so that

1 1
C = lim —log, N(n) = lim —logy(n+1) =0
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The n + 1 possible sequences are

0...01...1 (n sequences)

and the sequence 11...1, which occurs if we start from state Sy.

Problem 9.37 :

(a) The two symbols, dot and dash, can be represented as 10 and 1110 respectively, where 1
denotes line closure and 0 an open line. Hence, the constraints of the code are :

e A 0 is always followed by 1.
e Only sequences having one or three repetitions of 1, are allowed.

The next figure depicts the state diagram of the code, where the state Sy denotes the reception
of a dot or a dash, and state S; denotes the reception of i adjacent 1’s.

(b) The state transition matrix is :

—_— O = O
o OO =
o O = O
O = O O

(c) The characteristic equation of the matrix D is :
det(D—=X)=0= M —-X?-1=0

The roots of the characteristic equation are :

1 3 1_ 3
s (55 (59

2 2
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Thus, the capacity of the code is :

C =logy Amax = logy A1 = log, <

Problem 9.38 :

The state diagram of Fig. P9-31 describes a runlength constrained code, that forbids any
sequence containing a run of more than three adjacent symbols of the same kind. The state
transition matrix is :

000100
100100
01 0100
b= 001010
001001
001000
The corresponding trellis is shown in the next figure :
History
111
11
1
0
00
000

Problem 9.39 :

The state transition matrix of the (2,7) runlength-limited code is the 8 x 8 matrix :
01 00O0O0O0O
00 10O0O0O0O0
1 0010O0O00O0
D 10001000
10000100
10000010
1000 0O0O01
100 00O0O0O0
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CHAPTER 10

Problem 10.1 :

Suppose that a,, = +1 is the transmitted signal. Then the probability of error will be :

Pi = P (ym <0la, =+1)
= P(1+ny,+i,<0)

1 1 1
= P24 nm <0)+ 1P (3/2+nm <0)+ 5P (140, <0)
1

1 1 3 1 1
- 5] 19+ 30l
Due to the symmetry of the intersymbol interference, the probability of error, when a,, = —1 is
transmitted, is the same. Thus, the above result is the average probability of error.

Problem 10.2 :

(a) If the transmitted signal is :

r(t) = i Lh(t —nT) + n(t)

n=—0oo

then the output of the receiving filter is :

y(t) = > La(t—nT)+ v(t)
where x(t) = h(t) x h(t) and v(t) = n(t) * h(t). If the sampling time is off by 10%, then the
samples at the output of the correlator are taken at t = (m=44)T. Assuming that ¢t = (m—15)T
without loss of generality, then the sampled sequence is :

Ym = f: Lyx((m — %T —nT)+v((m— 1—10)T)

n=—oo

If the signal pulse is rectangular with amplitude A and duration 7', then > °° Iyx((m— %OT —

n=—oo

nT') is nonzero only for n = m and n = m — 1 and therefore, the sampled sequence is given by :

1 1 1
Ym = Iml’(—l—OT) + ]m_ll’(T — 1—0T) + y((m — 1_0)T)
9

1 1
= I AT +1, —A’T — T
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The variance of the noise is : N
O’E = 70A2T

and therefore, the SNR is :

9 )2 2(A°T)® 81 2A°T
10

NR = [ =
SNR ( NoA2T — 100 N,

As it is observed, there is a loss of 10log;, &= = —0.9151 dB due to the mistiming.

(b) Recall from part (a) that the sampled sequence is

Ym —%] A*T + 1,4 0A2T+Vm

The term 1,15+ 10 expresses the ISI introduced to the system. If I,, = 1 is transmitted, then
the probability of error is

1 1
P(€|Im = 1) = §P(6‘[m =1 Im—l = 1) + §P(6|Im = 1a[m—1 = —1)

A2T
e NOAQT dv + ———=

2

T NoA2T

1 — 15 AT
2\/ 7TN0A2T /—oo c
2A2T
5@ |{(%) 2
10 Ny
Since the symbols of the binary PAM system are equiprobable the previous derived expression
is the probability of error when a symbol by symbol detector is employed. Comparing this with

the probability of error of a system with no ISI, we observe that there is an increase of the
probability of error by

2\/7TN0A2 /
2A2T
- iQ No

1

_§Q

2A2T
No

1 8\2 2427
Pdiff(e):iQ[ (To) No

Problem 10.3 :
(a) Taking the inverse Fourier transform of H(f), we obtain :
h(t) = FUH(F)] = 6(t) + 50(t — to) + 50(¢t + o)

Hence,
y(t) = s(t) % h(t) = s(t) + %s(t —to) + %s(t + o)
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(b) If the signal s(¢) is used to modulate the sequence {I,}, then the transmitted signal is :

u(t) = i I,s(t —nT)

n=—oo

The received signal is the convolution of u(t) with h(t). Hence,

y(t) = ult)*ht) = ( S st —nT)> « (5@) + 260~ to) + %5(t+t0)>

n=—oo

= > ]ns(t—nT)nL% > ]ns(t—to—nT)+% > ILs(t+tg—nT)

n=—oo n=—oo n=—oo

Thus, the output of the matched filter s(—t) at the time instant ¢; is :

wit) = Y I [ s(r—nT)s(r —t))dr
+% > I, /OO s(t —to —nT)s(T — ty)dr
+% > I /OO S(T+ty—nT)s(T — t1)dr

If we denote the signal s(t) x s(t) by z(t), then the output of the matched filter at t; = kT is :

wkT) = > La(kT —nT)
+% > La(kT —tg—nT) + % > La(kT +tg —nT)

(c) With to = T and k = n in the previous equation, we obtain :
Wy = Ik]}o -+ Z Inxk—n
n#k

[0} @]
_] B _
g -1t 5

Z Inxp—n1 + %]kxl + % Z Lyxp_p

« « (0% «
= I <330 + 5T+ —x1> +> I [:Bk_n + STkt + 5 Thon1
2 2 = 2 2

_|_

The terms under the summation is the ISI introduced by the channel. If the signal s(t) is
designed so as to satisfy the Nyquist criterion, then :
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and the aobove expression simplifies to :

Q@
wy = I, + E([k—i-l + I—1)

Problem 10.4 :

(a) Each segment of the wire-line can be considered as a bandpass filter with bandwidth W =
1200 Hz. Thus, the highest bit rate that can be transmitted without ISI by means of binary
PAM is :

R =2W = 2400 bps

(b) The probability of error for binary PAM trasmission is :

n-olfE

Hence, using mathematical tables for the function Q[-], we find that P, = 1077 is obtained for :

[2&, &
— =52 — =13.52=11.30dB
No 0.2 = No 3.5 30

(c) The received power P is related to the desired SNR per bit through the relation :
Pr  1& R &

No TNy Ny
Hence, with Ny = 4.1 x 1072! we obtain :
Pr=4.1x107%" x 1200 x 13.52 = 6.6518 x 107" = —161.77 dBW
Since the power loss of each segment is :
L; =50 Km x1dB/Km =50dB

the transmitted power at each repeater should be :

Pr=Pr+ L, =—161.77 4+ 50 = —111.77 dBW

Problem 10.5 :



vk—/ (Oh*(t — KT)dt

Then :
Efvw;] = 1E ([ [ 2(a)h*(a — jT)z*(b)h(b — kT)dadb|

= [ J%5E [2(a)z*(b)] h*(a — jT)h(b — kT)dadb

= Ny [ h*(a—jT)h(a — kT)da = Noz;_g

Problem 10.6 :

In the case of duobinary signaling, the output of the matched filter is :
x(t) = sinc(2Wt) + sinc(2Wt — 1)

and the samples x,,_,, are given by :

1 n—m=0
Tpom=2(nT —mT)=¢ 1 n—m=1
0 otherwise

Therefore, the metric CM(I) in the Viterbi algorithm becomes
CMI) = 2 Z L,r, — Z Z L1, Tnm
T D) A I o CH &

= S L2r =1, —I,1)

Problem 10.7 :

(a) The output of the matched filter demodulator is :

y(t) = Z ]k/ gr(T — kTy)gr(t — 7)dT + v(t)
k=—00
= Y La(t— kL) +v()
k=—00
where,
sin It cos &t
2(t) = gr(t) * gr(t) = —+ ! 47;2
T l—dpm
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Hence,

y(mT,) = i Lyx(mTy, — KTy) + v(mTy)

k=—o00
1 1
= Ip+ —Ip1+ _Im-l—l + V(me)
T s

The term %]m_1 + %Im_i_l represents the ISI introduced by doubling the symbol rate of trans-
mission.

(b) In the next figure we show one trellis stage for the ML sequence detector. Since there is
postcursor ISI, we delay the received signal, used by the ML decoder to form the metrics, by one
sample. Thus, the states of the trellis correspond to the sequence (I,,_1, I,,), and the transition
labels correspond to the symbol I,,,;. Two branches originate from each state. The upper
branch is associated with the transmission of —1, whereas the lower branch is associated with
the transmission of 1.

Problem 10.8 :
(a) The output of the matched filter at the time instant mT is :
1
Ym = ZImxk—m + V= Ly + Z[m—l + Um
k

The autocorrelation function of the noise samples v, is

N,
Elvr;] = 7093k—j
Thus, the variance of the noise is
2 NO NO
O'V = — Ty = —
2 2

If a symbol by symbol detector is employed and we assume that the symbols I,, = I,,_1 = /&
have been transmitted, then the probability of error P(e|l,, = I,,_1 = /&) is :

P(e|L, =11 = \/5:) = Py <O|Lp = Ip_1 = \/g:)
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5 2
= P m - / N m
(Vm < 4\/871, 7TN0 "e Odl/
No

- /\/T” 2 Q[ 251)]

V2 4\ Ny
If however I,,,_1 = —+/&, then :

3 3 [2&
P(e‘[m: \/gba[m—l = _\/gb) :P(Z\/gb—i—l/m <O) :Q [Z Fb‘|
0
Since the two symbols /&, —/&, are used with equal probability, we conclude that :

P(e) = Ple|ln=1/&) = Ple|L, = —/&)

28, 28,
- ol 1o

(b) In the next figure we plot the error probability obtained in part (a) (log,o(P(e))) vs. the
SNR per bit and the error probability for the case of no ISI. As it observed from the figure, the
relative difference in SNR of the error probability of 1076 is 2 dB.

6 7 8 9 10 11 12 13 14
SNR/bit, dB

Problem 10.9 :

For the DFE we have that :

0 Ko
L= cjup—j+ cilx;
=K =1
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A2
We want to minimize J = F ‘I k— [k‘ . Taking the derivative of J, with respect to the real and
imaginary parts of ¢; = a; + 7b;, 1 <1 < Ky, we obtain :

g_t;]z =0=1£ {_[k—l (Il: - IAI:) — I (Ik - fk)} =0=
L [Re {I;;—l (]k — fk) H =0

and similarly :

9 oy~ E (m {1z (I - Ik) }] =0

b,
Hence, X
Bl (L -6)]=0, 1<I<K, (1)
Since the information symbols are uncorrelated : E [I;[]] = 6. We also have :
Ellaj] = E[L (Sheo fodi o +n7)]
= Jitk

Hence, equation (1) gives :
E[LD; | =E[L; |, 1<I<K=
0=F [(Z?:—Kl CiUg—j + ZJK:Ql Cj]k_j) ];;—l} =
0= (Z?:—Kl ijl—j) + ¢ =
c = —E?:_Kl ¢ifi—j, 1 <U< Ky

which is the desired equation for the feedback taps.

Problem 10.10 :

(a) The equivalent discrete-time impulse response of the channel is :

h(t) = zlj had(t — nT) = 0.35(t + T) + 0.95(t) + 0.36(t — T)

n=-—1
If by {c,} we denote the coefficients of the FIR equalizer, then the equalized signal is :

1

dm = Z Cnlin—n

n=-—1

which in matrix notation is written as :

0.9 0.3 0. c_1 0
0.3 09 0.3 o |=11
0. 03 09 1 0
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The coefficients of the zero-force equalizer can be found by solving the previous matrix equation.

Thus,
C_q —0.4762
o | = 1.4286
C1 —0.4762

(b) The values of g, for m = £2, £3 are given by

1

@ = > Chhay =cihy = —0.1429
n=-—1
1
q_o = Z Cnh_g_n == C_lh_l = —0.1429
n=-—1
1
n=-—1
1
q-3 = Z chh_3_pn =0
n=-—1

Problem 10.11 :

(a) The output of the zero-force equalizer is :

1
dm = Z CnTm,,

n=-—1

With ¢o = 1 and ¢, = 0 for m # 0, we obtain the system :

1.0 0.1 —-0.5 c_1 0
-02 10 0.1 Co =11
0.05 =02 1.0 a1 0

Solving the previous system in terms of the equalizer’s coefficients, we obtain :

c_1 0.000
Co =1 0.980
1 0.196
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(b) The output of the equalizer is :

0

c_1x_5 =20

C_1T_1+ cox_9g = —0.49
0

Gm =13 1

0

coTs + 101 = 0.0098
c1re = 0.0098

0

3333333833
\
(@]

Hence, the residual ISI sequence is
residual ISI = {...,0,—-0.49,0,0,0,0.0098, 0.0098, 0, ...}

and its span is 6 symbols.

