
 

 

Corrections to Digital Communications, 4th Edition  
 
 
1. Page 31, Equation (2.1-54) 

First line: yl instead of y2 
Second line: gn instead of g1 

 
2. Page 163, Equation (4.2-30) 
              ∞   

 should be:  s(t) = ao/2 +  Σ           k=1 
 
 
3. Page 163, Equation (4.2-31) 
                                         T                                
 should be:  ak = (2/T) ∫   s(t) cos 2πkt/T  dt  ,  k>0 
        0 
                                         T                                
          bk = (2/T) ∫   s(t) sin 2πkt/T  dt  ,  k>1 
        0 
 
4. Page 178, 7 lines from the top 
                             
 should be:   sqrt (2ε)    instead of        ε sqrt (2)  
 
5. Page 238, Equation (5.1-19) 
 
 should be:   h(T-τ ) instead of h(t-τ ) 
 
6. Page 238, two lines below Equation (5.1-20) 
 
 should be:  y2 (T) instead of  y2(t)   
                         n                              n 

 

7. Page 244, Equation (5.1 � 45) 
 
 should be:  m = 1,2,�M 
 
8. Page 245, Equation (5.1-48) 
                                
 should be:  :   sqrt (εb)      instead of      sqrt (εn) 

 

 

 
 



 

 

9. Page 309, Equation (5.4-39) 
 
 R1 sqrt (2εs/N0) instead of sqrt (2εsR1/N0)    
 
10. Page 318, Equation (5.5-17) 
  
 add the term:  � (N0)dBW/Hz 

 
11. Page 366, Equation (6.4-3) 
 
 Replace + sign with � sign in the second term of the summation 
 
12. Page 367, Equation (6.4-6) 
 
 Replace + sign with � sign in the second term of the summation 
 
13. Page 367, Equations (6.4-8) and (6.4-9) 
 
 add the subscript L to the log-likelihood function 
 
14. Page 422, lines 2 and 3 above Equation (8.1-14) 
  
 delete the phrase �no more than� 
 
15. Page 468, 12 lines from the top and 5 lines from the bottom 
 
 should be:     b <    instead of      b < 
 
16. Page 491, Figure 8.2-15 
 
 solid line corresponds to soft-decision decoding 
 broken line corresponds to hard-decision decoding 
 
17. Page 500, Equation (8.2-41) 
 
 In the denominator, Mk should be Mj and Mj  should be MJ 
 
 
 
18. Page 591, Figure P9.9 
 
 The lower shaping filter in the modulator and demodulator, 
 
                 q(t) should have a �hat� on it 
 
 



 

 

19. Page 609, 6 lines above Equation (10.1-34) 
 

   
ε

k+1� L-1
             should be

            
ε

k+l � L-1
              

 

20. Page 646, Figure 10.3-5 
  
 delete the �hat� from I(z) 
 
21. Page 651, 4 lines from the top 
 
 replace �over� with �about� 
 
22. Page 651, 2 lines above Section 10.6 
 
 �Turob� should be �Turbo� 
 
23. Page 673, Figure 11.1-6 
 
 Lower delay line elements:  z1 should be z-1 
 
24. Page 750, Figure 13.2-8 
 
 Replace �adders� with �multipliers� 
 
25. Page 752, Figure 13.2-9 
 
 Replace �adders� with multipliers� 
 
26. Page 856, Equation (14.6-5) 
   

Replace K with k 
 

27. Page 885, Figure 14.7-7 
 
 The �Input� should be 02310 
 
 
 
 
 
 
 
 
 
 
 



 

 

28. Page 894, Problem 14.16 
 
 r1 = h1s1 + h2s2 + n1 

  

 r2 = h1s2
* + h2s1

* + n2 
 
29. Page 895 
 
 Delete 2k from the expression on the error probability 
 
30. Page 915, top of page 
 
 (15.47) should be (15.3-47) 
 
31. Page 925, 6 lines form top 
 
 T0 should be Tp 

 
32. Page 935 
  

a) top of page:   
 

r1 = b1 sqrt(ε1) + b2ρ sqrt (ε2) + n1 
 
r2 =  b1ρ sqrt(ε1) + b2 sqrt (ε2) + n2 
          

 
b) Problem 15.8, last equation 

 
delete factor of  l/2 
 

c) Problem 15.9, first equation 
 

delete comma after b2=1 
 

33. Page 936, first equation at top of page, second term 
 
 should be: 
 

 ln cosh { [r2 sqrt (ε2) � b1ρ  sqrt (ε1ε2)]/N0} 
 
 
 
 
 



 

 

34. Page 936, second equation from top of page 
 
 divide each of the arguments in the cosh function by N0 
 
35. Page 936, Problem 15.10 
 

 should be         ηk =   [           ]2 

 
 
 
36. Page 936, Problem 15.11 
 
 the last term in the equation should be: 
 

 (1/2) Q {sqrt[
ε

1
+ ε

2
sqrt (ε ׀ρ׀2-

1
ε

2
)
]} 

                                                 N0/2 

 
 
 
 

 
 

 
  

 



CHAPTER 2

Problem 2.1 :

P (Ai) =
3∑

j=1

P (Ai, Bj), i = 1, 2, 3, 4

Hence :

P (A1) =
3∑

j=1

P (A1, Bj) = 0.1 + 0.08 + 0.13 = 0.31

P (A2) =
3∑

j=1

P (A2, Bj) = 0.05 + 0.03 + 0.09 = 0.17

P (A3) =
3∑

j=1

P (A3, Bj) = 0.05 + 0.12 + 0.14 = 0.31

P (A4) =
3∑

j=1

P (A4, Bj) = 0.11 + 0.04 + 0.06 = 0.21

Similarly :

P (B1) =
4∑

i=1

P (Ai, B1) = 0.10 + 0.05 + 0.05 + 0.11 = 0.31

P (B2) =
4∑

i=1

P (Ai, B2) = 0.08 + 0.03 + 0.12 + 0.04 = 0.27

P (B3) =
4∑

i=1

P (Ai, B3) = 0.13 + 0.09 + 0.14 + 0.06 = 0.42

Problem 2.2 :

The relationship holds for n = 2 (2-1-34) : p(x1, x2) = p(x2|x1)p(x1)
Suppose it holds for n = k, i.e : p(x1, x2, ..., xk) = p(xk|xk−1, ..., x1)p(xk−1|xk−2, ..., x1) ...p(x1)
Then for n = k + 1 :

p(x1, x2, ..., xk, xk+1) = p(xk+1|xk, xk−1, ..., x1)p(xk, xk−1..., x1)
= p(xk+1|xk, xk−1, ..., x1)p(xk|xk−1, ..., x1)p(xk−1|xk−2, ..., x1) ...p(x1)

Hence the relationship holds for n = k + 1, and by induction it holds for any n.
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Problem 2.3 :

Following the same procedure as in example 2-1-1, we prove :

pY (y) =
1

|a|pX

(
y − b
a

)

Problem 2.4 :

Relationship (2-1-44) gives :

pY (y) =
1

3a [(y − b) /a]2/3
pX



(
y − b
a

)1/3



X is a gaussian r.v. with zero mean and unit variance : pX(x) =
1√
2π
e−x2/2

Hence :

pY (y) =
1

3a
√
2π [(y − b) /a]2/3

e−
1
2(

y−b
a )

2/3
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Problem 2.5 :

(a) Since (Xr, Xi) are statistically independent :

pX(xr, xi) = pX(xr)pX(xi) =
1

2πσ2
e−(x

2
r+x2

i )/2σ2
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Also :
Yr + jYi = (Xr +Xi)e

jφ ⇒
Xr +Xi = (Yr + jYi) e

−jφ = Yr cosφ+ Yi sinφ+ j(−Yr sinφ+ Yi cosφ)⇒{
Xr = Yr cosφ+ Yi sinφ
Xi = −Yr sinφ+ Yi cos φ

}

The Jacobian of the above transformation is :

J =

∣∣∣∣∣
∂Xr

∂Yr

∂Xi

∂Yr
∂Xr
∂Yi

∂Xi

∂Yi

∣∣∣∣∣ =
∣∣∣∣∣ cosφ − sin φ
sinφ cosφ

∣∣∣∣∣ = 1

Hence, by (2-1-55) :

pY(yr, yi) = pX((Yr cos φ+ Yi sinφ) , (−Yr sinφ+ Yi cos φ))

= 1
2πσ2 e

−(y2
r+y2

i )/2σ2

(b) Y = AX and X = A−1Y

Now, pX(x) =
1

(2πσ2)n/2 e
−x′x/2σ2

(the covariance matrix M of the random variables x1, ..., xn is

M = σ2I, since they are i.i.d) and J = 1/| det(A)|. Hence :

pY(y) =
1

(2πσ2)n/2

1

| det(A)|e
−y′(A−1)′A−1y/2σ2

For the pdf’s of X and Y to be identical we require that :

| det(A)| = 1 and (A−1)′A−1 = I =⇒ A−1 = A′

Hence, A must be a unitary (orthogonal) matrix .