Problem 10.12 :

(a) If {c,} denote the coefficients of the zero-force equalizer and {g,,} is the sequence of the
equalizer’s output samples, then :

1
dm = Z CnTm—n
n=-—1

where {z} is the noise free response of the matched filter demodulator sampled at ¢t = kT.
With ¢_1 =0, ¢o = ¢1 = &, we obtain the system :

gb 095{, 015{, C_1 0
095{, 51, 095{, Co = 51,
0. 181, 0981, gb C1 51)

The solution to the system is :

(0_1 co 01)2(0.2137 —0.3846 1.3248)

(b) The set of noise variables {v} at the output of the sampler is a gaussian distributed sequence
with zero-mean and autocorrelation function :

Mgy k| <2
) Fag <
R, (k) = { 0 otherwise

Thus, the autocorrelation function of the noise at the output of the equalizer is :

R (k) = R (k) % (k) % c(—k)
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where ¢(k) denotes the discrete time impulse response of the equalizer. Therefore, the autocor-
relation sequence of the noise at the output of the equalizer is :

0.9402 k=0
1.3577 k=+1
No&y | —0.0546 k=42
2 0.1956 k=43
0.0283 k=44
0 otherwise

To find an estimate of the error probability for the sequence detector, we ignore the residual
interference due to the finite length of the equalizer, and we only consider paths of length two.
Thus, if we start at state [ = 1 and the transmitted symbols are (1, I3) = (1,1) an error is
made by the sequence detector if the path (—1, 1) is more probable, given the received values of
r1 and 7. The metric for the path ([;,15) = (1,1) is :
po(1,1) = [y —2& 1y —2& ]C* l Z:; _ ggz ]

where :

CiNo&, 0.9402 1.3577
92 1.3577 0.9402

Similarly, the metric of the path (I, I5) = (—1,1) is

po(—1,1) = [ 711 1 |C [ - 1

)
Hence, the probability of error is :
Py = P(pa(—1,1) < po(1,1))
and upon substitution of ry = 2&, + nq, ro = 2&, + no, we obtain :
Py = P(n; 4+ ny < —2&)

Since n; and ny are zero-mean Gaussian variables, their sum is also zero-mean Gaussian with

variance : No£ NoE
0% _ 4 5958020

oy = (2 x 0.9402 + 2 x 1.3577)

and therefore :

PQ—Q[ 8& 1

4.5958 N,
The bit error probability is %.
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Problem 10.13 :

The optimum tap coefficients of the zero-force equalizer can be found by solving the system:

1.0 0.3 0.0 c_q 0
0.2 1.0 0.3 Co =11
0.0 0.2 1.0 c 0
Hence,
c_1 —0.3409
Co =1 1.1364
c1 —0.2273
The output of the equalizer is :
0 m< -3
C_1T_1 = —0.1023 m = -2
0 m=—1
Gm =4 1 m =0
0 m=1
C1T1 = —0.0455 m =2
0 m >3

Hence, the residual ISI sequence is :

residual ISI = {...,0, —0.1023,0, 0,0, —0.0455,0, .. .}

Problem 10.14 :

(a) If we assume that the signal pulse has duration 7', then the ouput of the matched filter at
the time instant ¢t =T is :

o) = [ st
- /OT(s(T) +as(t—=T)+n(r))s(r)dr
- /OT 32(7)d7+/0Tn(7)s(7)d7

= & +n

where &; is the energy of the signal pulse and n is a zero-mean Gaussian random variable with
variance o2 = % Similarly, the output of the matched filter at ¢t = 27T is :

y(2T) = a/OT 52(7)d7'+/0Tn(7')8(7')d7'
= afs;+n
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(b) If the transmitted sequence is :

i I,s(t —nT)

n=—oo

with I,, taking the values 1, —1 with equal probability, then the output of the demodulator at
the time instant ¢t = kT is
Y = ]kgs + Oélk—lgs + ng

The term alj_1&, expresses the ISI due to the signal reflection. If a symbol by symbol detector
is employed and the ISI is ignored, then the probability of error is :

Ple) = %P(erroru LI, 1=1)+ %P(error\]n =1,I, ;1 =-1)
1 1
= §P(( )& +ny < 0)—1—5 (1—a)&s+n, <0)
1 2(1 + a)?& 1 2(1 — «)?&;
e [ T} 3¢9 [ TN

(c) To find the error rate performance of the DFE, we assume that the estimation of the
parameter « is correct and that the probability of error at each time instant is the same. Since
the transmitted symbols are equiprobable, we obtain :

P(e) = P(error at k|, = 1)
P(error at k — 1)P(error at k|I;, = 1,error at k — 1)
P(no error at k — 1) P(error at k|I;, = 1,no error at k — 1)
(e)P(error at k|l = 1,error at k — 1)
(1 — P(e))P(error at k|l = 1,no error at k — 1)
= P(e)p+(1—P(e))q

I
+ v+

where :
p = P(error at k|I;, = 1,error at k — 1)
= %P(error at k|Iy =1,I,_1 = 1,error at k — 1)
%P(error at k|Iy = 1,11 = —1,error at k — 1)
P((1+2a)é+n, <0)+ %P((l —2a)& +n; < 0)

Q[ 2(1+2a)2gs] 1 [ 2(1 — 20)2€,

+
1
3
1
2 N, +3¢ N
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and

g = P(error at k|I;, = 1,no error at k — 1)

— P(58+nk<0):Q[ 258]

No

Solving for P(e), we obtain :

P(e) = — @[Vl
e o R - o[y + VR

A sketch of the detector structure is shown in the next figure.

Input ry + Threshold Output a

(1)
& device
Estimate Delay

o -

A

Problem 10.15 :

A discrete time transversal filter equivalent to the cascade of the trasmitting filter gr(t), the
channel ¢(t), the matched filter at the receicer gr(t) and the sampler, has tap gain coefficients
{z}, where :

0.9 m=0

Ty, =4 0.3 m==+1

0 otherwise
The noise v, at the output of the sampler, is a zero-mean Gaussian sequence with autocorrela-
tion function :

E[Vkl/l] = szk_l, Vf — l| S 1

If the Z-transform of the sequence {x,,}, X(z), assumes the factorization :
X(2) =F(z)F"(z7)

then the filter 1/F*(27!) can follow the sampler to white the noise sequence v4. In this case the
output of the whitening filter, and input to the MSE equalizer, is the sequence :

Up, = Z Tt fro—i + 1k
k
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where ny, is zero mean Gaussian with variance o2. The optimum coefficients of the MSE equal-

izer, ¢y, satisfy :
1

Z cnl'kn = &, k=0,+1

n=-—1
where :
Tp g+ 020,k |In—Fkl <1
(n—k) { 0 otherwise
_ f—k7 -1 S k S 0
§k) = { 0 otherwise
With

X(2) =0324+094+032"" = (fo + fiz ) (fo+ f12)
we obtain the parameters fy, and f; as :

i = ++/0.7854 f = ++/0.1146
07 ) £/0.1146 17 +£4/0.7854

The parameters fy and f; should have the same sign since fyf; = 0.3. However, the sign itself
does not play any role if the data are differentially encoded. To have a stable inverse system
1/F*(z7 1), we select fo and f; in such a way that the zero of the system F*(z7') = fo + fiz

is inside the unit circle. Thus, we choose fy = v/0.1146 and f; = +/0.7854 and therefore, the
desired system for the equalizer’s coefficients is

09+0.1 0.3 0.0 c_1 Vv 0.7854
0.3 0.9+0.1 0.3 ¢ | =1 v0.1146
0.0 0.3 09+0.1 1 0

Solving this system, we obtain

c_1 = 0.8596, ¢o=0.0886, c; = —0.0266

Problem 10.16 :

(a) The spectrum of the band limited equalized pulse is
L §roo n_Yo—iT <W
X — 77 2ne—oo Tgple W |f] <
() { 0 otherwise

_ ﬁ[2+2cosﬂ—wﬂ lfl<w

0 otherwise
B %{1+1COSWWJC} [l <wW

0 otherwise

239



_ 1
where W = T

(b) The following table lists the possible transmitted sequences of length 3 and the corresponding
output of the detector.

-1 -1 -1 -4
-1 -1 1] -2
-1 1 -1 0
-1 1 1 2
1 -1 -1|-2
1 -1 10
1 1 -1 2
1 1 1\ 4

=

As it is observed there are 5 possible output levels b,,, with probability P(b, = 0) =
P(by, = £2) = 1 and P(b,, = £4) = L.

1

(c) The transmitting filter G (f), the receiving filter Gr(f) and the equalizer Gg(f) satisfy the
condition

Gr(f)Gr(f)Ge(f) = X(f)

The power spectral density of the noise at the output of the equalizer is :

S,(f) = SulDIGR(HGE()? = o*|Gr(f)GE(f)I?

With

Gr(f) = Galf) = P(f) = T2 ls

the variance of the output noise is :

2

df

[\

ot = o [ 1Ga(NGe(NPd =0* [

—0o0

> }X(f)
Gr(f)

B 02/W 4 \1+cos”—wf\2df
L TEWE el

802 w 7Tf ’ 21 Ts0 f
_ W/o <1+cosw> 27Tl gf

The value of the previous integral can be found using the formula :

/ e cos” bxdzx

1
= S (a cosbx + nbsin br)e’x cos™ ! br 4+ n(n — 1)b? / €™ cos" 2 brdx
a?+n
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Thus, we obtain :

1
ol = N (T — 1) L 2l ez en
2T2W? 2rTso  Am?TE) + 41m

B 47'Tx5g i (627TT50W+1)1
47T2T520 + %

To find the probability of error using a symbol by symbol detector, we follow the same procedure
as in Section 9.3.2. The results are the same with that obtained from a 3-point PAM constellation
(0, £2) used with a duobinary signal with output levels having the probability mass function
given in part (b). An upper bound of the symbol probability of error is :

Pe) < P(|ym| > by = 0)P(by, = 0) + 2P(|ym — 2| > 1|by, = 2) P(by, = 2)
+2P (Y + 4 > 1|b,, = —4)P(b,, = —4)
= P(|lym| > 1|b,, = 0) [P(b =0)+2P(by, =2) + P(b, = —4)]

7
= gp(‘ym| > 1|bm = O)

But 9 .
P(|ym| > 1]by = 0) = / =128 g
(] > b, = 0) = —=—
Therefore,

<[

Problem 10.17 :

Since the partial response signal has memory length equal to 2, the corresponding trellis has 4
states which we label as (I,,_1, ). The following figure shows three frames of the trellis. The
labels of the branches indicate the output of the partial response system. As it is observed the
free distance between merging paths is 3, whereas the Euclidean distance is equal to

dp =22 +4+2*=24
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Problem 10.18 :

(a) X(2) = F(2)F*(27') =22+ 1+ 32~ *. Then, the covariance matrix ' is :

1+Ny 1/2 0 1/3/2
r=| 1/2 14N, 1/2 | and&=|1/V2
0 1/2 1+ N 0

The optimum equalizer coefficients are given by :

Cop = TI'Y¢
(1+No)?—1/4 —2(1+ Ny) 1/4 1/V2
= @ | 3+ N) (TN =51+ Np) {1/&]
1/4 —3(1+No) (14 No)*—1/4 0
N+ 2Ny +1
- \/idit(I‘) Ngjﬁfjiojé
2 4

where det(T) = (1 + Np) {(1 + Np)? — %}

(b)
det(T' = AL) = (1+ No — A) [(1+ No— A2 - 3] =
M=1+Ny, o= +1+No, y=1— 5+ N

and the corresponding eigenvectors are :

—1/V2 1/2 1/2
V1|: 0 ],V2|:1/\/§],V3|:1/\/§]

1/V2 1/2 1/2
(c) IN3 + AN2 + 2N, + 3/4
_ + + 2No +
(K| ge1 = Jon(1) = 1 — €T 1¢ = 2200 :
Jmm( )‘K—l Jmm() 6 6 2N5’+4N§—|—5N0+1
(d)

1= Jum(1)  2N2 + 3N, +3/4

Jom(1)  2NZ+ANZ+1/4
Note that as Ny — 0, v — 3. For Ny = 0.1, v = 2.18 for the 3-tap equalizer and v =
1+ Nlo — 1 = 3.58, for the infinite-tap equalizer (as in example 10-2-1). Also, note that
v = Nio = 10 for the case of no intersymbol interference.

’y:
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Problem 10.19 :
For the DFE we have that :
~ 0 K2 A
I, = Z cjuk_j—i—chIk_j, and ¢, = I, — I},
j=—K i=1

The orthogonality principle is simply :

{E eku;;_l]]_o, for —Klngo} {E
E

—0, for 1 <1< K, E
Since the information symbols are uncorrelated : E [I3I] = ady, where a = FE [\Ikﬂ is a
constant whose value is not needed since it will be present in all terms and thus, cancelled out.
In order to solve the above system, we also need E [ugu;]|, F [Iyu;]. We have :

Eluuf] = E K?:ﬁzo Jodk—n + nk) (Eﬁbzo folf . + nf”
= aX -0 JomSmk—1 + Nodk

=F
=F

*
]kuk_l

EkI]:_[ ]k];:—l

Iyuy_y], =K1 <1<0
L], 1<1< K,

and
Bllwi] = B [ (Sheo Fdion + )]
= afl*—k:

Hence, the second equation of the orthogonality principle gives :
E[LI; | =E LI |, 1<I<K, =
0= EJ(Z?:_Kl CjUg—j + Z]K:Ql Cj]k_j) ]I:—l} =

0=a Z?:—Kl ijl—j) + ac; =
= —E?:_Kl cifi—j, 1 <U< Ky

which is the desired equation for the feedback taps. The first equation of the orthogonality
principle will give :

E L) = E ||, K <1<0=
af*y=FE [(Z?Z_Kl Cjlk—j + ng‘{ﬁl CjIk—j) Uz—l} =

af*, = Z?:—Kl Cj (CL >k o I fngi—j + No5kl) + aZf:% cifi, —K1<1<0

Substituting the expression for ¢;, 1 < j < Ky, that we found above :

fr= Z?:—Kl € (an:O fonJmti—j + No5kl) - ZJK:Ql e, cmfimmfi, —K1 <1<0=
fr=5 ¢ (27[7/1:0 fonJmti—j + No5kz) — ki i fh, K<< 0=
Z?=—K1 Cjwlj - filv _Kl S l S O
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where 1, = So [ f m+1—j + Nodyj, which is the desired expression for the feedforward taps of
the equalizer.

Problem 10.20 :

The tap coefficients for the feedback section of the DFE are given by the equation :

€k = _Z?:_chjfk—j,k:1,2,...,K2
= _(COfk+c—1fk+1+---+C_K1fk+K1)

But fr =0 for £ < 0 and k > L. Therefore :

cL = —cofr, cL+1 =0, cLy2 =0, etc

Problem 10.21 :

(a) The tap coefficients for the feedback section of the DFE are given by the equation : ¢ =
— Z?:_ &, Cifr—j» 1 <k < Ky, and for the feedforward section as the solution to the equations :
Z?’:—Kl ¢y = —f*, K1 <1 <0. In this case, K; = 1, and hence : Z?’:—KI iy = =15, 1=
—1,0 or:
Yo,0c0 + Yo,—1¢c-1 = f§
Yo10C0 + V1,101 = [T

But ¢, = DN I fm+i—; + Nodij, so the above system can be written :

SRRt R EY)

] e[ )< [
] VRN AN+ ) L N 2v/2Ny

The coefficient for the feedback section is :

SO

1,forN0<<1

1
C1 = _Cofl = —\/—500 ~ —1, for Ny <<'1
(b) ) 2
2N§ + N,
Jmin(l) =1~ Z ij—j = 0 :_ 0 1 ~ 2N0, for NO <<1
Jj=—K1 2 (Ng + §N0 + Z)
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(c)

1— Jmin(l) 1 + 4N0 1
= = ~ Ny <<1
1T T () 2Ng (L 2Ny) 2N
(d) For the infinite tap DFE, we have from example 10-3-1 :
Jmin = 2N ~ 2N0, NO <<1

14+ No++/ (14+Np)>—1

1= Join _ 1=Noy/(14+No)*—1
Jmin 2N0

Yoo =

(e) For Ny = 0.1, we have :

Jmin(1) = 0.146, ~ =5.83 (7.66 dB)
Juin = 0.128, 74 = 6.8 (8.32 dB)

For Ny = 0.01, we have :

Jmin(1) = 0.0193, ~v =51 (17.1 dB)
Jmin = 0.0174, 7, = 56.6 (17.5 dB)

The three-tap equalizer performs very wee compared to the infinite-tap equalizer. The difference
in performance is 0.6 dB for Ny = 0.1 and 0.4 dB for Ny = 0.01.

Problem 10.22 :

(a) We have that :
o7 =900, L5 = 1200 =
1+ 8 =1200/900 =4/3 = 3=1/3

(b) Since 1/2T = 900, the pulse rate 1/7" is 1800 pulses/sec.
(c) The largest interference is caused by the sequence : {1,—1,s,1,—1,1} or its opposite in

sign. This interference is constructive or destructive depending on the sign of the information
symbol s. The peak distortion is 22:_2,,#0 fr=16

5
(d) The probability of the worst-case interference given above is g%) = 1/32, and the same is
the probability of the sequence that causes the opposite-sign interterence.
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Problem 10.23 :

(a)
F(z)=08—062"1=
X(2) = F(2)F* (') = (0.8 — 0.6271) (0.8 — 0.62) = 1 — 0.482"" — 0.482

Thus, 2o =1, x_1 = 21 = —0.48.

(b)

2mn ? jwT —jwT jwT
- }: P?(w—%———) = X (7)) =1 - 048¢ 7" — 0.48¢™" = 1 — 0.96 coswT

n=—oo

(c) For the linear equalizer base on the mean-square-error criterion we have :

_ /T No
Jin - = 27r —7/T T4 No— 006 cos o7 dw

_ 1 m No
- o J-m7 1+N0—0.960056'd0

:%(No)ﬂ L__ 49, q = 29

1+Ng —T 1—acosf 1+N
But : | ] )
— df = 21
27 J—x 1 —acos@ \/1—a27a
Therefore :
o Ny 1 B Ny
min — 1 N 5 B) 5
+ 0%1_ = V(1L + No)? = (0.96)

(d) For the decision-feedback equalizer :

2Ny

Jmin — B 2
1+ No +/(1+ No)* — (0.96)

which follows from the result in example 10.3.1. Note that for Ny << 1,

2N,
T & 0 ~ 1.56N,

1+4/1—(0.96)

In contrast, for the linear equalizer we have :



Problem 10.24 :

(a) Part of the tree structure is shown in the following figure :

I =
I=1
L=3
L=1 I=—1
I=-3
L=-1
IL=-3
L=3
n=3 h=1
n=1
L=-1
IL=-3
Li=-1 =3
L=1
L=-3 2=-1
IL=-3
L=3
L=1
IL=-1
[2:—3 x

(b) There are four states in the trellis (corresponding to the four possible values of the symbol
I_1), and for each one there are four paths starting from it (corresponding to the four possible
values of the symbol I}). Hence, 16 probabilities must be computed at each stage of the Viterbi
algorithm.

(c) Since, there are four states, the number of surviving sequences is also four.
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(d) The metrics are

(y1 —0.81)%, i=1 and > (y; — 0.8L; + 0.6, 1), i > 2

L =3)=1[0.5—3%0.8"=3.61

i (
m(hz 1) =[0.5—1%0.8)* = 0.09
(I = =1) = [0.5+1%0.8)° = 1.69
py (I; = =3) = [0.5+ 3% 0.8)* = 8.41
o (I =3,1 =3) = 41 (3) + [2 — 2.4 + 3% 0.6]° = 5.57
2 (3,1) = pa(1) +[2 =24 +1%0.6]" =0.13
p2 (3, —1) = iy (=1) +[2 — 2.4 — 1% 0.6]> = 6.53
p2 (3, —3) = 1 (=3) + [2— 2.4 — 3% 0.6]° = 13.25
po (1,3) = 1 (3) +[2 - 0.8 + 3 % 0.6]2 = 12.61
po (1,1) = py (1) +[2 - 0.8 + 1% 0.6]> = 3.33
pa (1,—1) = py(—1) + [2—08—1*06] —2.05
fi2 (1,—=3) = 11 (=3) + [2 — 0.8 — 3% 0.6]* = 8.77
po (—1,3) = 1 (3) + 2+ 0.8+ 3 % 0.6]2 = 24.77
pro (—1,1) = py (1) + [24+ 0.8 + 1% 0.6)* = 11.65
pa (=1, —1) = juy (1) + [2+O8—1*O6] —6.53
pio (=1, =3) =y (—=3) + [2+ 0.8 — 3% 0.6]> = 9.41
po (—3,3) = i (3) + 2+ 2.4+ 3 % 0.6]2 = 42.05
pra (=3,1) = pr (1) + [2 + 2.4 + 1% 0.6]° = 25.09
fia (=3, —1) = iy (—1) +[2+ 24 — 1% 0.6]> = 16.13
fiz (=3, =3) = 11 (=3) + [2+ 2.4 — 3% 0.6]> = 15.17

The four surviving paths at this stage are miny, [us(x, I;)], z =3,1,—1, -3 or :

I, = 3,I; = 1 with metric po(3,1) = 0.13

I, =1,I; = —1 with metric ps(1,—1) = 2.05

I, = —1,1; = —1 with metric ps(—1,—-1) = 6.53
I, = =3, [} = —3 with metric pus(—3,—3) = 15.17

Now we compute the metrics for the next stage :

I3=3,I, =31 =1) = up(3,1) + [-1 — 2.4 + 1.8 = 2.69
3,1,—1) = pp(1, —1) + [~1 — 2.4 4+ 0.6]* = 9.89

3,—1,—1) = po(—1,—1) + [-1 — 2.4 — 0.6]> = 22.53

f5 (3, =3, —3) = pa(—3,—3) + [-1 — 2.4 — 1.8 = 42.21
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(1,3,1) = p2(3,1) + [-1 — 0.8 + 1.8]° = 0.13
(1,1, —1) = pa(1, =1) + [-1 — 0.8 + 0.6]* = 7.81
ps (1, —1,—=1) = pp(—1 —1)+ [—1—0.8—0.6)" = 12.29
(1,-3,-3) :m( —3)4[-1-0.8—1.8°=2813
1+

>3a 1) :u2(3 1) [
1,—1) = pa(1, 1) + [-1 4 0.8 + 0.6]° = 2.69

( 0.8+ 1.8]* = 2.69

(

(=1,—1,=1) = pp(—1,-1) + [-1 + 0.8 — 0.6]> = 7.17
ps (=1, =3, —3) = pp(—3,-3) + [-1+ 0.8 — 1.8]* = 19.17

(

(

(-

3,3,1) = po(3,1) + [-1 + 2.4 + 1.8 = 10.37
—3,1,—1) = po(1, =1) + [~1 + 2.4 + 0.6]* = 2.69
3

113 ,—1,—1) = Mg(—l,—1)+[—1+2.4—06] =717

1 (=3, =3, —3) = pia(—3,—3) + [-1 + 2.4 — 1.8]* = 15.33
The four surviving sequences at this stage are miny, 5, [us(z, I», )], © = 3,1, -1

I3 = 3,1, = 3,1, = 1 with metric p3(3,3,1) = 2.69

I3 =1,1, = 3,1; = 1 with metric p3(1,3,1) = 0.13

I3y =—1,1, = 3,I; = 1 with metric us(—1,3,1) = 2.69

Iy =-3,1,=1,1; = —1 with metric pu3(—3,1,—1) = 2.69
(e) For the channel, 62, = 1 and hence :

6
P, = 7= Jav
)y = 8Q ( 157 )
Problem 10.25 :
(a) ,
bkz _ % ZnKz_Ol En6]27rnk/K
— 1 Zl 0 C@ j27ml/K€j27rnk/K
% Zl[ial o ZnKz—Ol €j27rn(k—l)/K

But

K-1
i 0, k£l
j2mn(k—1)/K __ )

D Ly

Y

Hence, b, = ¢;.
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(b)
BE(z) = S et

K-111 K-1 12mnk /K —k
— Zk:o [? ZTLZO Enej ™ / :| z
_ LzK—lE K-1 j2mn/K ,—1 k
= ' Zm=0 Im |2p=0 \€ z

1 K-1 1—z— K
- K ZTL:O By 1—exp(j2mn/K)z—1

1—z" K ~K-1 E,
K n=0 1—exp(j2rn/K)z~1

(c) The block diagram is as shown in the following figure :

Parallel Bank of Single — Pole Filters

Yo(n)
L + :FX\
- Y
1
ZI EO
y1(n)
. e + :rX\
Comb. Filter
- Y
+
z(n) X =q ed2m/K Z7] o
| y(n)
o —K
1/K z
v ()=
+ » X
- Y
i2m(K—1)/K |27 jo
| &

(d) The adjustable parameters in this structure are { Ey, £, ..., Ex_1}, i.e. the DFT coefficients
of the equalizer taps. For more details on this equalizer structure, see the paper by Proakis (IEEE
Trans. on Audio and Electroacc., pp 195-200, June 1970).
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CHAPTER 11

Problem 11.1 :

(a)
Fe) = 24 2 5 X() = PR () = 14 2 (4 57Y)
5 25
Hence : Con g s
25
=32 1 3 ] £ = { 4/5
0 # 1 0
and :
c-1 1 - a> —a  a? 3/5
Copt = Co = I‘_lf = B —a 1 —a 4/5
€1 a> —a 1—ad? 0

where a = 0.48 and 3 = 1 — 2a® = 0.539. Hence :

0.145
Copt = 095

—0.456

(b) The eigenvalues of the matrix I' are given by :

1—X 048 0
048 1—-X 048
0 048 1—-X

T — M| =0= =0=\A=1, 0.3232, 1.6768

The step size A should range between :

0< A <2/ Anax = 1.19

(c) Following equations (10-3-3)-(10-3-4) we have :

1 048 o1 | 0.6
w_[0.48 0.64]’ ¢lcol__lo.8]:’

and the feedback tap is :



Problem 11.2 :

(a)

A - 2 - 2 - 2
R W, % + Ny 1.707 + Ny
(b) From (11-1-31) :
) Z PV 1 23:
JA — A Jmln ~ _AJmin )\k’
k=1 I (1 - A)\k)z 2 k=1

Since J‘]—A =0.01:

007
T14+ N,

~ 0.06

(c) Let C' = VIC, ¢ = V!¢, where V is the matrix whose columns form the eigenvectors of
the covariance matrix T' (note that V! = V1), Then :

Ciny = (I - AT) Cpy + AL =

Clnsn) = (I— AVAV 1) Cy + AL =

V 'Cluy1) = V™ 1(I—AVAV N Cw +AV I =
= (I- AA)C),, + A€

n+1

which is a set of three de-coupled difference equations (de-coupled because A is a diagonal
matrix). Hence, we can write :

c;:,(n-i—l) = (1 - A)\k) C;a(n) + Agl/c? k= _17 071

The steady-state solution is obtained when ¢ ;) = ¢}, which gives :

S k=-1,0,1
Cp = >\_k7 - T H Y
or going back to matrix form :
AN =

C=VC' =VA 'V =
C=(VAV!) ¢=T"%

which agrees with the result in Probl. 10.18(a).
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Problem 11.3 :

Suppose that we have a discrete-time system with frequency response H(w); this may be equal-
ized by use of the DFT as shown below :

(079 n
System H(w) Y - Equalizer output
(channel) i E(w)
Aw) Y(w) o

Alw) = z__% ane " Y (w) = Z__:O Cpe " = A(w)H (w)

Let : Al T
Bl = ALYV
Y (W)

Then by direct substitution of Y (w) we obtain :

L) = A(w)A*(w)H* (w) _ 1
P = AP P~ @)

If the sequence {a,} is sufficiently padded with zeros, the N-point DFT simply represents the
values of F(gw) and H(w) at w = %’rk = wy, for k = 0,1,...N — 1 without frequency aliasing.
Therefore the use of the DFT as specified in this problem yields F (wy) = ﬁ, independent of
the properties of the sequence {a,} . Since H(w) is the spectrum of the discrete-time system, we
know that this is equivalent to the folded spectrum of the continuous-time system (i.e the system
which was sampled). For further details for the use of a pseudo-random periodic sequence to

perform equalization we refer to the paper by Qureshi (1985).

Problem 11.4 :

The MSE performance index at the time instant & is

J(Ck) =F

N
Z CenVk—n — I,
n=—N

If we define the gradient vector Gy, as

ﬁJ(Ck)
219Ck

Gy =
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then its [ — th element is

’(9J(Ck) 1 N
Gr = = =-FE|2 nUk—n — 1, r
k.l 219%1 5 n:Z_:N Ck,nVk k| Uk—g
= F [—ekv,’;_l} =-F [ekv,’;_l}
Thus, the vector Gy, is
_E[EkUZJrN]
—Elerv_y]
where Vy, is the vector Vi, = [vgyn - - vp_n]|T. Since G, = —e, V7, its expected value is

N

E[Gk] = E[—EkVZ] = —E[EkVZ] = Gk

Problem 11.5 :

The tap-leakage LMS algorithm is :
C(n+1) =wC(n) + Ae(n)V*(n) = wC(n) + A (T'C(n) — &) = (wI — AT"') C(n) — A¢

Following the same diagonalization procedure as in Problem 11.2 or Section (11-1-3) of the book,
we obtain :

C'(n+1)=(wl—AA)C'(n) — A

where A is the diagonal matrix containing the eigenvalues of the correlation matrix I'. The
algorithm converges if the roots of the homogeneous equation lie inside the unit circle :

lw—AN| <1, k=-N,..,-1,0,1,....N
and since A > 0, the convergence criterion is :

1
A < +w

)\max

Problem 11.6 :

The estimate of g can be written as : § = hoxg + ... + har—123—1 = X h, where x, h are column
vectors containing the respective coefficients. Then using the orthogonality principle we obtain
the optimum linear estimator h :

E[Xe]inE[x(g—xTh)}:0:>E[xg]:E{xxT}h

254



or :

—1
hopt = ].:{,m‘r C

where the M x M correlation matrix R,, has elements :
R(m,n) = E[z(m)x(n)] = F {gz} u(m)u(n) + 02 6pm = Gu(m)u(n) + o2 6um

where we have used the fact that g and w are independent, and that E [g] = 0. Also, the column
vector ¢ =F [xg] has elements :

c(n) = E[z(n)g] = Gu(n)

Problem 11.7 :

(a) The time-update equation for the parameters { Hy} is :
ngnﬂ) = ngn) + Ae(")yl(cn)

where n is the time-index, k is the filter index, and y,ﬂf‘) is the output of the k-th filter with
transfer function : (1 - Z_M) / (1 — ej%k/Mz_l) as shown in the figure below :

Parallel Bank of Single — Pole Filters

")

y
-1

()
Y
2 /M 2] H

Comb. Filter
2n) (R )

T

- -
T\ + P\t
S I
5

—
~
S
Y
N

j2m(M—1)/M| 2

0
.G
§.

oL
—(J
=

L
3

(&
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The error €(n) is calculated as : €(n) = I,, — y(n), and then it is fed back in the adaptive part
of the equalizer, together with the quantities y,(j), to update the equalizer parameters Hy.

(b) It is straightforward to prove that the transfer function of the k-th filter in the parallel bank
has a resonant frequency at f, = QW%, and is zero at the resonant frequencies of the other filters
fm = 273, m # k. Hence, if we choose as a test signal sinusoids whose frequencies coincide
with the resonant frequencies of the tuned circuits, this allows the coefficient Hj, for each filter

to be adjusted independently without any interaction from the other filters.

Problem 11.8 :

(a) The gradient of the performance index J with respect to h is : % = 2h + 40. Hence, the

dh
time update equation becomes :
1
hpi1 = hyp — §A(2hn +40) = h,(1 — A) — 20A

This system will converge if the homogeneous part will vanish away as n — oo, or equivalently
if:|1-Al<l<=0<A<2.