Problem 2.6 :

(a)

ψY (jv) = E
[
ejvY

]
= E

[
ejv
∑n

i=1
xi

]
= E

[
n∏

i=1

ejvxi

]
=

n∏
i=1

E
[
ejvX

]
=
(
ψX(e

jv)
)n

But,
pX(x) = pδ(x− 1) + (1− p)δ(x)⇒ ψX(e

jv) = 1 + p+ pejv

⇒ ψY (jv) =
(
1 + p+ pejv

)n
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(b)

E(Y ) = −j dψY (jv)

dv
|v=0 = −jn(1− p+ pejv)n−1jpejv|v=0 = np

and

E(Y 2) = −d
2ψY (jv)

d2v
|v=0 = − d

dv

[
jn(1− p+ pejv)n−1pejv

]
v=0

= np + np(n− 1)p

⇒ E(Y 2) = n2p2 + np(1− p)

Problem 2.7 :

ψ(jv1, jv2, jv3, jv4) = E
[
ej(v1x1+v2x2+v3x3+v4x4)

]

E (X1X2X3X4) = (−j)4∂
4ψ(jv1, jv2, jv3, jv4)

∂v1∂v2∂v3∂v4
|v1=v2=v3=v4=0

From (2-1-151) of the text, and the zero-mean property of the given rv’s :

ψ(jv) = e−
1
2
v′Mv

where v = [v1, v2, v3, v4]
′ ,M = [µij] .

We obtain the desired result by bringing the exponent to a scalar form and then performing
quadruple differentiation. We can simplify the procedure by noting that :

∂ψ(jv)

∂vi
= −µ′ive−

1
2
v′Mv

where µ′i = [µi1, µi2, µi3, µi4] . Also note that :

∂µ′jv
∂vi

= µij = µji

Hence :
∂4ψ(jv1, jv2, jv3, jv4)

∂v1∂v2∂v3∂v4
|V=0 = µ12µ34 + µ23µ14 + µ24µ13

Problem 2.8 :

For the central chi-square with n degress of freedom :

ψ(jv) =
1

(1− j2vσ2)n/2
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Now :
dψ(jv)

dv
=

jnσ2

(1− j2vσ2)n/2+1
⇒ E (Y ) = −j dψ(jv)

dv
|v=0 = nσ

2

d2ψ(jv)

dv2
=
−2nσ4 (n/2 + 1)

(1− j2vσ2)n/2+2
⇒ E

(
Y 2
)
= −d

2ψ(jv)

dv2
|v=0 = n(n + 2)σ2

The variance is σ2
Y = E (Y 2)− [E (Y )]2 = 2nσ4

For the non-central chi-square with n degrees of freedom :

ψ(jv) =
1

(1− j2vσ2)n/2
ejvs2/(1−j2vσ2)

where by definition : s2 =
∑n

i=1m
2
i .

dψ(jv)

dv
=

[
jnσ2

(1− j2vσ2)n/2+1
+

js2

(1− j2vσ2)n/2+2

]
ejvs2/(1−j2vσ2)

Hence, E (Y ) = −j dψ(jv)
dv
|v=0 = nσ

2 + s2

d2ψ(jv)

dv2
=

[ −nσ4 (n + 2)

(1− j2vσ2)n/2+2
+
−s2(n+ 4)σ2 − ns2σ2

(1− j2vσ2)n/2+3
+

−s4
(1− j2vσ2)n/2+4

]
ejvs2/(1−j2vσ2)

Hence,

E
(
Y 2
)
= −d

2ψ(jv)

dv2
|v=0 = 2nσ4 + 4s2σ2 +

(
nσ2 + s2

)
and

σ2
Y = E

(
Y 2
)
− [E (Y )]2 = 2nσ4 + 4σ2s2

Problem 2.9 :

The Cauchy r.v. has : p(x) = a/π
x2+a2 ,−∞ < x <∞ (a)

E (X) =
∫ ∞

−∞
xp(x)dx = 0

since p(x) is an even function.

E
(
X2
)
=
∫ ∞

−∞
x2p(x)dx =

a

π

∫ ∞

−∞
x2

x2 + a2
dx

Note that for large x, x2

x2+a2 → 1 (i.e non-zero value). Hence,

E
(
X2
)
=∞, σ2 =∞
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(b)

ψ(jv) = E
(

jvX
)
=
∫ ∞

−∞
a/π

x2 + a2
ejvxdx =

∫ ∞

−∞
a/π

(x+ ja) (x− ja)e
jvxdx

This integral can be evaluated by using the residue theorem in complex variable theory. Then,
for v ≥ 0 :

ψ(jv) = 2πj

(
a/π

x+ ja
ejvx

)
x=ja

= e−av

For v < 0 :

ψ(jv) = −2πj
(
a/π

x− jae
jvx

)
x=−ja

= eavv

Therefore :
ψ(jv) = e−a|v|

Note: an alternative way to find the characteristic function is to use the Fourier transform
relationship between p(x), ψ(jv) and the Fourier pair :

e−b|t| ↔ 1

π

c

c2 + f 2
, c = b/2π, f = 2πv

Problem 2.10 :

(a) Y = 1
n

∑n
i=1Xi, ψXi

(jv) = e−a|v|

ψY (jv) = E
[
ejv 1

n

∑n

i=1
Xi

]
=

n∏
i=1

E
[
ej

v
n

Xi

]
=

n∏
i=1

ψXi
(jv/n) =

[
e−a|v|/n

]n
= e−a|v|

(b) Since ψY (jv) = ψXi
(jv)⇒ pY (y) = pXi

(xi)⇒ pY (y) =
a/π

y2+a2 .

(c) As n → ∞, pY (y) =
a/π

y2+a2 , which is not Gaussian ; hence, the central limit theorem does
not hold. The reason is that the Cauchy distribution does not have a finite variance.

Problem 2.11 :

We assume that x(t), y(t), z(t) are real-valued stochastic processes. The treatment of complex-
valued processes is similar.

(a)

φzz(τ) = E {[x(t+ τ) + y(t+ τ)] [x(t) + y(t)]} = φxx(τ) + φxy(τ) + φyx(τ) + φyy(τ)
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(b) When x(t), y(t) are uncorrelated :

φxy(τ) = E [x(t+ τ)y(t)] = E [x(t+ τ)]E [y(t)] = mxmy

Similarly :
φyx(τ) = mxmy

Hence :
φzz(τ) = φxx(τ) + φyy(τ) + 2mxmy

(c) When x(t), y(t) are uncorrelated and have zero means :

φzz(τ) = φxx(τ) + φyy(τ)

Problem 2.12 :

The power spectral density of the random process x(t) is :

Φxx(f) =
∫ ∞

−∞
φxx(τ)e

−j2πfτdτ = N0/2.

The power spectral density at the output of the filter will be :

Φyy(f) = Φxx(f)|H(f)|2 = N0

2
|H(f)|2

Hence, the total power at the output of the filter will be :

φyy(τ = 0) =
∫ ∞

−∞
Φyy(f)df =

N0

2

∫ ∞

−∞
|H(f)|2df = N0

2
(2B) = N0B

Problem 2.13 :

MX = E [(X−mx)(X−mx)
′] , X =



X1

X2

X3


 , mx is the corresponding vector of mean values.
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Then :
MY = E [(Y −my)(Y −my)

′]
= E [A(X−mx)(A(X−mx))

′]
= E [A(X−mx)(X−mx)

′A′]
= AE [(X−mx)(X−mx)

′]A′

= AMxA
′

Hence :

MY =


 µ11 0 µ11 + µ13

0 4µ22 0
µ11 + µ31 0 µ11 + µ13 + µ31 + µ33




Problem 2.14 :

Y (t) = X2(t), φxx(τ) = E [x(t+ τ)x(t)]

φyy(τ) = E [y(t+ τ)y(t)] = E
[
x2(t+ τ)x2(t)

]
Let X1 = X2 = x(t), X3 = X4 = x(t+ τ). Then, from problem 2.7 :

E (X1X2X3X4) = E (X1X2)E (X3X4) + E (X1X3)E (X2X4) + E (X1X4)E (X2X3)

Hence :
φyy(τ) = φ

2
xx(0) + 2φ2

xx(τ)

Problem 2.15 :

pR(r) =
2

Γ(m)

(
m
Ω

)m
r2m−1e−mr2/Ω, X = 1√

Ω
R

We know that : pX(x) =
1

1/
√

Ω
pR

(
x

1/
√

Ω

)
.