(b) We note that J has a minimum at h = —20, with corresponding value : Jy;, = —372. To
illustrate the convergence of the algorithm let’s choose : A = 1/2. Then : h,; = h,/2 — 10,
and, using induction, we can prove that :

= () o5 )]

where hg is the initial value for h. Then, as n — oo, the dependence on the initial condition hg

vanishes and h,, — —10ﬁ = —20, which is the desired value. The following plot shows the
expression for J as a function of n, for A = 1/2 and for various initial values hy.
50 T T
ok —— ho=-25
— - h0=-30
50l h0=0
-100
-150
ﬁ—200*
—250
-300["\
\
\
-350 S
400 R S
0 2 4 6 8 10 12 14 16 18 20

Iteration n

256



Problem 11.9 :

The linear estimator for 2 can be written as : Z(n) = a;x(n—1)+ax(n—1) = [z(n — 1) z(n — 2)] [

Using the orthogonality principle we obtain :

EH%:;;]e}_o:E{liEZ:m<x(n)—[:p(n—1)x(n—2)}l2D}_o

)=o) [+ [0]

This is a well-known fact from Statistical Signal Processing theory : a first-order AR process
(which has autocorrelation function v(m) = a/™) has a first-order optimum (MSE) linear esti-
mator : T, = aT,_1.

or :

Problem 11.10 :

In Probl. 11.9 we found that the optimum (MSE) linear predictor for x(n), is (n) = bx(n —1).
Since it is a first order predictor, the corresponding lattice implementation will comprise of one
stage, too, with reflection coefficient a;;. This coefficient can be found using (11-4-28) :

o 'Ym(l) _
")

Then, we verify that the residue fi(n) is indeed the first-order prediction error : fi(n) =
xz(n) —bx(n —1) =z(n) — z(n) = e(n)

ai

Problem 11.11 :

The system C(z) = —55= has an impulse response : ¢(n) = (0.9)", n > 0. Then, we write the
input y(n) to the adaptive FIR filter :

e e}

y(n) =>_ c(k)z(n — k) +w(n)

k=0

Since the sequence {z(n)} corresponds to the information sequence that is transmitted through
a channel, we will assume that is uncorrelated with zero mean and unit variance. Then the opti-

mum (according to the MSE criterion) estimator of z(n) will be: &(n) = [y(n) y(n —1)] [ ZO 1 :
1
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Using the orthogonality criterion we obtain the optimum coefficients {b;}:

{0 [ =o=£{] 2 | (s = i w0 0 |)} =0

0 e I e e P B )

The various correlations are as follows :

Ely(n)x(n)|=FE li c(k)x(n —k)x(n) + w(n)m(n)] =c(0)=1

k=0

where we have used the fact that : F [x(n — k)xz(n)] = dx, and that {w(n)} {z(n)} are indepen-
dent. Similarly :

Ely(n—1)z(n)] =F li c(k)x(n —k — 1)x(n) + w(n)x(n)] =0

k=0

2
+ o,

S5 e(k)el)a(n — Kyr(n — )

k=0 j=0

Ely(n)y(n)] = E

e e}

S e)eli) 0t = 309 + o —

=0 =0
1 2 1 2
= 1 081 v 19 0w

and :

Ely(n)y(n-1)] =

B[S S etk)e()e(n — k)aln —1 - j)}

k=0 7=0

= > ¢y j+1:2092]+1

.
(=)

1
N 091—081 09019

bo ] _ [ s +01 0955 7] [ o8
b | | 09535 535 +0.1 0] | —075

0.19

—_

Hence :

It is interesting to note that in the absence of noise (i.e when the term ¢2 = 0.1 is missing from
the diagonal of the correlation matrix), the optimum coefficients are : B(z) = by + bz~ ! =
1 —0.927", ie. the equalizer function is the inverse of the channel function (in this case the
MSE criterion coincides with the zero-forcing criterion). However, we see that, in the presence
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of noise, the MSE criterion gives a slightly different result from the inverse channel function, in
order to prevent excessive noise enhancement.

Problem 11.12 :

(a) If we denote by V the matrix whose columns are the eigenvectors {v;} :
V = [vq|val...|vn]

then its conjugate transpose matrix is :

and I' can be written as : N
= Z Avivit = VAV
i—1

where A is a diagonal matrix containing the eigenvalues of I'. Then, if we name X = VAY2V*,
we see that :
XX = VAl/Qv*tVAl/Qv*t _ VA1/2A1/2v*t _ 'VAv*t —-T

where we have used the fact that the matrix V is unitary : VV* = I. Hence, since XX =T,
this shows that the matrix X = VAY2V* = 3™V A?/Qvivi*t is indeed the square root of I'.

(3

(b) To compute T''/2 we first determine V, A (i.e the eigenvalues and eigenvectors of the cor-
relation matrix). Then :

N
F1/2 — Z >\7:1/2Vivikt _ VAl/Qv*t

i=1
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CHAPTER 12

Problem 12.1 :

(a)
N
U = Y X,
n=1
N
E[U] = Y E[X,]=Nm
n=1
o2 = E[U?|-E*U lZZXX] N2m?
= N 02+m)+N(N—1) — N?m? = No?
Hence : N2m? N2
m m
BNR)W =582 =3 02
(b)
N
Vo= > X,
n=1
N
EV] = Y E[X}]=N(o*+m?)
n=1

For the variance of V' we have :
ot = E V| - E[V] = E [V?| = N* (0” + m?)
But :

EV] =33 E(X2X2) = ZX4+Z > E(X2)E(X2)=NE(X")+N(N-1)E* (X?)

n m n mmn#m

To compute F (X*) we can use the fact that a zero-mean Gaussian RV Y has moments :

Kl 0, k : odd
E{Y}_{l-?p...(k—l)ak k :even
Hence :

} = F {Xﬂ = m* + 60°m? + 30*
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Then :
E[V?] = N (m*+ 60°m? + 30*) + N(N — 1) (6 + m?) =
o2 = E[V? — N? (02 + m?) = 2No? (02 + 2m?)
Note : the above result could be obtained by noting that V' is a non-central chi-square RV, with
N degrees of freedom and non-centrality parameter equal to Nm?; then we could apply directly
expression (2-1-125). Having obtained o3, we have :

N? (m?+0%)° N ((m?*/o*) +1)°
4

(SNR)y = (2(m?/0?) + 1)

~ 2No2 (02 + 2m?)

(c) The plot is given in the following figure for N=5 :

18

16

141 SNR(U)

12+

10 SNR(V)

SNR(db)

I I I I
0 5 10 15 20 25
mA2 / sigman2

(d) In multichannel operation with coherent detection the decision variable is U as given in
(a). With square-law detection, the decision variable is of the form SN [ X, + jY,|> where X,
and Y,, are Gaussian. We note that V' is not the exact model for square-law detection, but,
nevertheless, the effect of the non coherent combining loss is evident in the (SNR),, .

Problem 12.2 :

(a) r is a Gaussian random variable. If \/&, is the transmitted signal point, then :
E(r)=E(r)+ E(ry) = (1 + k)\/&E = m,
and the variance is :
ol =0} + k’o5
The probability density function of r is
1 _ (r=mp)?

pr) = V2rmo ¢
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and the probability of error is :

P, = /_Ooop(r) dr

2
ol

m2 (1 + k)25b

where

T

02 o} + k203
The value of k that maximizes this ratio is obtained by differentiating this expression and solving
for the value of k that forces the derivative to zero. Thus, we obtain
o

o3

k:

Note that if 07 > 09, then k£ > 1 and r, is given greater weight than r;. On the other hand, if
o9 > 01, then k < 1 and rq is given greater weight than ro. When oy = 09, k = 1 (equal weight).

b) When 02 = 302, k = %, and
( 2 1 3

o2 o7+ %(30%) 3

of

m% . (1+ %)251, . 4 <5b>
On the other hand, if k is set to unity we have

mf . 45{, gb

02 02+ 302 T o2
Therefore, the optimum weighting provides a gain of :
4
10log§ =1.25dB
This is illustrated in the following figure, where v = g’%
1

10°

6
gammay(db)
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Problem 12.3 :

(a) If the sample rate % = N -Af =W, does not alter with the insertion of the cyclic prefix
(which indeed is the case in most multicarrier systems), then the bandwidth requirements for
the system remain the same. However, keeping the same sample rate means that the block
length is increased by a factor of ¥, and the effective throughput is reduced to ﬁ = N]iv of
the previous one. This is usually compensated by the elimination of ISI, which allows the use
of higher order alphabets in each one of the subcarriers.

If the sample rate is increased by a factor of (NLM) - , so that the block length after the insertion
of the cyclic prefix will be the same as before, then the bandwidth requirements for the system
are increased by the same factor : W' = W% . However, this second case is rarely used in

practice.

(b) If the real and imaginary parts of the information sequence {Xj} have the same average
energy : F [Re(X})]* = E [Im(X})), then it is straightforward to prove that the time-domain
samples {z,}, that are the output of the IDFT, have the same average energy:

N—
> (Re(Xy) +j - Im(Xy)) exp(j2rnk/N), n=0,1,..,N —1
k=0

,_.

%\~

and :

E {xi} =€
for all n = 0,1,...N — 1. Hence, the energy of the cyclic-prefixed block, will be increased from
Ne to (N + v) e. However, the power requirements will remain the same, since the duration of
the prefixed block is also increased from N7 to (N + v) T.
For an analysis of the case where the real and imaginary parts of the information sequence do
not have the same average energy, we refer the interested reader to the paper by Chow et al.

(1991).

Problem 12.4 :

N-1 '
= > z(n)e I2kN =0, N -1
n=0
and for the padded sequence :
N+L-1 ' N-1 '
X'(k)y= Y /(n)e 2/ WHL) = N~ g(p)ed2mk/NFL - =0, N+ L—1
n=0 n=0
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where we have used the fact that : 2/(n) =0, n=N,N+1,..., N+ L — 1. We have also chosen
to use the traditional definition of the DFT (without a scaling factor in front of the sum). Then:

N-1
= }: rln) =

If we plot | X (k)| and | X’ (k)| in the same graph, with the x-axis being the normalized frequency
f= % or f = NLJFL, respectively, then we notice that the second graph is just an interpolated
version of the first. This can be seen if N + L is an integer multiple of N : N + L = mN. Then :

N-1 ' N-1 '
=) )~ dmnmk/mN > z(n)e 92N = X (k), k=0,1,..N—1
n=0 n=0

This is illustrated in the following plot, for a random sequence x(n), of length N = 8, which is
padded with L = 24 zeros.

15

10¢
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F—o
[ S—t
e ——]
F—o

0 1 2

w

15

10¢

IX“(k)l

Problem 12.5 :

The analog signal is :

1 N—
xt——z Xp e 0 <t<T
VN 2 T

The subcarrier frequencies are : Fy =k /T, k=0,1, ...N, and, hence, the maximum frequency
in the analog signal is : N/T. If we sample at the Nyquist rate : 2N /T = N/T, we obtain the
discrete-time sequence :

1N1 1N1
9> -5

which is simply the IDFT of the information sequence { X} .

z(n) =z(t =nT/N) = X, e 2k mT/N)/T Xyl N =01, N — 1
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Problem 12.6 :

The reseting of the filter state every N samples, is equivalent to a filter with system function :

1—27N

Halz) = 1 —exp(j2mn/N)z—1

We will make use of the relationship that gives the sum of finite geometric series : ZkN ak =

1—“ Using this we can re-write each system function H,(z) as :

11—z 1 —lexp(j2mn/N)z 1]N N-1 .
H,(z) = _ (j2mn/N
(=) 1 —exp(j2mn/N)z~1 1 —exp(j2mn/N)z~1 P (exp j2mn/N)z" )
or : o
H,(2) = Y exp(j2mnk/N)z"™", n=0,1,..N —1
k=0

which is exactly the transfer function of the transversal filter which calculates the n-th IDFT
point of a sequence.

Problem 12.7 :

We assume binary (M = 2) orthogonal signalling with square-law detection (DPSK signals wil
have the same combining loss). Using (12-1-24) and (12-1-14) we obtain the following graph for
Py(L), where SNR/bit =10log107s :

10°

107

10

6
SNR/bit (dB)

From this graph we note that the combining loss for v, = 10 is approximately 0.8 dB.
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CHAPTER 13

Problem 13.1 :

16&. o T ( T.

t) = — |- = <t< T,
o(t) =\ cosi T (1= 5 ). 0<ts

G(f) = [gt)e Mt

\/gfo ¢ cos? L ( %) eIt ¢

But cos ”C (t T?) = % [1—1—008%( — 7)} . Then
1 /16€&. 4E.T. o 4E.T,
— —T p— pr—
5\/ TR 3 = |G(0)] 3
and 16
02 = dwy,Ja |G(0))? = S ETwm &= Reby
Hence,

M R.&
PM S Q < 3 < wm>
mzz:g JavTc

This is an improvement of 1.76 dB over the rectangular pulse.

Problem 13.2 :
The PN spread spectrum signal has a bandwidth W and the interference has a bandwidth Wy,

where W >> W;. Upon multiplication of the received signal r(t) with the PN reference at the
receiver, we have the following (approximate) spectral characteristics
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A
WS,
ﬁ’l - WSQTb
Spectrum of
Interference JoWa /W
oW1
< O -
w
-—
1 / Tb x

After multiplication with the PN reference, the interference power in the bandwidth 1/7}, occu-
pied by the signal is
(J0W1> (i) _JoW
w J\T,)  WT,

Prior to multiplication, the noise power is JyW. Therefore, in the bandwidth of the information-
bearing signal, there is a reduction in the interference power by a factor W, = % = L., which
is just the processing gain of the PN spread spectrum signal.

Problem 13.3 :

The concatenation of a Reed-Solomon (31,3) code with the Hadamard (16,5) code results in an
equivalent binary code of black length n = nyny = 31 x 16 = 496 bits. There are 15 information
bits conveyed by each code word, i.e. k = kiko = 15. Hence, the overall code rate is R, = 15/496,
which is the product of the two code rates. The minimum distances are

Reed — Solomon code : Dy, =31 —3+1=29
Hadamard code : dyi, = % =8

Hence, the minimum distance of the overall code is dy;, = 28 X 8 = 232. A union bound on the
probability of error based on the minimum distance of the code is

&
< — - .
Py<(M-1)Q < QJMTC Rcdmm>

where M = 2% = 32768. Also, &, = S,,T}. Thus,

— dmin

STy k
Py <21 p
M= Q( JowIem )
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But kT, = nT, and d,,, = 232. Hence,

PM§215Q< 164 )

Jav/Sav

Due to the large number of codewords, this union bound is very loose. A much tighter bound is

M
Pus<3Q (*/7;%%)

but the evaluation of the bound requires the use of the weight distribution of the concatenated
code.

Problem 13.4 :

For hard-decision decoding we have

-2

Py < (M — 1) [4p(1 — p))™/? = 2™+ [4p(1 — p)*"

where p = @) ( JZ%I:‘U RC) =Q (1/2%) . Note that in the presence of a strong jammer, the

probability p is large, i.e close to 1/2. For soft-decision decoding, the error probability bound is

Jav/Sav

We select % = % = RL and hence:

Py < 2Q (7 2) < 2ew (- 2s)
< exp (—SLZ {2’”_1 — JL’;mln 2})

Ja Sa

For a give jamming margin, we can find an m which is sufficiently large to achieve the desired
level of performance.

Problem 13.5 :

(a) The coding gain is
1
R din = 5 % 10 =5(7dB)
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(b) The processing gain is W/R, where W = 10"Hz and R = 2000bps. Hence,

|44 107
5% 10°(37dB
= 51 =0 x 10 (37dB)
(c) The jamming margin is
(&) = (%) (Bedmin)
av g
(%)

= 37+ 7—-10=34dB

Problem 13.6 :

We assume that the interference is characterized as a zero-mean AWGN process with power
spectral density Jy. To achieve an error probability of 1075, the required &,/Jy = 10. Then, by
using the relation in (13-2-58) and (13-2-38), we have

W/R . W/R _ &
Jav/Pav ~  Nu—1 "~ Jo
W/R = (%)(N,—1)
W = R(2)WVu-1)

where R = 10* bps, N, = 30 and &,/Jy = 10. Therefore,
W =29x10°Hz
The minimum chip rate is 1/7, = W = 2.9 x 10°® chips/sec.

Problem 13.7 :

To achieve an error probability of 107%, we require

5{,)
— = 10.5dB
<J0 dB

Then, the number of users of the CDMA system is

_ W/R
N, = €b/Jo+1

= %+1:89users
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If the processing gain is reduced to W/R = 500, then

500
N,=——+1=4
v =113 + Husers

Problem 13.8 :

(a) We are given a system where (Jq,/FPu),5 = 20 dB, R = 1000 bps and (&,/Jo),5 = 10 dB.
Hence, using the relation in (13-2-38) we obtain

(%)dB - (I%Z)dB T (%)dB =30dB
% = 1000

1000R = 10°H 2

=
I

(b) The duty cycle of a pulse jammer for worst-case jamming is

071 0.7
= 2 g7
T8/ 10

The corresponding probability of error for this worst-case jamming is

0.083  0.083

P, = = =83x 1073
2T 0 10 .

Problem 13.9 :

(a) We have N, = 15 users transmitting at a rate of 10,000 bps each, in a bandwidth of
W =1MHz. The &/Jy is

W/R __ 105/10* _ 100
Jo = Ny—1 14 T 14

= 7.14(8.54 dB)

(b) The processing gain is 100.

(c) With N,, = 30 and &,/ Jy = 7.14, the processing gain should be increased to
W/R = (7.14) (29) = 207
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Hence, the bandwidth must be increased to W = 2.07TM H z.

Problem 13.10 :

The processing gain is given as
w
T 500 (27 dB)

The (&,/Jy) required to obtain an error probability of 107 for binary PSK is 9.5 dB. Hence,
the jamming margin is

(I%Z)dB - (%)dB N (%)dB
= 27-9.5
= 175dB

Problem 13.11 :

If the jammer is a pulse jammer with a duty cycle o = 0.01, the probability of error for binary
PSK is given as

Jav/Pav
Then,
W/R, 500 5
Jav/Pav B Jav/Pav B
and
Jav _ 100 (20 dB)
P[l'l) B
Problem 13.12 :
ct)= > cap(t—nT,)



The power spectral density of ¢ (¢) is given by (8.1.25) as
1
e (f) = =2 (NP ()
where
P (f)|? = (AT,)?*sin® (fT.), T, = lusec

and ®. (f) is the power spectral density of the sequence {c,}. Since the autocorrelation of the
sequence {¢,} is periodic with period N and is given as

N, m=0,+N,+2N,...

¢c (m) =

—1, otherwise

then, ¢. (m) can be represented in a discrete Fourier series as

1N—1 )
¢ (M) = — Zrc(k)eﬂ”mk/N,m:0,1,...,N—1
N =

where {r.(k)} are the Fourier series coefficients, which are given as
N—1 '
re(k) =Y be (m) e 92N | =0,1,.. . N —1
m=0

and 7. (k+nN) =r. (k) for n =0,£1,£2,.... The latter can be evaluated to yield
r, (k‘) —N+1— ZN—I 6—j27rkm/N

m=0
(1, k=0,+N, 42N, ...
| N+1, otherwise

The power spectral density of the sequence {¢, } may be expressed in terms of {r. (k)} . These co-
efficients represent the power in the spectral components at the frequencies f = k/N. Therefore,

we have
1

b=y 3 res (1 - 5]

k=—o00
2 k
d (f B NTC>

Finally, we have

0. =g > re|P(57)

Problem 13.13 :

Without loss of generality, let us assume that N; < N,. Then, the period of the sequence
obtained by forming the modulo-2 sum of the two periodic sequences is

N3 = kN,
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where k is the smallest integer multiple of Ny such that £Ny/Nj is an integer. For example,
suppose that N; = 15 and Ny = 63. Then, we find the smallest multiple of 63 which is divisible
by N; = 15, without a remainder. Clearly, if we take & = 5 periods of N,, which yields a
sequence of N3 = 315, and divide N3 by Ny, the result is 21. Hence, if we take 21 N7 and 5N,
and modulo-2 add the resulting sequences, we obtain a single period of length N3 = 21N, = 5N,
of the new sequence.

Problem 13.14 :

(a) The period of the maximum length shift register sequence is
N =2"—1=1023

Since T, = NT,, then the processing gain is

T,
NTb — 1023 (30dB)

(b) According to (132-38 jamming margin is

(%)dB - (Rmb)dB_ (%)dB
= 30-10
= 20dB

where J(w = JOW ~ JO/TC = JO X 106

Problem 13.15 :

(a) The length of the shift-register sequence is

L =2m—1=2%_1
= 32767 bits

For binary FSK modulation, the minimum frequency separation is 2/7T', where 1/T is the symbol
(bit) rate. The hop rate is 100 hops/ sec. Since the shift register has L = 32767 states and each
state utilizes a bandwidth of 2/T = 200 Hz, then the total bandwidth for the FH signal is
6.5534 M H z.
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(b) The processing gain is W/R. We have,

W 6.5534 x 106
= T 65534 x10%Db
7 100 6.5534 x 10” bps

(c) If the noise is AWG with power spectral density Ny, the probability of error expression is
[ & W/R
P, = — | = 7
? Q( NO) Q( PN/Pav)

Problem 13.16 :

(a) If the hopping rate is 2 hops/bit and the bit rate is 100 bits/sec, then, the hop rate is
200 hops/sec. The minimum frequency separation for orthogonality 2/7 = 400H z. Since there
are N = 32767 states of the shift register and for each state we select one of two frequencies
separated by 400 H z, the hopping bandwidth is 13.1068 M H z.

(b) The processing gain is W/ R, where W = 13.1068 M Hz and R = 100bps. Hence

% = 0.131068 M H =

(c) The probability of error in the presence of AWGN is given by (13-3-2) with L = 2 chips per
hop.

Problem 13.17 :

(a) The total SNR for three hops is 20 ~ 13 dB.Therefore the SNR per hop is 20/3. The

probability of a chip error with noncoherent detection is
1 _281\?
= —e 0
=35

where £./Ny = 20/3. The probability of a bit error is

P, = 1—(1_17)2
= 1-(1-2p+p°)

= 2p—p

— 1 — £
= e 0—56 0
= 0.0013



b) In the case of one hop per bit, the SNR per bit is 20, Hence,

1 _ &
Pb = 56 2No

L
Lo

2
= 227x107°

THerefore there is a loss in performance of a factor 57 AWGN due to splitting the total signal
energy into three chips and, then, using hard decision decoding.

Problem 13.18 :

(a) We are given a hopping bandwidth of 2 GHz and a bit rate of 10 kbs. Hence,

W 2x10° 5

(b) The bandwidth of the worst partial-band jammer is a*W, where

Hence
oW =04GHz

c) The probability of error with worst-case partial-band jamming is
y

e’l _ e’l
P = wm =%
— 368 x 102

Problem 13.19 :

The error probability for the binary convolutional code is upper-bounded as :

P, < i BaPa(d)

d:dfree
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where P,(d) is the probability of error in a pairwise comparison of two paths that are separated
in Hamming distance by d. For square-law detected and combined binary FSK in AWGN, P»(d)

) Py(d) = % exp (—R.d/2) df [% (%éi’cd)"d‘i" <2d - 1)1

n=0 r=0 r

Problem 13.20 :

For hard-decision Viterbi decoding of the convolutional code, the error probability is

Py, < i BaPa(d)

d:dfree

where Py(d) is given by (8.2.28) when d is odd and by (8.2.29) when d is even. Alternatively,
we may use the Chernoff bound for Py(d), which is : Py(d) < [4p(1 —p)]d/z- In both cases,
p = 5 exp(—7Re/2).

Problem 13.21 :

For fast frequency hopping at a rate of L hopes/bit and for soft-decision decoding, the perfor-
mance of the binary convolutional code is upper bounded as

Py < i BaP>(Ld)

d:dfree
where Ld—1 Ld—1
1 1 (pRd\" KT (20d — 1
Po(Ld) = g5z exp (= wRed/2) 3 [;( 5 ) > ( , )]
n=0 : r=0

Note that the use of L hops/coded bit represents a repetition of each coded bit by a factor of
L. Hence, the convolutional code is in cascade with the repetition code. The overall code rate
of R./L and the distance properties of the convolutional code are multiplied by the factor L, so
that the binary event error probabilities are evaluated at distances of Ld, where d... < d < 0.

Problem 13.22 :

For fast frequency hopping at a rate of L hopes/bit and for hard-decision Viterbi decoding, the
performance of the binary convolutional code is upper bounded as

P, < i BaP>(Ld)

d:df'r'ee

276



where
Py(d) < [4p(1 — p)**

1 - - L—-1 R, n 1 L—1-n 2L — 1
e g

n! = r
On the other hand, if each of the L chips is detected independently, then :

and

Py < i BaP>(Ld)

d:dfree

where Py (Ld) < [4p(1 — p)]*¥* and p=3 exp (Y Re/2) .

Problem 13.23 :

There are 64 decision variables corresponding to the 64 possible codewords in the (7,2) Reed-
Solomon code. With d,,;, = 6, we know that the performance of the code is no worse than the
performance of an M = 64 orthogonal waveform set, where the SNR per bit is degraded by the
factor 6/7. Thus, an upper bound on the code word error probability is

Py < (M —1)P, = 63P,
where
1 6, V%= (3, \"
Py < o501 &XP (—%;kﬂ) nzzocn (;k%>

With L =6 and k = 6, P, becomes

1 > 18 \"
P < 17 OXP (—18v,/7) Z Cn (7%)

n=0

where .
13227 /11
()

Problem 13.24 :

In the worst-case partial-band interference channel, the (7,2) Reed-Solomon code provides an
effective order of diversity L = 6. Hence

6
Py < 63Py(6) =63 (ﬂ>

7

S

1.6x103 W% W
< = ,forL—623
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Problem 13.25 :

2&8{, 1 +o0 42
Pg(d)—dQ( JO>—a\/%/\/2l}ﬁet/2dt

Hence, the maximum occurs when

dP, (CL) 1 /+°O —12/2 1 [a& _e&
= dt — =\ | e " =0 =
da Vor ) mat o\ 7

1 /+Oo _tz/zdt 1 CLgb _“J_ib
— e =\ €
V2T ,/% 2 7TJO

The value of a that satisfies the above equation can be found numerically (or graphically) and
is equal to a = 2T+, Substitution of this result into P(a) yields (for &/Jy > 0.71)

Ey/Jo”
0.71 0.083
— V2.071) =
&0 )=&/%

P

Problem 13.26 :

The problem is to determine
L 2 L 2
Elexp (_UZﬂk|zgc+N1k| _UZﬂk|N2k| )1
k=1 k=1

where thee {3} are fixed and the { Ny}, {Nox} are complex-valued Gaussian random variables
with zero-mean and variances equal to o7. We note that 8, = 1/o7 and, hence,

%E |N1k‘2 = %E |N2k‘2 = O']%

sOE |Nu | = SO E |Noi|> =1
Since the {Nyx}, and {No;} are all statistically independent
L L
E lexp (—U > Bel28.+ N1k|2>] =]]E [exp (—Uﬁk |2E. + le\z)]
k=1 k=1

and similarly for F {exp (—v SE L Br |N2k|2)] . Now, we use the characteristic function for the

sum of the squares of two Gaussian random variables which is given by (2.1.114) of the text (the
two Gaussian random variables are the real and imaginary parts of 2&, + Ny ). That is

: m 2
() = B () = g exp (”Zizlmi)

1 — juo? 1 — juo?
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where Y = X2 + X2, m; is the mean of X; and o2 is the variance of X;. Hence,
2\ | 1 —4&1&)83
E |exp | —v = exp | ———
] 14 2v 1+ 20

2
BrNox, )] _

\/EQgc + \/ Be N1k

B e (-0

Lo —4BvE?
P2(ﬁ>:,£[11_4vzexp< 1+ 20 )

and

Consequently

Problem 13.27 :

The function

a —2av&? r
7o) = (e (e

is to be minimized with respect to v and maximized with respect to a. Thus,

0 2a€,
%f(v,a)—02>8v(1+221)— 7 (1—-2v)=0
and 5 .
wé,
gal (@) = 0= 1= Ty =0

The simultaneous solution of these two equations yields the result v = 1/4 and a = ?’% < 1. For
these values, the function f(v,a) becomes

1 3J, 4 \"  [147\" g,
—_ — o = e >
f (4’ E ) (e%> ( Ve ) for 7 Jo k

Problem 13.28 :

The Gold code sequences of length n = 7 may be generated by the use of two feedback shift
registers of length 4 as shown below
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Ve
N

Y

Y

EE Gold code

A
sequence

Y

4RY
N e

These sequences have the following cross-correlation values

Values of correlation | Frequency of this value
-5 1
3 3
-1 3

Problem 13.29 :

The method of Omura and Levitt (1982) based on the cut-off rate Ry, which is described in
Section 13.2.3, can be used to evaluate the error rate of the coded system with interleaving in
pulse interference. This computational method yields results that are reasonably close to the
results given by Martin and McAdam (1980) and which are illustrated in Fig. 13.2.12 for the
rate 1/2 convolutional coder with soft-decision decoding.

Problem 13.30 :

(a) For the coded and interleaved DS binary PSK modulation with pulse jamming and soft-
decision decoding, the cutoff rate is
Ry=1-1logs [1 + ae‘“gC/NO}
Hence,
log 5 {1 + ae‘a‘gc/NO} =1—Ry=>
{1 + ae‘a‘gc/NO} = 21-f0 —
= iln

£ _a
No 21-Ro_1
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and since €. = E R
gb 1 a

No  aR 2R _q

(b)

i(ﬁ)——lln a + ! =0
da \Ny/  a?R  2-Ro—1  a2R

Hence, the worst-case a is
a* = (21_R0 — 1) e

provided that (21_R0 - 1) e < 1, or equivalently : Ry > 1 —logs(1+ e 1) = 0.548.
If Ry <0.548, then a = 1 maximizes ]f,—l; and. hence :
s 1 1

N, Rlorm_p ¢!

which is the result for the AWGN channel. For Ry > 0.548 and a = a* we have

S _ el p 0548
Ny R(2-Fo—1)y 077

(c) The plot of 101log (T%’O) versus Ry, is given in the following figure:

14

12+ Worst-case
pulse

jamming

10

AWGN

0 I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cut-off rate RO
Clearly, there is no penalty in SNR due to worst case pulse jamming for rates below 0.548. Even
for Ry = 0.8 the SNR loss is relatively small. As Ry — 1, the relative difference between pulse
jamming and AWGN becomes large.
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Problem 13.31 :

(a)
Ry =log2q —logs [1 + (g — 1)aexp(—a&./2No)] =
1+ (¢ — Daexp(—a&./2Ny) = g2~ 10
and since €. = R&,
& _ 2, (¢=Va
Ny aR  ¢2-Fo—1

(b)

d (& 2 (g—1a 2

Ly ] _

da (N()) @R q2—Fo — 1 + a’R 0=
. (@2 f—1)e

a* = 1
. 27 fo—1)e . % .
provided that (qqf) < 1 or, equivalently, Ry > log gm. For a = a*, the SNR/bit

becomes
& B 2(q—1)

— = f 1
N(] R[qQ‘RO—l](i’ or R0> 0g o

7
(g—1)/e+1

(c) The plots are given in the following figure

25

20

10log(EbirN)
’
(4]

‘

=
o
T

| | | | | |
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RO/log2(q)

For low rates, the loss due to partial band jamming is negligible if coding is used. Increasing g
reduces the SNR/bit at low rates. At very high rates, a large ¢ implies a large SNR loss. For
q = 2, there is a 3dB loss relative to binary PSK. As ¢ — oo, the orthogonal FSK approaches
-1.6dB as Ry — 0.
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CHAPTER 14

Problem 14.1 :

Based on the info about the scattering function we know that the multipath spread is T}, = 1 ms,
and the Doppler spread is By = 0.2 Hz.