Hence :

pX(x) =
1

1/
√
Ω

2

Γ(m)

(
m

Ω

)m (
x
√
Ω
)2m−1

e−m(x
√

Ω)2/Ω =
2

Γ(m)
mmx2m−1e−mx2

Problem 2.16 :

The transfer function of the filter is :

H(f) =
1/jωC

R+ 1/jωC
=

1

jωRC + 1
=

1

j2πfRC + 1

8



(a)

Φxx(f) = σ
2 ⇒ Φyy(f) = Φxx(f) |H(f)|2 = σ2

(2πRC)2 f 2 + 1

(b)

φyy(τ) = F
−1{Φxx(f)} = σ2

RC

∫ ∞

−∞

1
RC

( 1
RC

)2 + (2πf)2
ej2πfτdf

Let : a = RC, v = 2πf. Then :

φyy(τ) =
σ2

2RC

∫ ∞

−∞
a/π

a2 + v2
ejvτdv =

σ2

2RC
e−a|τ | =

σ2

2RC
e−|τ |/RC

where the last integral is evaluated in the same way as in problem P-2.9 . Finally :

E
[
Y 2(t)

]
= φyy(0) =

σ2

2RC

Problem 2.17 :

If ΦX(f) = 0 for |f | > W, then ΦX(f)e
−j2πfa is also bandlimited. The corresponding autocor-

relation function can be represented as (remember that ΦX(f) is deterministic) :

φX(τ − a) =
∞∑

n=−∞
φX(

n

2W
− a)sin 2πW

(
τ − n

2W

)
2πW

(
τ − n

2W

) (1)

Let us define :

X̂(t) =
∞∑

n=−∞
X(

n

2W
)
sin 2πW

(
t− n

2W

)
2πW

(
t− n

2W

)
We must show that :

E
[
|X(t)− X̂(t)|2

]
= 0

or

E


(X(t)− X̂(t)

)X(t)−
∞∑

m=−∞
X(

m

2W
)
sin 2πW

(
t− m

2W

)
2πW

(
t− m

2W

)



 = 0 (2)

First we have :

E
[(
X(t)− X̂(t)

)
X(

m

2W
)
]
= φX(t− m

2W
)−

∞∑
n=−∞

φX(
n−m
2W

)
sin 2πW

(
t− n

2W

)
2πW

(
t− n

2W

)

9



But the right-hand-side of this equation is equal to zero by application of (1) with a = m/2W.

Since this is true for any m, it follows that E
[(
X(t)− X̂(t)

)
X̂(t)

]
= 0. Also

E
[(
X(t)− X̂(t)

)
X(t)

]
= φX(0)−

∞∑
n=−∞

φX(
n

2W
− t)

sin 2πW
(
t− n

2W

)
2πW

(
t− n

2W

)

Again, by applying (1) with a = t anf τ = t, we observe that the right-hand-side of the equation
is also zero. Hence (2) holds.

Problem 2.18 :

Q(x) = 1√
2π

∫∞
x e−t2/2dt = P [N ≥ x] , where N is a Gaussian r.v with zero mean and unit

variance. From the Chernoff bound :

P [N ≥ x] ≤ e−v̂xE
(
ev̂N

)
(1)

where v̂ is the solution to :

E
(
NevN

)
− xE

(
evN

)
= 0 (2)

Now :
E
(
evN

)
= 1√

2π

∫∞
−∞ e

vte−t2/2dt

= ev
2/2 1√

2π

∫∞
−∞ e

−(t−v)2/2dt

= ev
2/2

and

E
(
NevN

)
=
d

dv
E
(
evN

)
= vev

2/2

Hence (2) gives :
v̂ = x

and then :
(1)⇒ Q(x) ≤ e−x2

ex
2/2 ⇒ Q(x) ≤ e−x2/2

Problem 2.19 :

Since H(0) =
∑∞

−∞ h(n) = 0⇒ my = mxH(0) = 0
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The autocorrelation of the output sequence is

φyy(k) =
∑

i

∑
j

h(i)h(j)φxx(k − j + i) = σ2
x

∞∑
i=−∞

h(i)h(k + i)

where the last equality stems from the autocorrelation function of X(n) :

φxx(k − j + i) = σ2
xδ(k − j + i) =

{
σ2

x, j = k + i
0, o.w.

}

Hence, φyy(0) = 6σ2
x, φyy(1) = φyy(−1) = −4σ2

x, φyy(2) = φyy(−2) = σ2
x, φyy(k) = 0 otherwise.

Finally, the frequency response of the discrete-time system is :

H(f) =
∑∞

−∞ h(n)e
−j2πfn

= 1− 2e−j2πf + e−j4πf

=
(
1− e−j2πf

)2

= e−j2πf
(
ejπf − e−jπf

)2

= −4e−jπf sin 2πf

which gives the power density spectrum of the output :

Φyy(f) = Φxx(f)|H(f)|2 = σ2
x

[
16 sin 4πf

]
= 16σ2

x sin
4πf

Problem 2.20 :

φ(k) =
(
1

2

)|k|

The power density spectrum is

Φ(f) =
∑∞

k=−∞ φ(k)e
−j2πfk

=
∑−1

k=−∞
(

1
2

)−k
e−j2πfk +

∑∞
k=0

(
1
2

)k
e−j2πfk

=
∑∞

k=0(
1
2
ej2πfk)k +

∑∞
k=0(

1
2
e−j2πf)k − 1

= 1
1−ej2πf /2

+ 1
1−e−j2πf /2

− 1

= 2−cos 2πf
5/4−cos 2πf

− 1

= 3
5−4 cos 2πf

11



Problem 2.21 :

We will denote the discrete-time process by the subscript d and the continuous-time (analog)
process by the subscript a. Also, f will denote the analog frequency and fd the discrete-time
frequency.

(a)
φd(k) = E [X∗(n)X(n+ k)]

= E [X∗(nT )X(nT + kT )]
= φa(kT )

Hence, the autocorrelation function of the sampled signal is equal to the sampled autocorrelation
function of X(t).

(b)
φd(k) = φa(kT ) =

∫∞
−∞Φa(F )e

j2πfkTdf

=
∑∞

l=−∞
∫ (2l+1)/2T
(2l−1)/2T Φa(F )e

j2πfkTdf

=
∑∞

l=−∞
∫ 1/2T
−1/2T Φa(f +

l
T
)ej2πFkTdf

=
∫ 1/2T
−1/2T

[∑∞
l=−∞Φa(f +

l
T
)
]
ej2πFkTdf

Let fd = fT. Then :

φd(k) =
∫ 1/2

−1/2


 1
T

∞∑
l=−∞

Φa((fd + l)/T )


 ej2πfdkdfd (1)

We know that the autocorrelation function of a discrete-time process is the inverse Fourier
transform of its power spectral density

φd(k) =
∫ 1/2

−1/2
Φd(fd)e

j2πfdkdfd (2)

Comparing (1),(2) :

Φd(fd) =
1

T

∞∑
l=−∞

Φa(
fd + l

T
) (3)

(c) From (3) we conclude that :

Φd(fd) =
1

T
Φa(

fd

T
)

iff :
Φa(f) = 0, ∀ f : |f | > 1/2T

12



Otherwise, the sum of the shifted copies of Φa (in (3)) will overlap and aliasing will occur.

Problem 2.22 :

(a)
φa(τ) =

∫∞
−∞Φa(f)e

j2πfτdf

=
∫W
−W e

j2πfτdf

= sin 2πWτ
πτ

By applying the result in problem 2.21, we have

φd(k) = fa(kT ) =
sin 2πWkT

πkT

(b) If T = 1
2W
, then :

φd(k) =

{
2W = 1/T, k = 0

0, otherwise

}

Thus, the sequence X(n) is a white-noise sequence. The fact that this is the minimum value of
T can be shown from the following figure of the power spectral density of the sampled process:

−W W fs −W fs fs + W−fs −W −fs −fs + W æ

We see that the maximum sampling rate fs that gives a spectrally flat sequence is obtained
when :

W = fs −W ⇒ fs = 2W ⇒ T =
1

2W

(c) The triangular-shaped spectrum Φ(f) = 1 − |f |
W
, |f | ≤ W may be obtained by convolv-

ing the rectangular-shaped spectrum Φ1(f) = 1/
√
W, |f | ≤ W/2. Hence, φ(τ) = φ2

1(τ) =

13



1
W

(
sin πWτ

πτ

)2
.Therefore, sampling X(t) at a rate 1

T
= W samples/sec produces a white sequence

with autocorrelation function :

φd(k) =
1

W

(
sin πWkT

πkT

)2

= W

(
sin πk

πk

)2

=

{
W, k = 0
0, otherwise

}

Problem 2.23 :

Let’s denote : y(t) = fk(t)fj(t).Then :

∫ ∞

−∞
fk(t)fj(t)dt =

∫ ∞

−∞
y(t)dt = Y (f)|f=0

where Y (f) is the Fourier transform of y(t). Since : y(t) = fk(t)fj(t)←→ Y (f) = Fk(f)∗Fj(f).
But :

Fk(f) =
∫ ∞

−∞
fk(t)e

−j2πftdt =
1

2W
e−j2πfk/2W

Then :
Y (f) = Fk(f) ∗ Fj(f) =

∫ ∞

−∞
Fk(a) ∗ Fj(f − a)da

and at f = 0 :
Y (f)|f=0 =

∫∞
−∞ Fk(a) ∗ Fj(−a)da

=
(

1
2W

)2 ∫∞
−∞ e

−j2πa(k−j)/2Wda

=

{
1/2W, k = j
0, k �= j

}

Problem 2.24 :

Beq =
1

G

∫ ∞

0
|H(f)|2df

For the filter shown in Fig. P2-12 we have G = 1 and

Beq =
∫ ∞

0
|H(f)|2df = B

For the lowpass filter shown in Fig. P2-16 we have

H(f) =
1

1 + j2πfRC
⇒ |H(f)|2 = 1

1 + (2πfRC)2

14



So G = 1 and
Beq =

∫∞
0 |H(f)|2df

= 1
2

∫∞
−∞ |H(f)|2df

= 1
4RC

where the last integral is evaluated in the same way as in problem P-2.9 .
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CHAPTER 3