(b) (i) Frequency non-selective channel : This means that the signal transmitted over the
channel has a bandwidth less that 1000 Hz.

(ii) Slowly fading channel : the signaling interval T is T' << (At), .

(iii) The channel is frequency selective : the signal transmitted over the channel has a bandwidth
greater than 1000 Hz.

(c) The signal design problem does not have a unique solution. We should use orthogonal M=4
FSK with a symbol rate of 50 symbols/sec. Hence T = 1/50 sec. For signal orthogonality,
we select the frequencies with relative separation Af = 1/T = 50 Hz. With this separation
we obtain 10000/50=200 frequencies. Since four frequencies are requires to transmit 2 bits, we
have up to 50" —order diversity available. We may use simple repetition-type diversity or a
more efficient block or convolutional code of rate > 1/50. The demodulator may use square-law
combining.

Problem 14.2 :
(a) .
Py, = p” 4 3p*(1 — p)

where p = ﬁ%, and 7, is the received SNR/cell.
(b) For 7, = 100, Py, ~ 1075 +3-107*~3-107*
For 4, = 1000, Py, ~ 1072 +3-10%~3-1076

) _ . . _ (20L—-1\ [ 1\F .
(c) Since 4. >> 1, we may use the approximation : Py, ~ ( ; ) (%) , where L is the order of
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diversity. For L=3, we have :

10 ~107° ~. =
Py ~ :{P% 107°, 7, 100}

33 P, ~ 1078, 5, = 1000

(d) For hard-decision decoding :

Pop = i (@pk(l — )bk < [p(1 — p)]*?

_L+1
k= 2

where the latter is the Chernoff bound, L is odd, and p = ﬁ For soft-decision decoding :

b (2E-1 (1)
25 ™~ I ’70

Problem 14.3 :

(a) For a fixed channel, the probability of error is : P.(a) = @ (\/ “]2\,205) . We now average this
conditional error probability over the possible values of o, which are a=0, with probability 0.1,
and a=2 with probability 0.9. Thus :

8E 8E

P, =0.1Q (0) + 0.9Q ( F) = 0.05+ 0.9Q ( F)
0 0

(b) As & — 00, P. — 0.05
(c) When the channel gains a;, ay are fixed, the probability of error is :

(a2 + a2) 25)

Pe(a1>a2) =Q ( Ny

Averaging over the probability density function p(aq,as) = p(a;) - p(as), we obtain the average
probability of error :

Po=(01)°Q(0) +2-09-0.1-Q (/) + (0.9 Q (/)
= 0.005+0.18Q (/32) +0.81Q (/1)

(d) As N% — 00, P. — 0.005
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Problem 14.4 :

(a)
T =1 sec = (Af), =~

(b) Since W =5 Hz and (Af), ~ 1 Hz, the channel is frequency selective.
(c) Since T=10 sec < (At),, the channel is slowly fading.

(d) The desired data rate is not specified in this problem, and must be assumed. Note that with
a pulse duration of T' = 10 sec, the binary PSK signals can be spaced at 1/T = 0.1 Hz apart.
With a bandwidth of W=5 Hz, we can form 50 subchannels or carrier frequencies. On the other
hand, the amount of diversity available in the channel is W/ (Af). = 5. Suppose the desired
data rate is 1 bit/sec. Then, ten adjacent carriers can be used to transmit the data in parallel
and the information is repeated five times using the total number of 50 subcarriers to achieve
5-th order diversity. A subcarrier separation of 1 Hz is maintained to achieve independent fading
of subcarriers carrying the same information.

b (2E-1 ()
UL ) 4

where L=>5. For P; = 107, the SNR required is :

(e) We use the approximation :

5
1
(126) ( ) =10"%=5.=10.4 (10.1 dB)

47,
(f) The tap spacing between adjacent taps is 1/5=0.2 seconds. the total multipath spread is

T,, = 1 sec. Hence, we employ a RAKE receiver with at least 5 taps.

(g) Since the fading is slow relative to the pulse duration, in principle we can employ a coherent
receiver with pre-detection combining.

(h) For an error rate of 1075, we have :

2L —1\ (1Y)’
Py ~ ( . ) <_> =107° = 5, = 41.6 (16.1 dB)
Ve
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Problem 14.5 :

(a)
P (nl’ n2) _ ﬁe—(n%-i-n%)/zﬂ

U1:2€+N1, U2:N1+N2:>N1:U1—25, Ny =Uy — Uy + 2

where we assume that s(t) was transmitted. Then, the Jacobian of the transformation is :

1 -1
J_\ - \_1
and :
plur, up) = z%e_ﬁ[(U1_25)2+(UZ_(U1_25))Q]
_ Wlaze—%%[(U1—2€)2+U22+(U1—2€)2—2U2(U1—26)]
2ro
_ 1 26—0—12[(U1—2€)2+%U22—U2(U1—2€)]
2ro

The derivation is exactly the same for the case when —s(t) is transmitted, with the sole difference
that U; = —2& + Ny.

(b) The likelihood ratio is :

p(uy, us| + s(t))

1
A= = —— (=8EU, + 4EU. +s(t) 1
plun,ua —s(t)) P { oz (Z8EUL +480y)| >
or 8€ 1 1
nA =% (U1 _ —Uz) S+ 0 o [, — 20, >0
o2 2 2

Hence = —1/2.

(c)

Hence:

(d)

1 —(u—2€)?/2E Ny
o ToENe du

- rw
= Q(ww) = (V)

(e) If only U is used in reaching a decision, then we have the usual binary PSK probability of
error : P, =@ (, / %) , hence a loss of 3 dB, relative to the optimum combiner.

On)
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Problem 14.6:

(a) )
U = Re [Z BeUs| =10

k=1

where U, = 2Fa,e™ % + v, and where vy, is zero-mean Gaussian with variance 2E Ng;,. Hence,
U is Gaussian with :

ElU] = Re[Sk BB (Uy)]
2€ - Re [Zﬁzl akﬁke_j%}
26 325 ak | Bl cos (B, — 1) = ma,

where (), = |G| €%. Also :
L
Ui =2& Z |ﬂk|2 Nog
k=1

Hence :
1

p(u) = \/%Uu

o~ (u=ma)?/20%

(b) The probability of error is :
0
Py = /_ p(u)du=Q (@)

where : )
€ [ LAy ar |Bel cos (0x — x))]
’}/ =
S |Bk]* Now

(c) To maximize P,, we maximize . It is clear that 7 is maximized with respect to {6} by
selecting 0, = ¢y for k= 1,2, ..., L. Then we have :

_E[Thalal])
S 18kI* Now

Now :
dy L 2 - =
— — 0= Z|ﬁk| Nok | a; — Zak 1Bl ) |B1] Nt = 0
d |3 k=1 k=1

Consequently :
_ Y

81 = 5
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and :

5 12
& |k ]

) L
T Zﬁzl ]\C;—%NOIC B kX:leO"f
The above represents maximal ratio combining.
Problem 14.7 :
(a) X
p(ur) = (20%)1; (L— 1) up™! _ul/%lv o} = 2ENy (1+7e)
p(uz) = ! ub—temu2/29% g2 — 96N,

(203)" (L —1)!
Py = P(Us > Uy) = /OOO P(Uy > Uy |UL)p(U)dU,

But :

P(U2 > UI‘U1> = fuolop(qm)dya — f;’f muéz—le—uzﬂogduz
o2 —1)!

o
1 _ 2 202)(L—1 _ 2
_ . Ll Ué’ 16 U2/20’2(_20.§> oo (= 3)( )u 6 U2/20’2du2
(202)" (L-1)! w “ (20 ) (L-1)!
_ 1 uL—1e_u1/2og +f°° 1 u§—2e—u2/2ogdu2

(202)" -1t ! t(202)" 7 (L—2)!

Continuing, in the same way, the integration by parts, we obtain :
L—1 ( 2\k
—u1 /202 u1/202)
P(Uy > Uy |Uy) = e /272 3~ k!

Then :

k
202 2
00 | —uy /202 \~L—1 (u1/203) 1 L—1, /20
P, s [e 230, . (2o§)L(L—1)!u1 e tduy

_ L—1 1 oo, L—1+k —ul(l/o +1/02 /2d
T e TR Lo
The integral that exists inside the summation is equal to :

fOOO uL—l—i—ke—uadu —

L—1+k_—ua] 00 _ _ _
U e _ L-1+k IOO UL 2+k€ ua oy =
(o) Jo 0

L—-1+k oo, L—2+k_ —ua
= o u e "“du
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where a = (1/0%? +1/03)/2 = ;lJ{% Continuing the integration by parts, we obtain :

o0 1 20202 \ "

L—1+k,—ua g, _ L—1+k)= 172 L—1+k)!
/0 u ey =~y ( + k) = ( + k)
Hence :
_ Ll 1 00\ L=14k ,—u1(1/03+1/03) /2
P = N e T

_ L—1 1 20705 L+k _ |

210 k(202)" (202) " (L-1)! <01+02) (L—1+k)

L—1+k thoZl L-1+k\ (2ENo(147.))*(2ENy)*
o Z ( )(2+ )“k Z ( k )(2EN0(1+"yc)+2ENO)L+k

i (1) S — ()" 3 () (52’

which is the desired expression (14-4-15) with p =

2+"/c
Problem 14.8 :
JPNDS NDS
T(D,N,J=1)= =
(DN, J=1) 1—JND2(1+J)‘J—1 1—2ND?
AT(D.N), _(1-2ND*)DP-NDP(-2D%) D
aNn - Nt (1 - 2ND2)? N (1 —2p2)?
(a) For hard-decision decoding :
_ dT(D,N)
b, < Z ﬂsz AN |N:1,D: 4p(1—p)
d= dfree
where p = 3 [1 — /135, | for coherent PSK (14-3-7). Thus :
_ 4 -p)p
b= 2
[1—8p(1—p)l

(b) For soft-decision decoding, the error probability is upper bounded as

P, < i BaPs(d)

d:dfree
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where df.e. = 6, {84} are the coefficients in the expansion of the derivative of T(D,N) evaluated

at N=1, and :
A = R AW
P = (") 5 (=) (57

k=0

where p = ,/11"%, as obtained from (14-4-15).

These probabilities P, are plotted on the following graph, with SNR = 7.

107

107

Hard—dec. decoying

L

Pb - Probability of a bit error
B
o

s Soft-dec. decoding
10 "¢

| | | | | | | |
2 4 6 8 10 12 14 16 18 20
SNR (db)

Problem 14.9 :
L
U= Z Uy,
k=1

(a) U, = 2Fay, + vy, where v, is Gaussian with E [v] = 0 and 02 = 2EN,. Hence, for fixed
{a}, U is also Gaussian with : E[U] = S5, E(Up,) = 2EYr_, ax and 02 = Lo? = 2LEN,.
Since U is Gaussian, the probability of error, conditioned on a fixed number of gains {ay} is

2E YL, ak> ol 2E (Shy @)

Py (a1, a9, ...,a1) = Q < SLEN, N,

(b) The average probability of error for the fading channel is the conditional error probability
averaged over the {a;}. Hence :

Pd:/o dal/o dag.../o dar Py (ay,as, ...,ar) plai)p(as)...p(ar)

290



where p(a;) = % exp(—aj/20?), where o is the variance of the Gaussian RV’s associated with
the Rayleigh distribution of the {a} (not to be confused with the variance of the noise terms).
Since P, (a1, as, ..., ar) depends on the {az} through their sum, we may let : X = >F_ a; and,
thus, we have the conditional error probability P,(X) = @ ( 2EX/ (LNO)) . The average error
probability is :

P= [T ROOMX)aX

The problem is to determine p(.X). Unfortunately, there is no closed form expression for the pdf
of a sum of Rayleigh distributed RV’s. Therefore, we cannot proceed any further.

Problem 14.10 :

(a) The plot of g(7.) as a function of 7, is given below :

0.221

0.211

0.2

g(gamma_c)
=}
=
o

o

[

©
T

o
[
2

0.16

0.15
0

L L L L L L
1 2 3 4 5 6 7
gamma_c

The maximum value of g(7.) is approximately 0.215 and occurs when 7, ~ 3.
(b) 7. = 4/ L. Hence, for a given 7, the optimum diversity is L = %,/5. = /3.

(c) For the optimum diversity we have :

Py(Lop) < 902157, _ ,~In20.215% _ ,—0.15% _ l6—0.15’75+1n2
op

For the non-fading channel : P, = 3% Hence, for large SNR (9, >> 1), the penalty in SNR
is:

0.5
101 —— =5.3dB
Oog100‘15 5.3d
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Problem 14.11 :
The radio signal propagates at the speed of light, ¢ = 3x10%m/ sec . The difference in propagation
delay for a distance of 300 meters is

~ 300
3 x 108

4 = lusec

The minimum bandwidth of a DS spread spectrum signal required to resolve the propagation
paths is W = 1 M H z. Hence, the minimum chip rate is 10° chips per second.

Problem 14.12 :

(a) The dimensionality of the signal space is two. An orthonormal basis set for the signal space
is formed by the signals

fl(ﬂ—{\/%? 0§t<% fz(t)—{\/%’ %§t<T

0, otherwise 0, otherwise

(b) The optimal receiver is shown in the next figure

t=7%

2
r_ K L

r(t) fa( t) Select

2 the

ﬁ(T—t)—KQt:T ry

y

Y

largest

(c) Assuming that the signal s;(t) is transmitted, the received vector at the output of the
samplers is

r=| + ny, no

2

where nq, ny are zero mean Gaussian random variables with variance % The probability of
error P(e|sy) is

AT
P(elsy) = P(ny—ng > 5 )
1 0 _ a2 AT
- 2Ng o =
vV 27TNO »/% ¢ v Q 2N0
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where we have used the fact the n = ny — ny is a zero-mean Gaussian random variable with

variance Ny. Similarly we find that P(els;) = Q {\/ ;‘NT so that
| A2T
2Ny

(d) The signal waveform f (% —¢) matched to f;(t) is exactly the same with the signal waveform
fo(T — t) matched to f5(t). That is,

Ay -0 =BT -0 =50 - { Vi 0st<s

0, otherwise

H@_%Hﬂ@+%H¢@_Q

Thus, the optimal receiver can be implemented by using just one filter followed by a sampler

which samples the output of the matched filter at t = % and t = T to produce the random

variables r; and ro respectively.

(e) If the signal s1(t) is transmitted, then the received signal () is

L + n(t)

(1) = si(6) + gt~ 3)

2
The output of the sampler at t = % and t =T is given by

3A A2T
o= \/;4 \/;4 g T
B \[ 1 AT
= o\ T _5 g m

If the optimal receiver uses a threshold V' to base its decisions, that is

51

THT — T2 z V

52
then the probability of error P(e|s;) is
AT AT Vv
Plels) = Pz =m > 2= = V) = Q|2 m‘m]
If so(t) is transmitted, then
1 T
r(t) = so(t) + 532(1& - 5) + n(t)
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The output of the sampler at t = % and t =T is given by

T =

B A\/5T+3A\/ET+
"2 = T4 "2 \T1s "™
A2T

5 [A2
— 5 T + Mo
The probability of error P(e|ss) is

5 |A?2T
P(e\82):P(n1—n2>§ T"‘V):Q

Thus, the average probability of error is given by

5 [BT v
2V 8N, v Ny

Ple) — 1P(e|sl)+%P(e\32)

2
1 2T v ] 1. [s[@r v

— Qo) —Q |2 /=
21w, T U T 2V s U

The optimal value of V' can be found by setting —ﬂg(e)

— equal to zero. Using Leibnitz rule to
differentiate definite integrals, we obtain

2
VP(e) 0— (9 A2T 1% A2T N Vv
oW 8]\70 VN 8]\70 VN
or by solving in terms of V
1 A
8

(f) Let a be fixed to some value between 0 and 1. Then, if we argue as in part (e) we obtain

P(e|si,a) = P(ng —ng > 24— A r —Via
P(e|s,a) = P(ny —ng > (a—i—2)\/ 3 +V(a))

and the probability of error is

P(ela) = 3P(els1,a) + 5 Plelsz, )
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JP(e|a)

For a given a, the optimal value of V(a) is found by setting 3 (a)

we find that
a |A2T
Via)==3y =5

The mean square estimation of V' (a) is

1 1 [A2T 1 1 [A2T
V:/O V(CL)f(a)da:_Z“T/o ada:—ng

equal to zero. By doing so

Problem 14.13 :

(a)
cos 2m fit
Hé)—~ M.F. 1 ()?
@D
H@—» M.F. 1 ()2
__lsin 27 fit
r(t) cos 27Tf;t
H(:g—» M.F. 2 ()?
7 D
H@—» M.F. 2 ()?
. f
sin 27 fot sample at t = kT
cos 2m ft l Detector tout
,C) S MF. 1 ()2 select,  PHRY
- the larger
@
H@—» M.F. 1 ()2
(t)— sin 27 fit @®
"2 €08 27 fot
M.F. 2 ()?

N

M.F. 2 ()?

7 1

sin 27 fot
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(b) The probability of error for binary FSK with square-law combining for L = 2 is given in
Figure 14-4-7. The probability of error for L = 1 is also given in Figure 14-4-7. Note that an
increase in SNR by a factor of 10 reduces the error probability by a factor of 10 when L =1
and by a factor of 100 when D = 2.

Problem 14.14 :

(a) The noise-free received waveforms {r;(t)} are given by : r;(t) = h(t) x s;(t), i = 1,2, and
they are shown in the following figure :

r1(t)
4A
2T
t
-2A
72(t)
4A |
2A
| >
T/4 T 2T ¢
X

(b) The optimum receiver employs two matched filters g;(t) = r;(27'—t), and after each matched
filter there is a sampler working at a rate of 1/27. The equivalent lowpass responses g;(t) of the
two matched filters are given in the following figure :
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91(t)

4A
ot

T 2T

-2A
g2(t)

4A

| -

T 2T
4A ‘

X

Problem 14.15 :

Since a follows the Nakagami-m distribution :

pa(a) = % <g>ma2m_l exp (—maQ/Q) ., a>0

where : Q = F (a?). The pdf of the random variable v = a?&,/Ny is specified using the usual
method for a function of a random variable :

N, d
a = V?bo, d—z:%gb/No:Q\/ng/No

Hence : .
p() = (£) pa(2)
= s (8) (AR e (-myke/0)

m

m m—1
mm ,y'm—l

= T(m) 5 &XP (—my/7)
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where 5 = E (a?) &,/ Ny.

Problem 14.16 :

(a) By taking the conjugate of 1o = hysy — hos} + ngy

| hi  he S1 + ni
rs || —=hi b S9 n;

Hence, the soft-decision estimates of the transmitted symbols (s1, s2) will be

51 . hi  hey - 1
S o —h; h’{ T3

* *
T hZ+h3

hi+h; h;?"l + hl’f’;

which corresponds to dual-diversity reception for s;.

(b) The bit error probability for dual diversity reception of binary PSK is given by Equation
(14.4-15), with L = 2 and pu = / 111% (where the average SNR per channel is 7. = N%E[hz] = N%)
Then (14.4-15) becomes

o= [0-m] (16) + B+ mI())
= [0-p] 2+

When 4, >> 1, then %(1 —p) ~ 1/49. and p ~ 1. Hence, for large SNR the bit error probability
for binary PSK can be approximated as

2
1
P,~3
’ <4vc>

(c) The bit error probability for dual diversity reception of binary PSK is given by Equation
(14.4-41), with L = 2 and u as above. Replacing we get

N[= N

1 W 1 — p?
P=-]1- —2_ (1+—%
’ 2[ \/2—M2< +2—u2>]

Problem 14.17 :
(a) Noting that u < 1, the expression (14.6-35) for the binary event error probability can be
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upperbounded by
Plun) < (507 iz ()

- ()
Hence, the union bound for the probability for a code word error would be:
Py < (M — 1)P2(dmm)
Upin—1Y (1= Fmin

Now, taking the expression for i for each of the three modulation schemes, we obtain the desired
expression.

Non-coherent FSK :

. 1—p 1 1 1
ILL = — = — — < — = —
2+ 2 2+9% 7 Rch
DPSK : - ) ) . .
= ryc — = _ M = — < _— = =
1+ Ye 2 2(1 + ’)/c) 2’)/0 2Rc’yb
BPSK : u = \/ e \/ — Tlfy‘c Using Taylor’s expansion, we can approximate for large 7.
(1 —-2)"/?2 ~1—2/2. Hence
1—p 1 1 1

~

~ < =
2 4(1 + '70) 4'7c 4RC'7b

(b) Noting that

exp (—dmch’Ybf(’?c)) = €eXxp (_dmich’?b 1n(ﬁ’?c)/’)7€)
= €exp (_dmzn ln(ﬁ’?c))

IB'YC ﬁRCVb

we show the equivalence between the expressions of (a) and (b).
The maximum is obtained with

d _ ﬁ . ln(ﬁ%) _ -\ - E
f()=0= 37T 2 _0:>1n(6%>_1:>%_ﬂ

By checking the second derivative, we verify that this extreme point is indeed a maximum.

(c) For the value of 4. found in (b), we have f,..(7.) = 8/e. Then
exp (—k(Bdmins/ne —In2)) = exp (kIn2)exp (—ReLdminTs/e)

= exp (kIn2)exp (—RedminVo frnaz (b))
= 28 exp (—dminReVo frnaz (7))
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which shows the equivalence between the upper bounds given in (b) and (c).
In order for the bound to go to zero, as k is increased to infinity we need the rest of the argument
of the exponent to be negative, or

2
d::;ﬂ In2 = Y, = 2

B
Replacing for the values of  found in part (a) we get:

(BdminYp/ne —In2) > 0 = 7, >

mein,PSK = —0.96 dB
mein,DPSK = 2.75dB
mein,non—coh.FSK = 5.76 dB

As expected, among the three, binary PSK has the least stringent SNR requirement for asymp-
totic performance.
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CHAPTER 15

Problem 15.1 :

L-1

gi(t) = 7% Z ar(n)p(t — nT,)

n=0

The unit energy constraint is :
T
| atgiar =1

We also define as cross-correlation :

o) = [ ail00g;(0 = )

(a) For synchronous transmission, the received lowpass-equivalent signal r(¢) is again given by
(15-3-9), while the log-likelihood ratio is :

Ab) = ST [r(t) - SIS VEbgi (o) dt

= J (O dt+ 0 5 VEJEibibi o g5 (0)gi ()t
—2Re [SIL, VEb Ji r(8)gi(1)]

= [yl dt+ ey, \/E_k\/Ejbjbkpjk(())
—2Re [Zﬁil \/E_kbkrk]

where 7, = [ r(t)gi(t)dt, and we assume that the information sequence {b;} is real. Hence,
the correlation metrics can be expressed in a similar form to (15-3-15) :

C(ry, by) = 2bl-Re (rx) — bi-R,bg

The only difference from the real-valued case of the text is that the correlation matrix R uses
the complex-valued cross-correlations given above :

Rs[ij]—{ #5(0) igj}

pij(0), i>j

and that the matched filters producing {ry} employ the complex-conjugate of the signature
waveforms {gx(¢)}.
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(b) Following the same procedure as in pages 852-853 of the text, we see that the correlator
outputs are :

. (i+1) T+, .

n(i) = | r()gi(t —iT — 7)dt
’L'T-i-Tk

and that these can be expressed in matrix form as :

r=Ryb-+n

where r,b,n are given by (15-3-20)-(15-3-22) and :

[ Ra(0) Ra(-1) 0 |
Ra(l) Ra(o) Ra(_l) 0
Ry = 0 ' =
0 0 Ra) R0
[ R.(0) R.A(1) o0 » |
R.(1) Ra(0) R.(1) 0
Ry = 0
0 0 Ra'('l) R.(0)

where R,(m) is a K x K matrix with elements :

Ri(m) = / gu(t — 1) gi(t + mT — 7)dt

and we have exploited the fact (which holds in the real-valued case, too) that :
Ra(m) = R (—=m) = Ry} (—m)

Finally, we note that R,(0) = Ry, the correlation matrix of the real-valued case.

Problem 15.2 :

The capacity per user C is :

1
Cx =—=Wlog, <1 +

K ) A, Ok =0

W Ny

and the total capacity :

K =Wl 1
Cx Wogg(—l—WNO)
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which is independent of K. By using the fact that : P = Ck&, we can rewrite the above equations

as
Cr = %Wlogg (1 + %L]\%) =
KSs =log, (1 + b)) =

W Nog
6 (QK)WK_l
No — Ck
W

which is the relationship between the SNR and the normalized capacity per user. The relation-
ship between the normalized total capacity C,, = K CWK and the SNR is :

ﬁ _ KQC” -1
NO On

The corresponding plots for these last two relationships are given in the following figures :
10 T T T T T T

9+

sk

7L

Capacity per user per Hertz C_K/W
(5]

‘ ‘ ‘ ‘ ‘
5 0 5 10 15 20 25 30
SNR/bit (dB)

Total bit rate per Hertz C_n
o

% 0 5 10 15 20 2 30
SNR/bit (dB)

As we observe the normalized capacity per user C /W decreases to 0 as the number of user

increases. On the other hand, we saw that the total normalized capacity C,, is constant, in-

dependent of the number of users K. The second graph is explained by the fact that as the
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number of users increases, the capacity per user Cx, decreases and hence, the SNR/bit=P/C
increases, for the same user power P. That’s why the curves are shifted to the right, as K — oc.

Problem 15.3 :

(a)

Py
C1 =aWlog, <1 + aWNO)

b
=(1- 1 1+ ————
Co=(1—-a)W og2< +(1—a)WN0>

Py Py
= = | 1 1—a)l 1+ ——F
C=C+Co=W [a 0g2< +aWN0) +(1—a) og2< + (1—a)WN0>]

As a varies between 0 and 1, the graph of the points (C4, Cy) is given in the following figure:

W=1, P1/NO=3, P2/N0=1
2.5 T T

1.5F

R 2

25

(b) Substituting Py/a = P»/(1 — a) = Py + P», in the expression for C' = C; + Cy, we obtain :

C=Cy+Cy=W [alogy (1+ 2E2) + (1 - a) logs (1 + B2
= Wlog, (1+%)

which is the maximum rate that can be satisfied, based on the inequalities that the rates Rq, R
must satisfy. Hence, the distribution of the bandwidth according to the SNR of each user,
produces the maximum achievable rate.

Problem 15.4 :

(a) Since the transmitters are peak-power-limited, the constraint on the available power holds
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for the allocated time frame when each user transmits. This is more restrictive that an average-
power limited TDMA system, where the power is averaged over all the time frames, so each user
can transmit in his allocated frame with power P;/a;, where a; is the fraction of the time that
the user transmits.

Hence, in the peak-power limited system :

P
C1 =aWlog, (1 + le\fo)

P
Cy=(1—a)Wlog,y <1 + W]2\70)

alog2<1+ A )+(1—a)log2<1+ P ﬂ

C=C+Co=W WG N

(b) As a varies between 0 and 1, the graph of the points (C}, Cs) is given in the following figure

W=1, P1/NO=3, P2/N0=1
2.5 T T

1.5F q

R 2

0.5 q

0

. . . .
0 0.5 1 15 2 25
R_1

We note that the peak-power-limited TDMA system has a more restricted achievable region
(R1, Ry). compared to the FDMA system of problem 15.3.

Problem 15.5 :

(a) Since the system is average-power limited, the i-th user can transmit in his allocated time-
frame with peak-power P;/a;, where a; is the fraction of the time that the user transmits.
Hence, in the average-power limited system :

C1 =aWlog, (1 + Pl/a)

W N,

02—(1—a)Wlog2(1+%N_0@>
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B B Py _ Py
C=Ci+0Cy=W [alogg <1+ aWNO) + (1 —a)logs <1—|— —(1 —a)WNoﬂ

(b) As a varies between 0 and 1, the graph of the points (Cy, Cy) is given in the following figure

W=1, P1/NO=3, P2/NO=1
2.5 T T

1.5F

R_2

2.5

(c) We note that the expression for the total capacity is the same as that of the FDMA in
Problem 15.2. Hence, if the time that each user transmits is proportional to the transmitter’s
power : P/a = Py/(1 —a)= P, + P, we have :

C=C+Cy=W {a10g2(1+%) + (1 —a)log (1+1?}VL]\%)}
Pi+P
= Wlogy (1 + 52
which is the maximum rate that can be satisfied, based on the inequalities that the rates Rq, R

must satisfy. Hence, the distribution of the time that each user transmits according to the
respective SNR produces the maximum achievable rate.