Problem 3.1 :

I(Bj ;Ai) = log 2
P (Bj|Ai)

P (Bj)
= log 2

P (Bj, Ai)

P (Bj)P (Ai)

Also :

P (Bj) =
4∑

i=1

P (Bj, Ai) =




0.31, j = 1
0.27, j = 2
0.42, j = 3




P (Ai) =
3∑

j=1

P (Bj, Ai) =




0.31, i = 1
0.17, i = 2
0.31, i = 3
0.21, i = 4




Hence :

I(B1;A1) = log 2
0.10

(0.31)(0.31)
= +0.057 bits

I(B1;A2) = log 2
0.05

(0.31)(0.17)
= −0.076 bits

I(B1;A3) = log 2
0.05

(0.31)(0.31)
= −0.943 bits

I(B1;A4) = log 2
0.11

(0.31)(0.21)
= +0.757 bits

I(B2;A1) = log 2
0.08

(0.27)(0.31)
= −0.065 bits

I(B2;A2) = log 2
0.03

(0.27)(0.17)
= −0.614 bits

I(B2;A3) = log 2
0.12

(0.27)(0.31)
= +0.520 bits

I(B2;A4) = log 2
0.04

(0.27)(0.21)
= −0.503 bits

I(B3;A1) = log 2
0.13

(0.42)(0.31)
= −0.002 bits

I(B3;A2) = log 2
0.09

(0.42)(0.17)
= +0.334 bits
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I(B3;A3) = log 2
0.14

(0.42)(0.31)
= +0.105 bits

I(B3;A4) = log 2
0.06

(0.42)(0.21)
= −0.556 bits

(b) The average mutual information will be :

I(B;A) =
3∑

j=1

4∑
i=1

P (Ai,Bj)I(Bj;Ai) = 0.677 bits

Problem 3.2 :

H(B) = −∑3
j=1 P (Bj) log 2P (Bj)

= − [0.31 log 20.31 + 0.27 log 20.27 + 0.42 log 20.42]

= 1.56 bits/letter

Problem 3.3 :

Let f(u) = u− 1− ln u. The first and second derivatives of f(u) are

df

du
= 1− 1

u

and
d2f

du2
=

1

u2
> 0, ∀u > 0

17



Hence this function achieves its minimum at df
du

= 0 ⇒ u = 1. The minimum value is f(u =
1) = 0 so lnu = u − 1, at u = 1. For all other values of u : 0 < u < ∞, u �= 1, we have
f(u) > 0⇒ u− 1 > ln u.

Problem 3.4 :

We will show that −I(X;Y ) ≤ 0

−I(X;Y ) = −∑i

∑
j P (xi, yj) log 2

P (xi,yj)

P (xi)P (yj)

= 1
ln 2

∑
i

∑
j P (xi, yj) ln

P (xi)P (yj)

P (xi,yj)

We use the inequality lnu ≤ u− 1. We need only consider those terms for which P (xi, yj) > 0;
then, applying the inequality to each term in I(X;Y ) :

−I(X;Y ) ≤ 1
ln 2

∑
i

∑
j P (xi, yj)

[
P (xi)P (yj)

P (xi,yj)
− 1

]

= 1
ln 2

∑
i

∑
j [P (xi)P (yj)− P (xi, yj)] ≤ 0

The first inequality becomes equality if and only if

P (xi)P (yj)

P (xi, yj)
= 1⇐⇒ P (xi)P (yj) = P (xi, yj)

when P (xi, yj) > 0. Also, since the summations

∑
i

∑
j

[P (xi)P (yj)− P (xi, yj)]

contain only the terms for which P (xi, yj) > 0, this term equals zero if and only if P (Xi)P (Yj) =
0, when P (xi, yj) = 0. Therefore, both inequalitites become equalities and hence, I(X;Y ) = 0
if and only if X and Y are statistically independent.
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Problem 3.5 :

We shall prove that H(X)− log n ≤ 0 :

H(X)− log n =
∑n

i=1 pi log
1
pi
− log n

=
∑n

i=1 pi log
1
pi
−∑n

i=1 pi logn

=
∑n

i=1 pi log
1

npi

= 1
ln 2

∑n
i=1 pi ln

1
npi

≤ 1
ln 2

∑n
i=1 pi

(
1

npi
− 1

)

= 0

Hence, H(X) ≤ log n. Also, if pi = 1/n ∀ i⇒ H(X) = log n.

Problem 3.6 :

By definition, the differential entropy is

H(X) = −
∫ ∞

−∞
p(x) log p(x)dx

For the uniformly distributed random variable :

H(X) = −
∫ a

0

1

a
log

1

a
dx = log a

(a) For a = 1, H(X) = 0

(b) For a = 4, H(X) = log 4 = 2 log 2

(c) For a = 1/4, H(X) = log 1
4
= −2 log 2

Problem 3.7 :

(a) The following figure depicts the design of a ternary Huffman code (we follow the convention
that the lower-probability branch is assigned a 1) :
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100

101

0001

00000

00001
æ

(b) The average number of binary digits per source letter is :

R̄ =
∑
i

P (xi)ni = 2(0.45) + 3(0.37) + 4(0.08) + 5(0.1) = 2.83 bits/letter

(c) The entropy of the source is :

H(X) = −∑
i

P (xi)logP (xi) = 2.80 bits/letter

As it is expected the entropy of the source is less than the average length of each codeword.

Problem 3.8 :

The source entropy is :

H(X) =
5∑

i=1

pi log
1

pi
= log 5 = 2.32 bits/letter

(a) When we encode one letter at a time we require R̄ = 3 bits/letter . Hence, the efficiency is
2.32/3 = 0.77 (77%).
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(b) If we encode two letters at a time, we have 25 possible sequences. Hence, we need 5 bits
per 2-letter symbol, or R̄ = 2.5 bits/letter ; the efficiency is 2.32/2.5 = 0.93.

(c) In the case of encoding three letters at a time we have 125 possible sequences. Hence we
need 7 bits per 3-letter symbol, so R̄ = 7/3 bits/letter; the efficiency is 2.32/(7/3) = 0.994.

Problem 3.9 :

(a)

I(xi; yj) = log
P (xi|yj)

P (xi)

= log
P (xi,yj)

P (xi)P (yj)

= log
P (yj |xi)

P (yj)

= log 1
P (yj)

− log 1
P (yj |xi)

= I(yj)− I(yj|xi)

(b)

I(xi; yj) = log
P (xi|yj)

P (xi)

= log
P (xi,yj)

P (xi)P (yj)

= log 1
P (xi)

+ log 1
P (yj)

− log 1
P (xi,yj)

= I(xi) + I(yj)− I(xi, yj)

Problem 3.10 :

(a)

H(X) = −
∞∑
k=1

p(1− p)k−1 log2(p(1− p)k−1)

= −p log2(p)
∞∑
k=1

(1− p)k−1 − p log2(1− p)
∞∑
k=1

(k − 1)(1− p)k−1

= −p log2(p)
1

1− (1− p) − p log2(1− p)
1− p

(1− (1− p))2

= − log2(p)−
1− p
p

log2(1− p)
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(b) Clearly P (X = k|X > K) = 0 for k ≤ K. If k > K, then

P (X = k|X > K) =
P (X = k,X > K)

P (X > K)
=
p(1− p)k−1

P (X > K)

But,

P (X > K) =
∞∑

k=K+1

p(1− p)k−1 = p

( ∞∑
k=1

(1− p)k−1 −
K∑
k=1

(1− p)k−1

)

= p

(
1

1− (1− p) −
1− (1− p)K
1− (1− p)

)
= (1− p)K

so that

P (X = k|X > K) =
p(1− p)k−1

(1− p)K
If we let k = K + l with l = 1, 2, . . ., then

P (X = k|X > K) =
p(1− p)K(1− p)l−1

(1− p)K = p(1− p)l−1

that is P (X = k|X > K) is the geometrically distributed. Hence, using the results of the first
part we obtain

H(X|X > K) = −
∞∑
l=1

p(1− p)l−1 log2(p(1− p)l−1)

= − log2(p)−
1− p
p

log2(1− p)

Problem 3.11 :

(a) The marginal distribution P (x) is given by P (x) =
∑

y P (x, y). Hence,

H(X) = −∑
x

P (x) logP (x) = −∑
x

∑
y

P (x, y) logP (x)

= −∑
x,y

P (x, y) logP (x)

Similarly it is proved that H(Y ) = −∑x,y P (x, y) logP (y).

(b) Using the inequality lnw ≤ w − 1 with w = P (x)P (y)
P (x,y)

, we obtain

ln
P (x)P (y)

P (x, y)
≤ P (x)P (y)

P (x, y)
− 1
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Multiplying the previous by P (x, y) and adding over x, y, we obtain

∑
x,y

P (x, y) lnP (x)P (y)−∑
x,y

P (x, y) lnP (x, y) ≤∑
x,y

P (x)P (y)−∑
x,y

P (x, y) = 0

Hence,

H(X, Y ) ≤ −∑
x,y

P (x, y) lnP (x)P (y) = −∑
x,y

P (x, y)(lnP (x) + lnP (y))

= −∑
x,y

P (x, y) lnP (x)−∑
x,y

P (x, y) lnP (y) = H(X) +H(Y )

Equality holds when P (x)P (y)
P (x,y)

= 1, i.e when X, Y are independent.

(c)
H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )

Also, from part (b), H(X, Y ) ≤ H(X) +H(Y ). Combining the two relations, we obtain

H(Y ) +H(X|Y ) ≤ H(X) +H(Y ) =⇒ H(X|Y ) ≤ H(X)

Suppose now that the previous relation holds with equality. Then,

−∑
x

P (x) logP (x|y) = −∑
x

P (x) logP (x)⇒∑
x

P (x) log(
P (x)

P (x|y)) = 0

However, P (x) is always greater or equal to P (x|y), so that log(P (x)/P (x|y)) is non-negative.
Since P (x) > 0, the above equality holds if and only if log(P (x)/P (x|y)) = 0 or equivalently
if and only if P (x)/P (x|y) = 1. This implies that P (x|y) = P (x) meaning that X and Y are
independent.

Problem 3.12 :

The marginal probabilities are given by

P (X = 0) =
∑
k

P (X = 0, Y = k) = P (X = 0, Y = 0) + P (X = 0, Y = 1) =
2

3

P (X = 1) =
∑
k

P (X = 1, Y = k) = P (X = 1, Y = 1) =
1

3

P (Y = 0) =
∑
k

P (X = k, Y = 0) = P (X = 0, Y = 0) =
1

3

P (Y = 1) =
∑
k

P (X = k, Y = 1) = P (X = 0, Y = 1) + P (X = 1, Y = 1) =
2

3
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Hence,

H(X) = −
1∑

i=0

Pi log2 Pi = −(1
3
log2

1

3
+

1

3
log2

1

3
) = .9183

H(X) = −
1∑

i=0

Pi log2 Pi = −(1
3
log2

1

3
+

1

3
log2

1

3
) = .9183

H(X, Y ) = −
2∑

i=0

1

3
log2

1

3
= 1.5850

H(X|Y ) = H(X, Y )−H(Y ) = 1.5850− 0.9183 = 0.6667

H(Y |X) = H(X, Y )−H(X) = 1.5850− 0.9183 = 0.6667

Problem 3.13 :

H = lim
n→∞H(Xn|X1, . . . , Xn−1)

= lim
n→∞

[
− ∑

x1,...,xn

P (x1, . . . , xn) log2 P (xn|x1, . . . , xn−1)

]

= lim
n→∞

[
− ∑

x1,...,xn

P (x1, . . . , xn) log2 P (xn|xn−1)

]

= lim
n→∞


− ∑

xn,xn−1

P (xn, xn−1) log2 P (xn|xn−1)




= lim
n→∞H(Xn|Xn−1)

However, for a stationary process P (xn, xn−1) and P (xn|xn−1) are independent of n, so that

H = lim
n→∞H(Xn|Xn−1) = H(Xn|Xn−1)

Problem 3.14 :

H(X, Y ) = H(X, g(X)) = H(X) +H(g(X)|X)

= H(g(X)) +H(X|g(X))
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But, H(g(X)|X) = 0, since g(·) is deterministic. Therefore,

H(X) = H(g(X)) +H(X|g(X))

Since each term in the previous equation is non-negative we obtain

H(X) ≥ H(g(X))

Equality holds when H(X|g(X)) = 0. This means that the values g(X) uniquely determine X,
or that g(·) is a one to one mapping.

Problem 3.15 :

I(X;Y ) =
∑n

i=1

∑m
j=1 P (xi, yj) log

P (xi,yj)

P (xi)P (yj)

=

{ ∑n
i=1

∑m
j=1 P (xi, yj) logP (xi, yj)−

∑n
i=1

∑m
j=1 P (xi, yj) logP (xi)

−∑n
i=1

∑m
j=1 P (xi, yj) logP (yj)

}

=

{ ∑n
i=1

∑m
j=1 P (xi, yj) logP (xi, yj)−

∑n
i=1 P (xi) logP (xi)

−∑m
j=1 P (yj) logP (yj)

}

= −H(XY ) +H(X) +H(Y )

Problem 3.16 :

H(X1X2...Xn) = −
m1∑
j1=1

m2∑
j2=1

...
mn∑
jn=1

P (x1, x2, ..., xn) logP (x1, x2, ..., xn)

Since the {xi} are statistically independent :

P (x1, x2, ..., xn) = P (x1)P (x2)...P (xn)

and
m2∑
j2=1

...
mn∑
jn=1

P (x1)P (x2)...P (xn) = P (x1)

(similarly for the other xi). Then :

H(X1X2...Xn) = −∑m1
j1=1

∑m2
j2=1 ...

∑mn
jn=1 P (x1)P (x2)...P (xn) logP (x1)P (x2)...P (xn)

= −∑m1
j1=1 P (x1) logP (x1)−

∑m2
j2=1 P (x2) logP (x2)...−

∑mn
jn=1 P (xn) logP (xn)

=
∑n

i=1H(Xi)
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Problem 3.17 :

We consider an n− input, n− output channel. Since it is noiseless :

P (yj|xi) =
{

0, i �= j
1, i = j

}

Hence :
H(X|Y ) =

∑n
i=1

∑n
j=1 P (xi, yj) logP (xi|yj)

=
∑n

i=1

∑n
j=1 P (yj|xi)p(xi) logP (xi|yj)

But it is also true that :

P (xi|yj) =
{

0, i �= j
1, i = j

}

Hence :

H(X|Y ) = −
n∑

i=1

P (xi) log 1 = 0

Problem 3.18 :

The conditional mutual information between x3 and x2 given x1 is defined as :

I(x3; x2|x1) = log
P (x3, x2|x1)

P (x3|x1)P (x2|x1) = log
P (x3|x2x1)
P (x3|x1)

Hence :
I(x3; x2|x1) = I(x3|x1)− I(x3|x2x1)

and
I(X3;X2|X1) =

∑
x1

∑
x2

∑
x3 P (x1, x2, x3) log

P (x3|x2x1)
P (x3|x1)

=

{ −∑x1

∑
x2

∑
x3 P (x1, x2, x3) logP (x3|x1)

+
∑

x1

∑
x2

∑
x3 P (x1, x2, x3) logP (x3|x2x1)

}

= H(X3|X1)−H(X3|X2X1)

Since I(X3;X2|X1) ≥ 0, it follows that :

H(X3|X1) ≥ H(X3|X2X1)

Problem 3.19 :
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Assume that a > 0. Then we know that in the linear transformation Y = aX + b :

pY (y) =
1

a
pX(

y − b
a

)

Hence :
H(Y ) = − ∫∞−∞ pY (y) log pY (y)dy

= − ∫∞−∞
1
a
pX(

y−b
a
) log 1

a
pX(

y−b
a
)dy

Let u = y−b
a
. Then dy = adu, and :

H(Y ) = − ∫∞−∞
1
a
pX(u) [log pX(u)− log a] adu

= − ∫∞−∞ pX(u) log pX(u)du+
∫∞
−∞ pX(u) log adu

= H(X) + log a

In a similar way, we can prove that for a < 0 :

H(Y ) = −H(X)− log a

Problem 3.20 :

The linear transformation produces the symbols :

yi = axi + b, i = 1, 2, 3

with corresponding probabilities p1 = 0.45, p2 = 0.35, p3 = 0.20. since the {yi} have the same
probability distribution as the {xi}, it follows that : H(Y ) = H(X). Hence, the entropy of a
DMS is not affected by the linear transformation.

Problem 3.21 :

(a) The following figure depicts the design of the Huffman code, when encoding a single level
at a time :
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Codeword Level Probability

a1

a2

a3

a4

0.3365

0.3365

0.1635

0.1635

1

1

1

0

0

0

1

00

010

011

0.327

0.6635

æ
The average number of binary digits per source level is :

R̄ =
∑
i

P (ai)ni = 1.9905 bits/level

The entropy of the source is :

H(X) = −∑
i

P (ai)logP (ai) = 1.9118 bits/level

(b) Encoding two levels at a time :
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a1a2

a2a1

a2a2

a1a3

a1a4

a2a3

a2a4

a3a2

a4a1

a4a2

a3a3

a3a4

a4a3

a4a4

Codeword ProbabilityLevels

a1a1

a3a1

0.11323

0.11323

0.11323

0.11323

0.05502

0.05502

0.05502

0.05502

0.05502

0.05502

0.05502

0.05502

0.02673

0.02673

0.02673

0.02673

0

0

0

0

0

0

0

1

1

1

1

1

1

1

0.22646

0.11004

0.11004

0.11004

0.11004

0.05346

0.05346

0.10692

0.22008

0.22327

0.33331

0.21696

0.44023

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

001

010

011

100

1010

1011

00000

00001

00010

00011

1100

1101

11100

11101

11110

11111

0.55987

æ
The average number of binary digits per level pair is R̄2 =

∑
k P (ak)nk = 3.874 bits/pair

resulting in an average number :
R̄ = 1.937 bits/level

(c)

H(X) ≤ R̄J

J
< H(X) +

1

J

As J →∞, R̄J

J
→ H(X) = 1.9118 bits/level.
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Problem 3.22 :