Problem 15.6 :

(a) We have
n= [ g

Since f§ g1(8)g1(t) =1, and [y g1(t)g2(t) = p

ry = \/glbl + \/ggbgp +ny
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where ny = [ n(t)g(t)dt. Similarly

Ty = \/ETZM + 1/ E2b2 + na
where ny = [i n(t)ga(t)dt
(b) We have E[n,| (= my) = E[ng] (= ma) = 0. Hence

o} =En} = E|f i g1(a)gi(b)n(a)n(b)dadb]
= %ZIOT 91(a)gi(a)da

In the same way, o7 = E[n?] = f2. The covariance is equal to

t12 = Elning] — E[ny)Ene] = FElning]

= EJy i 91(a)ga(b)n(a)n(b)dadb]
ki Jo 91(a)gs(a)da
50

(c) Given by and by, then (ry,r5) follow the pdf of (n1,n2) which are jointly Gaussian with a pdf
given by (2-1-150) or (2-1-156). Using the results from (b)

p(ﬁﬂ”ﬂbhbz) = p(nl,nz) , ,
1 T —2pxri1x2tx
280 /1-p2 xp {_ : 2(1-p?) 2}

where 1 =1 — \/57151 - \/572520 and xg =1y — \/5_252 - \/g_lblﬂ

Problem 15.7 :

We use the result for rq, 7o from Problem 5.6 (a) (or the equivalent expression (15.3-40)). Then,
assuming b; = 1 was transmitted, the probability of error for b; is

P, = P(errori|by = 1)P(by = 1) + P(errori|by = —1)P(by = —1)
= Q( Q(EJ;\Z)VS)?) %+Q< 2(\/87—;)\/8?)2)%

No
The same expression is obtained when b; = —1 is transmitted. Hence
1 & Es)? 1 &1 — pVE)?
b lof B ov@?| 1, [ |, (/E—pvE)
2 Ny 2 Ny
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Similarly

P =50 (JQWH%TP) vl (JQ(VENZVSTP)

Problem 15.8 :

(a) p(r(t),0 <t < T|by, by)P(by, by)

p(r(),0<t<T)
But P(by,b) = P(by)P(by) = 1/4 for any pair of (b1, b2) and p(r(t),0 <t < T) is independent
of (by,by). Hence

P(by, bo|r(t),0 <t < T) =

argrbnabe(bl, bo|r(t),0 <t <T)= argrbnabxp(r(t),o <t < T|by,be)
1,02 1,02

which shows the equivalence between the MAP and ML criteria, when by, by are equiprobable.

(b) Sufficient statistics for r(¢),0 <t < T are the correlator outputs ri,7, at t = 7. From
Problem 15.6 the joint pdf of 71,7y given by, by is

( by, o) 1 x? — 2pr1T9 + T3

r,T = exp{ —

P\Tr1,72|01, 02 277_%\/1_7& P 2(1_p2>

where 1 = 11 — /&by — /Ebyp and x5 = 1y — /Eby — V/E1b1p

The ML detector searches for the arguments by, by that maximize p(ry,r2|by, by). We see that

the term outside the exponent and the demoninator of the exponent do not depend on by, bs.
Hence :
(b1,b2) = argmaxexp[—(z] — 2pz122 + 23)]
= argmax |[—(2? — 2pz179 + 73)]
Expanding x, zo and remembering that additive terms which are constant independent of by, b,
(e.g. 2, or b? (= 1)) do not affect the argument of the maximum, we arrive at

(bl, bg) = argmax 2(1 — p2>\/5_,1b17’1 + 2(1 - p2)\/572b27’2 — 2(1 - p2)\/ 5152b1b2p)
= argmax (VEbir + v/Ebora — \/515251520)

Problem 15.9 :

(a)
P(bi|r(t),0 <t <T) = P(biri,r2)
= P(bl,bgz1‘T1,T2)+P(b1,62:—1|7’1,T2)
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But
p(r1>r2‘b1> b2 = [E)

p(rb TQ)
and p(ry,r2) and P(by, by = x) do not depend on the value of b;. Hence

P(by,by = x|r1,1m0) = P(by,by = x)

arg max P(by|r(t),0 <t < T) = argmax (p(r1, 72|br, by = 1) + p(r1, 72|01, by = —1))
1 1

From Problem 15.6 the joint pdf of 1,7y given by, by is

1?2 — 2pT179 + T3 }

1
p(ﬁﬂ’z\bhbz) = —exp{—
2180 /1T = p? 2(1—p?)

where x1 = ry — V&b — VEbop and xy = 19 — /Eby — /E1b1p . Expanding w1, x5 and
remembering that additive terms which are constant independent of by, by (e.g. 72, or b? (= 1))
do not affect the argument of the maximum, we arrive at

argmaxy, P(b|r(t),0<t<T) = arg max |e (\/_b17“1+\/_r2 \/515_1)1,))
+ exp (\/_bﬂ“l \/_7“24-\/818 blp):|

= argmax exp(\ﬁbm)

% (exp(\/_m J&—fblg)+exp( \/_r2+\/¢€1—€b1p)
eXp(\/_blﬁ) QCOSh(\/_rz \/515 blﬂ)
\/7\;;17”1 —O—IHCOSh(rW N\/O&E blp)}

= argmax

= argmax

(b) From part(a)
bh=1 & ‘ﬁ” jtlncosh(\/_’"2 \/gl—gp)

_‘/_” + In cosh( \/_’”ﬁ Ve tv&i&ap)

No
VEarg—+/E1E2p
fT cosh(¥—=x——=")
& 223+ +hn (cosh(ﬁ’ﬁ 51529)> >0

Hence

No (cosh(i\/?m}@p) ) ]

by = - |
1 sgn [7"1 2\/871 n cosh(\/gmﬁo/&&p)

Problem 15.10 :

As Ny — 0, the probability in expression (15.3-62) will be dominated by the term which has
the smallest argument in the Q function. Hence
2
[\/?k + 204k \/gjbjpjk}
No

ef fective SNR = Hll)ln
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The minimum over b; is achieved when all terms add destructively to the /& term (or, it is 0,
if the term inside the square is negative). Therefore

2
g
Ne = [max {0,1 -> g—J\p]k|H
gk 1 Ok

Problem 15.11 :

The probability that the ML detector makes an error for the first user is :

Py = Y0, P(b1 # bilbi, by)(P(by, bo)

= 1(PH++— —+]+ Pl++— —])
+ 1(P[—+ — ++]+ P[—+ — +-])
+ 3(P+—— —]+P[—+——+])
+ 4(Pl== = +=] + Pl—+ — ++])

where P[biby — 31132] denotes the probability that the detector chooses (131132) conditioned on
(b1, b2) having being transmitted. Due to the symmetry of the decision statistic, the above
relationship simplifies to

1

P = S(Pl== = =]+ Pl[=— = ++])
b (Pt = 4]+ Pt = -] 1)

From Problem 15.8 we know that the decision of this detector is based on
(61, [;2) = arg max <S(bl, bg) = 81(717’1 + 82()2’/’2 — 515261b2p>

Hence, P[—— — +—] can be upper bounded as
Pl—— — +—] < P[S(——) < S(+—)|(——) transmitted]

This is a bound and not an equality since the if S(——) < S(+—) then (——) is not chosen, but
not necessarily in favor of (+—); it may have been in favor of (++) or (—+).
The last bound is easy to calculate :

P[S(——) < S(+—)|(——)transmitted]

= P [=V&r —V&rs — VEEp < Va1 — VErs +VEEap
Ir1 = —V& —Ve&p+nir = —VE — VEip+ ni]

= P [n1>\/571]:Q(\/%)
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Similarly, for the other three terms of (1) we obtain :

P[—— — +4] < P[S(——) < S(++)|(——) transmitted]
= P[\/?lnl + \/?2712 > 51 + 52 + 2\/5151/)]
— Q ( 251-1-524]-\3\/5175 )

P[—+ — +-] P[S(—+) < S(+-)|(—+) transmitted]

I IA

PlVEny — VEmny > & + E — 21/ &1
Q ( 251+52—2\/mp>

No

P[—+ — ++] < P[S(—+) < S(++)|(—+) transmitted]

Plny > \/&]

°(/E)

By adding the four terms we obtain

Pl < Q(\/ﬁ) 2@( 2514-52—]\?0\/%2)

11Q ( 261+€2J;\?0\/—51522>

But we note that if p > 0, the last term is negligible, while if p < 0, then the second term is
negiligible. Hence, the bound can be written as

281 1 (91 + (92 — 2\/ glgg‘p‘
P1<Q<’/No>+2QN2 No )

Problem 15.12 :

(a) We have seen in Prob. 15.11 that the probability of error for user 1 can be upper bounded

by
251 1 81 + 82 - 2\/ Elgg\p\
< Z
P, Q(UNO>+2Q<¢2 N,

As Ny — 0 the probability of error will be dominated by the () function with the smallest
argument. Hence

mo = min {(33)/(3), 28 nEl (38|

= min{l g— 2\/?3\p\}

(b) The plot of the asymptotic efficiencies is given in the following figure
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05r-

Conventional, rho = 0.1
Optimum, rho = 0.1
Conventional, rho = 0.2
Optimum, rho = 0.2

N
~

0
-20

. . . . . . .
-15 -10 -5 0 5 10 15 20
E,JE, (dB)

We notice the much better performance of the optimal detector especially when the interfearer
(user 2) is much stronger than the signal. We also notice that the performance of the conventional
detector decreases as |p| (i.e interference) increases, which agrees with the first observation.

Problem 15.13 :

The decision rule for the decorrelating detector is by = sgn(bY), where bY is the output of the
decorrelating operation as given by equation (15.3-41). The signal component for the first term
in the equation is v/&;. The noise component is

with variance

Hence

Similarly, for the second user

_nl—pn2
1—p?

E[nl—pn2]2
1—p2)2

E[n3]+p* B[ —2pE[nins)]

\
=
&
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Problem 15.14 :

(a) The matrix Ry is

Hence the linear transformation Aq for the two users will be

No\ ™! Ny - 1 N _
AOZ (Rs“‘—OI) = [ L 2 1 pNO ‘| = 2 [ bt 2 1 pN() ]
2 1% +7 (1_'_%) _p2 —p +7

(b) The limiting form of Ay, as Ny — 0 is obviously

1 1 —p
AO—>1_p2|‘_p 1‘|

which is the same as the transformation for the decorrelating detector, as given by expression
(15.3-37).

(c) The limiting form of Ay, as Ny — oo is

1 [ M 1 [1 0
"‘W@H ol ]

which is simply a (scaled) form of the conventional single-user detector, since the decision for
each user is based solely on the output of the particular user’s correlator.

Problem 15.15 :

(a) The performance of the receivers, when no post-processing is used, is the performance of
the conventional multiuser detection.

(b) Since : y1(1) = by(Dwy + bg(l)p%) + by (I — 1)p§11) + n, the decision variable z({), for the first
user after post-processing, is equal to :

2 (1) = by(Dwy + 1+ pses(l — 1) + plyes(l)

where n is Gaussian with zero mean and variance o?w; and, by definition : ey(l) = by(l) —
sgn [y2(1)] . We note that ey(l) is not orthogonal to es(I — 1), in general; however these two
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quantities are orthogonal when conditioned on b;(l). The distribution of ey(I — 1), conditioned
on by(l) is :

(2)

] +10 {%\/@)bl(l)}

wa +p§22) +p§2)b @)

Plex(l—1) =+2[bi()] = ;@ o /s

Pleall = 1) = —2f(1)] = 1@ [mizaint] 1q

w2 +912 921) b1 (1)
o\/w

Plea(l = 1) = 0]by(1)] = 1= Plea(l = 1) =2[b1())] = Plea(l = 1) = =2[b1(1)]

The distribution of ey (1), given by (1), is similar, just exchange pg) with pg). Then, the probability
of error for user 1 is :

Pl A0 =S ¢ 1Ly 0.9y $Pleall = 1) = albill) =B Pleall) = elbn (D) = b] x

be{-1,+1}
ce{-2,0,2}
XQ |:w1+(p§2()70\-/i-wi%1 )b1(l)]

The distribution of es(I — 1), conditioned on b (1), when o — 0 is :

2= o2 [+apS b1 (1) /2

Ples(l—1) =alb(D)] =~ iQ o , a==+2
Plea(l = 1) =0[b1(l)] = 1= Plea(l = 1) =2[b1(])] — Plea(l = 1) = =2[bs(1)]

This distribution may be concisely written as :

[\a\ wy — ‘Pu ‘ + §p§21

Plea(l = 1) = a|bi(1)] =~ Q

which is exponentially tight. The limiting form of the probability of error is (dropping constants)
P[bl(l)#bl(l)} % CLE{ 2 0 2} Q ]

wa—|p3) |+ 25
[Ia 12 2 21

o\ w2
be{-1 +1}
ce{-2,0,2}
(2) (1)
W2—|Poq +35 plgb w1+ p1o C+p21 b
XQ[% U\/—2 ]XQ[ (U\/m )]

(c) Consider the special case :



as would occur for far-field transmission (this case is the most prevalent in practice ; other cases
follow similarly). Then, the slowest decaying term corresponds to either :

sgn (bpgll)a) = sgn (bpglz)c) =—1

for which the resulting term is :

\pu\ﬂpzl\}} [ ﬂ{ B \p%’\ﬂp%’\H
[ff{ﬁ v [ VE T

or the case when either ma or ¢ = 0. In this case the term is :

ofym{yz- L o oy =l A ]

or the case when a = ¢ = 0 for which the term is :

ol

o

Therefore, the asymptotic efficiency of this detector is :
e e
wr N

@[, | @ || m
Pia |t |P2y (912 P21 )
2 w 2
2 max {O, o — s }—i—max {0,1—2—1’)1 }

1 1
pell ())

}+maX2 {0,1 —2(—p}

21
1, max? 1 0, )
w1

71 = min

Problem 15.16:

(a) The normalized offered traffic per user is : Guser = A - 1), = (% pack/ sec) . (% sec) =

1/1440. The maximum channel throughput Sp.x occurs when G, = 1/2; hence, the number
of users that will produce the maximum throughput for the system is : Gax/Guser = 720.

(b) For slotted Aloha, the maximum channel throughput occurs when Gp,.x = 1; hence, the

number of users that will produce the maximum throughput for the system is : Guax/Guser =
1440.

Problem 15.17 :

A, the average normalized rate for retransmissions, is the total rate of transmissions (G) times
the probability that a packet will overlap. This last probability is equal to the probability
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that another packet will begin from 7}, seconds before until 7}, seconds after the start time of
the original packet. Since the start times are Poisson-distributed, the probability that the two
packets will overlap is 1 — exp(—2AT},). Hence,

A=G1l-e*)=>G=5+G(1—-e )= 85 =Ge*

Problem 15.18 :

(a) Since the number of arrivals in the interval T, follows a Poisson distribution with parameter
AT, the average number of arrivals in the interval T, is E [k] = AT.

(b) Again, from the well-known properties of the Poisson distribution : o2 = (AT)?.

(c)
P(k>1)=1-P(k=0)=1—¢"*T

(d)
P(k=1)=\le?"

Problem 15.19 :

(a) Since the average number of arrivals in 1 sec is E'[k] = AT = 10, the average time between
arrivals is 1/10 sec.

(b)

P (at least one arrival within 1 sec) =1 —e ' ~ 1

P (at least one arrival within 0.1 sec) =1 —e ' = 0.63

Problem 15.20 :

(a) The throughput S and the normalized offered traffic G are related as S = Ge™¢ = 0.1.
Solving numerically for G, we find G = 0.112.

(b) The average number of attempted transmissions to send a packet, is : G/S = 1.12.
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Problem 15.21 :

(a)
Td—(ka)~(5£> =10 ps

(b) ‘
1000 bits

e
P 107 bits/ sec i

(c)

Td_l

T, 10

Hence, a carrier-sensing protocol yields a satisfactory performance.

(d) For non-persistent CDMA :

The maximum bus utilization occurs when :

as

EZO

Differentiating the above expression with respect to G, we obtain :
e —aG*(142a) =0

which, when solved numerically, gives : G.x = 2.54. Then , the maximum throughput will be :

Ge—aG
S G(1+2a) + ¢ 0515

and the maximum bit rate :

Simax - 107 bits/ sec = 5.15 Mbits/ sec
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