First, we need the state probabilities P (xi), i = 1, 2. For stationary Markov processes, these
can be found, in general, by the solution of the system :

PΠ = P,
∑
i

Pi = 1

where P is the state probability vector and Π is the transition matrix : Π[ij] = P (xj |xi).
However, in the case of a two-state Markov source, we can find P (xi) in a simpler way by noting
that the probability of a transition from state 1 to state 2 equals the probability of a transition
from state 2 to state 1(so that the probability of each state will remain the same). Hence :

P (x1|x2)P (x2) = P (x2|x1)P (x1)⇒ 0.3P (x2) = 0.2P (x1)⇒ P (x1) = 0.6, P (x2) = 0.4

Then :

H(X) =

{
P (x1) [−P (x1|x1) logP (x1|x1)− P (x2|x1) logP (x2|x1)]+
P (x2) [−P (x1|x2) logP (x1|x2)− P (x2|x2) logP (x2|x2)]

}

= 0.6 [−0.8 log 0.8− 0.2 log 0.2] + 0.4 [−0.3 log 0.3− 0.7 log 0.7]

= 0.7857 bits/letter

If the source is a binary DMS with output letter probabilities P (x1) = 0.6, P (x2) = 0.4, its
entropy will be :

HDMS(X) = −0.6 log 0.6− 0.4 log 0.4 = 0.971 bits/letter

We see that the entropy of the Markov source is smaller, since the memory inherent in it reduces
the information content of each output.

Problem 3.23 :

(a)

H(X) = −(.05 log2 .05 + .1 log2 .1 + .1 log2 .1 + .15 log2 .15
+.05 log2 .05 + .25 log2 .25 + .3 log2 .3) = 2.5282

(b) After quantization, the new alphabet is B = {−4, 0, 4} and the corresponding symbol
probabilities are given by

P (−4) = P (−5) + P (−3) = .05 + .1 = .15

P (0) = P (−1) + P (0) + P (1) = .1 + .15 + .05 = .3

P (4) = P (3) + P (5) = .25 + .3 = .55
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Hence, H(Q(X)) = 1.4060. As it is observed quantization decreases the entropy of the source.

Problem 3.24 :

The following figure depicts the design of a ternary Huffman code.

22

21

20

12

11

10

0

2

1

0

2

1

0

2

1

0

.50

.28

.05

.1

.13

.15

.17

.18

.22

The average codeword length is

R̄(X) =
∑
x

P (x)nx = .22 + 2(.18 + .17 + .15 + .13 + .10 + .05)

= 1.78 (ternary symbols/output)

For a fair comparison of the average codeword length with the entropy of the source, we compute
the latter with logarithms in base 3. Hence,

H(X) = −∑
x

P (x) log3 P (x) = 1.7047

As it is expected H(X) ≤ R̄(X).

Problem 3.25 :

Parsing the sequence by the rules of the Lempel-Ziv coding scheme we obtain the phrases
0, 00, 1, 001, 000, 0001, 10, 00010, 0000, 0010, 00000, 101, 00001,
000000, 11, 01, 0000000, 110, ...
The number of the phrases is 18. For each phrase we need 5 bits plus an extra bit to represent
the new source output.
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Dictionary Dictionary Codeword
Location Contents
1 00001 0 00000 0
2 00010 00 00001 0
3 00011 1 00000 1
4 00100 001 00010 1
5 00101 000 00010 0
6 00110 0001 00101 1
7 00111 10 00011 0
8 01000 00010 00110 0
9 01001 0000 00101 0
10 01010 0010 00100 0
11 01011 00000 01001 0
12 01100 101 00111 1
13 01101 00001 01001 1
14 01110 000000 01011 0
15 01111 11 00011 1
16 10000 01 00001 1
17 10001 0000000 01110 0
18 10010 110 01111 0

Problem 3.26 :

(a)

H(X) = −
∫ ∞

0

1

λ
e−

x
λ ln(

1

λ
e−

x
λ )dx

= − ln(
1

λ
)
∫ ∞

0

1

λ
e−

x
λdx+

∫ ∞

0

1

λ
e−

x
λ
x

λ
dx

= lnλ +
1

λ

∫ ∞

0

1

λ
e−

x
λxdx

= lnλ +
1

λ
λ = 1 + lnλ

where we have used the fact
∫∞
0

1
λ
e−

x
λdx = 1 and E[X] =

∫∞
0 x 1

λ
e−

x
λdx = λ.

(b)

H(X) = −
∫ ∞

−∞
1

2λ
e−

|x|
λ ln(

1

2λ
e−

|x|
λ )dx

= − ln(
1

2λ
)
∫ ∞

−∞
1

2λ
e−

|x|
λ dx+

1

λ

∫ ∞

−∞
|x| 1

2λ
e−

|x|
λ dx
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= ln(2λ) +
1

λ

[∫ 0

−∞
−x 1

2λ
e

x
λdx+

∫ ∞

0
x
1

2λ
e−

x
λdx

]

= ln(2λ) +
1

2λ
λ+

1

2λ
λ = 1 + ln(2λ)

(c)

H(X) = −
∫ 0

−λ

x+ λ

λ2
ln

(
x+ λ

λ2

)
dx−

∫ λ

0

−x+ λ
λ2

ln

(−x+ λ
λ2

)
dx

= − ln
(
1

λ2

) [∫ 0

−λ

x+ λ

λ2
dx+

∫ λ

0

−x+ λ
λ2

dx

]

−
∫ 0

−λ

x+ λ

λ2
ln(x+ λ)dx−

∫ λ

0

−x+ λ
λ2

ln(−x+ λ)dx

= ln(λ2)− 2

λ2

∫ λ

0
z ln zdz

= ln(λ2)− 2

λ2

[
z2 ln z

2
− z

2

4

]λ
0

= ln(λ2)− ln(λ) +
1

2

Problem 3.27 :

(a) Since R(D) = log λ
D

and D = λ
2
, we obtain R(D) = log( λ

λ/2
) = log(2) = 1 bit/sample.

(b) The following figure depicts R(D) for λ = 0.1, .2 and .3. As it is observed from the figure,
an increase of the parameter λ increases the required rate for a given distortion.

0

1

2

3

4

5

6

7

0 0.05 0.1 0.15 0.2 0.25 0.3

l=.1 l=.2

l=.3

R
(D

)

Distortion D
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Problem 3.28 :

(a) For a Gaussian random variable of zero mean and variance σ2 the rate-distortion function
is given by R(D) = 1

2
log2

σ2

D
. Hence, the upper bound is satisfied with equality. For the lower

bound recall that H(X) = 1
2
log2(2πeσ

2). Thus,

H(X)− 1

2
log2(2πeD) =

1

2
log2(2πeσ

2)− 1

2
log2(2πeD)

=
1

2
log2

(
2πeσ2

2πeD

)
= R(D)

As it is observed the upper and the lower bounds coincide.

(b) The differential entropy of a Laplacian source with parameter λ is H(X) = 1+ ln(2λ). The
variance of the Laplacian distribution is

σ2 =
∫ ∞

−∞
x2

1

2λ
e−

|x|
λ dx = 2λ2

Hence, with σ2 = 1, we obtain λ =
√
1/2 andH(X) = 1+ln(2λ) = 1+ln(

√
2) = 1.3466 nats/symbol =

1.5 bits/symbol. A plot of the lower and upper bound of R(D) is given in the next figure.

-1

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Upper Bound

Lower Bound

R
(D

)

Distortion D

Laplacian Distribution, unit variance

(c) The variance of the triangular distribution is given by

σ2 =
∫ 0

−λ

(
x+ λ

λ2

)
x2dx+

∫ λ

0

(−x+ λ
λ2

)
x2dx

=
1

λ2

(
1

4
x4 +

λ

3
x3
) ∣∣∣∣0−λ

+
1

λ2

(
−1

4
x4 +

λ

3
x3
) ∣∣∣∣λ

0

=
λ2

6
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Hence, with σ2 = 1, we obtain λ =
√
6 andH(X) = ln(6)−ln(√6)+1/2 = 1.7925 bits /source output.

A plot of the lower and upper bound of R(D) is given in the next figure.
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Upper Bound

Lower Bound

R
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Distortion D
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Problem 3.29 :

σ2 = E[X2(t)] = RX(τ)|τ=0 =
A2

2

Hence,

SQNR = 3 · 4νX̆2 = 3 · 4ν X
2

x2max

= 3 · 4ν A
2

2A2

With SQNR = 60 dB, we obtain

10 log10

(
3 · 4q
2

)
= 60 =⇒ q = 9.6733

The smallest integer larger that q is 10. Hence, the required number of quantization levels is
ν = 10.

Problem 3.30 :

(a)

H(X|G) = −
∫ ∞

−∞

∫ ∞

−∞
p(x, g) log p(x|g)dxdg
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But X,G are independent, so : p(x, g) = p(x)p(g), p(x|g) = p(x).Hence :

H(X|G) = − ∫∞−∞ p(g)
[∫∞

−∞ p(x) log p(x)dx
]
dg

= − ∫∞−∞ p(g)H(X)dg
= H(X) = 1

2
log(2πeσ2x)

where the last equality stems from the Gaussian pdf of X.

(b)
I(X;Y ) = H(Y )−H(Y |X)

Since Y is the sum of two independent, zero-mean Gaussian r.v’s , it is also a zero-mean Gaussian
r.v. with variance : σ2y = σ

2
x +σ

2
n. Hence : H(Y ) = 1

2
log (2πe (σ2x + σ

2
n)) . Also, since y = x+ g :

p(y|x) = pg(y − x) = 1√
2πσn

e
− (y−x)2

2σ2
n

Hence :

H(Y |X) = −
∫ ∞

−∞

∫ ∞

−∞
p(x, y) log p(y|x)dxdy

= −
∫ ∞

−∞
p(x) log e

∫ ∞

−∞
p(y|x) ln

(
1√
2πσn

exp(−(y − x)2
2σ2n

)

)
dydx

=
∫ ∞

−∞
p(x) log e

[∫ ∞

−∞
pg(y − x)

(
ln(
√
2πσn) +

(y − x)2
2σ2n

)
dy

]
dx

=
∫ ∞

−∞
p(x) log e

[
ln(
√
2πσn) +

1

2σ2n
σ2n

]
dx

=
[
log(
√
2πσn) +

1

2
log e

] ∫ ∞

−∞
p(x)dx

=
1

2
log

(
2πeσ2n

)
(= H(G))

where we have used the fact that :
∫∞
−∞ pg(y−x)dy = 1,

∫∞
−∞(y−x)2pg(y−x)dy = E [G2] = σ2n.

From H(Y ), H(Y |X) :

I(X;Y ) = H(Y )−H(Y |X) =
1

2
log

(
2πe(σ2x + σ

2
n)
)
− 1

2
log

(
2πeσ2n

)
=

1

2
log

(
1 +

σ2x
σ2n

)
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Problem 3.31 :

Codeword ProbabilityLetter

x1

x2

x3

x4

x5

x6

x7

x8

x9

0.25

0.20

0.15

0.12

0.10

0.08

0.05

0.05

0

2

00

01

02

10

12

110

111

0

2

1

0

1

2

0

2

1

0

1

2
0.1

0.28

0.47

æ

R̄ = 1.85 ternary symbols/letter

Problem 3.32 :

Given (n1, n2, n3, n4) = (1, 2, 2, 3) we have :

4∑
k=1

2−nk = 2−1 + 2−2 + 2−2 + 2−3 =
9

8
> 1

Since the Craft inequality is not satisfied, a binary code with code word lengths (1, 2, 2, 3) that
satisfies the prefix condition does not exist.

Problem 3.33 :

2n∑
k=1

2−nk =
2n∑
k=1

2−n = 2n2−n = 1
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Therefore the Kraft inequality is satisfied.

Problem 3.34 :

p(X) =
1

(2π)n/2 |M |1/2 e
− 1

2
X′M−1X

H(X) = −
∫ ∞

−∞
...
∫ ∞

−∞
p(X) log p(X)dX

But :

log p(X) = −1

2
log(2π)n |M | −

(
1

2
log e

)
X′M−1X

and ∫ ∞

−∞
...
∫ ∞

−∞

(
1

2
log e

)
X′M−1X p(X)dX =

n

2
log e

Hence :
H(X) = 1

2
log(2π)n |M | + 1

2
log en

= 1
2
log(2πe)n |M |

Problem 3.35 :

R(D) = 1 +D logD + (1−D) log(1−D), 0 ≤ D = Pe ≤ 1/2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D

R
(D

)
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Problem 3.36 :

R(D) = logM +D logD + (1−D) log
(1−D)

M − 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

D

R
(D

)

M=8

M=4

M=2

Problem 3.37 :

dW (X, X̃) = (X− X̃)′W(X− X̃)

Let W = P′P. Then :
dW (X, X̃) = (X− X̃)′P′P(X− X̃)

=
(
P(X− X̃)

)′
P(X− X̃)

= 1
n

(
Y − Ỹ

)′ (
Y − Ỹ

)
where by definition : Y=

√
nPX, Ỹ =

√
nPX̃ . Hence : dW (X, X̃) = d2(Y,Ỹ).

Problem 3.38 :

(a) The first order predictor is : x̂(n) = a11x(n−1).The coefficient a11 that minimizes the MSE
is found from the orthogonality of the prediction error to the prediction data :

E [e(n)x(n− 1)] = 0⇒
E [(x(n)− a11x(n− 1)) x(n− 1)] = 0⇒
φ(1)− a11φ(0) = 0⇒ a11 = φ(1)/φ(0) = 1/2
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The minimum MSE is : ε1 = φ(0) (1− a211) = 3/4

(b) For the second order predictor : x̂(n) = a21x(n− 1) + a22x(n− 2). Following the Levinson-
Durbin algorithm (Eqs 3-5-25) :

a22 =
φ(2)−∑1

k=1 a1kφ(2− k)
ε1

=
0− 1

2
1
2

3/4
= −1/3

a21 = a11 − a22a11 = 2/3

The minimum MSE is :
ε2 = ε1 (1− a22)2 = 2/3

Problem 3.39 :

p(x1, x2) =

{
15
7ab
, x1, x2 ∈ C

0, o.w

}

If x1, x2 are quantized separately by using uniform intervals of length ∆, the number of levels
needed is L1 =

a
∆
, L2 =

b
∆
. The number of bits is :

Rx = R1 +R2 = logL1 + logL2 = log
ab

∆2

By using vector quantization with squares having area ∆2, we have L′
x = 7ab

15∆2 and R′
x = logL′

x =
log 7ab

15∆2 bits. The difference in bit rate is :

Rx − R′
x = log

ab

∆2
− log

7ab

15∆2
= log

15

7
= 1.1 bits/output sample

for all a, b > 0.

Problem 3.40 :

(a) The area between the two squares is 4 × 4 − 2 × 2 = 12. Hence, pX,Y (x, y) = 1
12
. The

marginal probability pX(x) is given by pX(x) =
∫ 2
−2 pX,Y (x, y)dy. If −2 ≤ X < −1, then

pX(x) =
∫ 2

−2
pX,Y (x, y)dy =

1

12
y
∣∣∣∣2−2

=
1

3
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If −1 ≤ X < 1, then

pX(x) =
∫ −1

−2

1

12
dy +

∫ 2

1

1

12
dy =

1

6

Finally, if 1 ≤ X ≤ 2, then

pX(x) =
∫ 2

−2
pX,Y (x, y)dy =

1

12
y

∣∣∣∣2−2
=

1

3

The next figure depicts the marginal distribution pX(x).

. . . . . . . . .
1/6
1/3

-2 -1 1 2

Similarly we find that

pY (y) =




1
3
−2 ≤ y < −1

1
6
−1 ≤ y < −1

1
3

1 ≤ y ≤ 2

(b) The quantization levels x̂1, x̂2, x̂3 and x̂4 are set to −3
2
, −1

2
, 1

2
and 3

2
respectively. The

resulting distortion is

DX = 2
∫ −1

−2
(x+

3

2
)2pX(x)dx+ 2

∫ 0

−1
(x+

1

2
)2pX(x)dx

=
2

3

∫ −1

−2
(x2 + 3x+

9

4
)dx+

2

6

∫ 0

−1
(x2 + x+

1

4
)dx

=
2

3

(
1

3
x3 +

3

2
x2 +

9

4
x
) ∣∣∣∣−1

−2
+

2

6

(
1

3
x3 +

1

2
x2 +

1

4
x
) ∣∣∣∣0−1

=
1

12

The total distortion is

Dtotal = DX +DY =
1

12
+

1

12
=

1

6

whereas the resulting number of bits per (X, Y ) pair

R = RX +RY = log2 4 + log2 4 = 4

(c) Suppose that we divide the region over which p(x, y) �= 0 into L equal subregions. The case
of L = 4 is depicted in the next figure.
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For each subregion the quantization output vector (x̂, ŷ) is the centroid of the corresponding
rectangle. Since, each subregion has the same shape (uniform quantization), a rectangle with
width equal to one and length 12/L, the distortion of the vector quantizer is

D =
∫ 1

0

∫ 12
L

0
[(x, y)− (

1

2
,
12

2L
)]2
L

12
dxdy

=
L

12

∫ 1

0

∫ 12
L

0

[
(x− 1

2
)2 + (y − 12

2L
)2
]
dxdy

=
L

12

[
12

L

1

12
+

123

L3

1

12

]
=

1

12
+

12

L2

If we set D = 1
6
, we obtain

12

L2
=

1

12
=⇒ L =

√
144 = 12

Thus, we have to divide the area over which p(x, y) �= 0, into 12 equal subregions in order to
achieve the same distortion. In this case the resulting number of bits per source output pair
(X, Y ) is R = log2 12 = 3.585.

Problem 3.41 :

(a) The joint probability density function is pXY (x, y) =
1

(2
√
2)2

= 1
8
. The marginal distribution

pX(x) is pX(x) =
∫
y pXY (x, y)dy. If −2 ≤ x ≤ 0,then

pX(x) =
∫ x+2

−x−2
pX,Y (x, y)dy =

1

8
y|x+2

−x−2 =
x+ 2

4

If 0 ≤ x ≤ 2,then

pX(x) =
∫ −x+2

x−2
pX,Y (x, y)dy =

1

8
y|−x+2

x−2 =
−x+ 2

4

The next figure depicts pX(x).
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✦✦
✦✦
✦✦
✦❛❛❛❛❛❛❛

−2 2

1
2

From the symmetry of the problem we have

pY (y) =

{
y+2
4

−2 ≤ y < 0
−y+2

4
0 ≤ y ≤ 2

(b)

DX = 2
∫ −1

−2
(x+

3

2
)2pX(x)dx+ 2

∫ 0

−1
(x+

1

2
)2pX(x)dx

=
1

2

∫ −1

−2
(x+

3

2
)2(x+ 2)dx+

1

2

∫ 0

−1
(x+

1

2
)2(−x+ 2)dx

=
1

2

(
1

4
x4 +

5

3
x3 +

33

8
x2 +

9

2
x
) ∣∣∣∣−1

−2
+

1

2

(
1

4
x4 + x3 +

9

8
x2 +

1

2
x
) ∣∣∣∣0−1

=
1

12

The total distortion is

Dtotal = DX +DY =
1

12
+

1

12
=

1

6
whereas the required number of bits per source output pair

R = RX +RY = log2 4 + log2 4 = 4

(c) We divide the square over which p(x, y) �= 0 into 24 = 16 equal square regions. The area of
each square is 1

2
and the resulting distortion

D =
16

8

∫ 1√
2

0

∫ 1√
2

0

[
(x− 1

2
√
2
)2 + (y − 1

2
√
2
)2
]
dxdy

= 4
∫ 1√

2

0

∫ 1√
2

0
(x− 1

2
√
2
)2dxdy

=
4√
2

∫ 1√
2

0
(x2 +

1

8
− x√

2
)dx

=
4√
2

(
1

3
x3 +

1

8
x− 1

2
√
2
x2
) ∣∣∣∣

1√
2

0

=
1

12

Hence, using vector quantization and the same rate we obtain half the distortion.
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CHAPTER 4

Problem 4.1 :

(a)

x̂(t) =
1

π

∫ ∞

−∞
x(a)

t− a
da

Hence :
−x̂(−t) = − 1

π

∫∞
−∞

x(a)
−t−ada

= − 1
π

∫−∞
∞

x(−b)
−t+b (−db)

= − 1
π

∫∞
−∞

x(b)
−t+bdb

= 1
π

∫∞
−∞

x(b)
t−b db = x̂(t)

where we have made the change of variables : b = −a and used the relationship : x(b) = x(−b).

(b) In exactly the same way as in part (a) we prove :

x̂(t) = x̂(−t)

(c) x(t) = cosω0t, so its Fourier transform is : X(f) = 1
2
[δ(f − f0) + δ(f + f0)] , f0 = 2πω0.

Exploiting the phase-shifting property (4-1-7) of the Hilbert transform :

X̂(f) =
1

2
[−jδ(f − f0) + jδ(f + f0)] =

1

2j
[δ(f − f0)− δ(f + f0)] = F−1 {sin 2πf0t}

Hence, x̂(t) = sinω0t.

(d) In a similar way to part (c) :

x(t) = sinω0t⇒ X(f) =
1

2j
[δ(f − f0)− δ(f + f0)]⇒ X̂(f) =

1

2
[−δ(f − f0)− δ(f + f0)]

⇒ X̂(f) = −1
2
[δ(f − f0) + δ(f + f0)] = −F−1 {cos 2πω0t} ⇒ x̂(t) = − cosω0t

(e) The positive frequency content of the new signal will be : (−j)(−j)X(f) = −X(f), f > 0,

while the negative frequency content will be : j · jX(f) = −X(f), f < 0.Hence, since
ˆ̂
X(f) =

−X(f), we have : ˆ̂x(t) = −x(t).
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(f) Since the magnitude response of the Hilbert transformer is characterized by : |H(f)| = 1,

we have that :
∣∣∣X̂(f)∣∣∣ = |H(f)| |X(f)| = |X(f)| . Hence :∫ ∞

−∞

∣∣∣X̂(f)∣∣∣2 df = ∫ ∞

−∞
|X(f)|2 df

and using Parseval’s relationship :

∫ ∞

−∞
x̂2(t)dt =

∫ ∞

−∞
x2(t)dt

(g) From parts (a) and (b) above, we note that if x(t) is even, x̂(t) is odd and vice-versa.
Therefore, x(t)x̂(t) is always odd and hence :

∫∞
−∞ x(t)x̂(t)dt = 0.

Problem 4.2 :

We have :
x̂(t) = h(t) ∗ x(t)

where h(t) = 1
πt
and H(f) =

{ −j, f > 0
j, f < 0

}
. Hence :

Φx̂x̂(f) = Φxx(f) |H(f)|2 = Φxx(f)

and its inverse Fourier transform :
φx̂x̂(τ) = φxx(τ)

Also :
φxx̂(τ) = E [x(t+ τ)x̂(t)]

= 1
π

∫∞
−∞

E[x(t+τ)x(a)]
t−a da

= 1
π

∫∞
−∞

φxx(t+τ−a)
t−a da

= − 1
π

∫−∞
∞

φxx(b)
b−τ db

= 1
π

∫∞
−∞

φxx(b)
τ−b db = −φxx(τ)
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Problem 4.3 :

(a)
E [z(t)z(t + τ)] = E [{x(t+ τ) + jy(t+ t)} {x(t) + jy(t)}]

= E [x(t)x(t+ τ)]− E [y(t)y(t+ τ)] + jE [x(t)y(t+ τ)]
+E [y(t)x(t+ τ)]

= φxx(τ)− φyy(τ) + j [φyx(τ) + φxy(τ)]

But φxx(τ) = φyy(τ)and φyx(τ) = −φxy(τ). Therefore :

E [z(t)z(t + τ)] = 0

(b)

V =
∫ T

0
z(t)dt

E
(
V 2
)
=
∫ T

0

∫ T

0
E [z(a)z(b)] dadb = 0

from the result in (a) above. Also :

E (V V ∗) =
∫ T
0

∫ T
0 E [z(a)z∗(b)] dadb

=
∫ T
0

∫ T
0 2N0δ(a− b)dadb

=
∫ T
0 2N0da = 2N0T

Problem 4.4 :

E [x(t+ τ)x(t)] = A2E [sin (2πfc(t+ τ) + θ) sin (2πfct+ θ)]

= A2

2
cos 2πfcτ − A2

2
E [cos (2πfc(2t+ τ) + 2θ)]

where the last equality follows from the trigonometric identity :
sinA sinB = 1

2
[cos(A−B)− cos(A+B)] . But :

E [cos (2πfc(2t+ τ) + 2θ)] =
∫ 2π
0 cos (2πfc(2t+ τ) + 2θ) p(θ)dθ

= 1
2π

∫ 2π
0 cos (2πfc(2t+ τ) + 2θ) dθ = 0

Hence :

E [x(t+ τ)x(t)] =
A2

2
cos 2πfcτ
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Problem 4.5 :

We know from Fourier transform properties that if a signal x(t) is real-valued then its Fourier
transform satisfies : X(−f) = X∗(f) (Hermitian property). Hence the condition under which
sl(t) is real-valued is : Sl(−f) = S∗

l (f) or going back to the bandpass signal s(t) (using 4-1-8):

S+(fc − f) = S∗
+(fc + f)

The last condition shows that in order to have a real-valued lowpass signal sl(t), the positive
frequency content of the corresponding bandpass signal must exhibit hermitian symmetry around
the center frequency fc. In general, bandpass signals do not satisfy this property (they have
Hermitian symmetry around f = 0), hence, the lowpass equivalent is generally complex-valued.

Problem 4.6 :

A well-known result in estimation theory based on the minimum mean-squared-error criterion
states that the minimum of Ee is obtained when the error is orthogonal to each of the functions
in the series expansion. Hence :

∫ ∞

−∞

[
s(t)−

K∑
k=1

skfk(t)

]
f ∗
n(t)dt = 0, n = 1, 2, ..., K (1)

since the functions {fn(t)} are orthonormal, only the term with k = n will remain in the sum,
so : ∫ ∞

−∞
s(t)f ∗

n(t)dt− sn = 0, n = 1, 2, ..., K

or:
sn =

∫ ∞

−∞
s(t)f ∗

n(t)dt n = 1, 2, ..., K

The corresponding residual error Ee is :

Emin =
∫∞
−∞
[
s(t)−∑K

k=1 skfk(t)
] [
s(t)−∑K

n=1 snfn(t)
]∗
dt

=
∫∞
−∞ |s(t)|2 dt−

∫∞
−∞
∑K

k=1 skfk(t)s
∗(t)dt−∑K

n=1 s
∗
n

∫∞
−∞
[
s(t)−∑K

k=1 skfk(t)
]
f ∗
n(t)dt

=
∫∞
−∞ |s(t)|2 dt−

∫∞
−∞
∑K

k=1 skfk(t)s
∗(t)dt

= Es −∑K
k=1 |sk|2

where we have exploited relationship (1) to go from the second to the third step in the above
calculation.

47



Note : Relationship (1) can also be obtained by simple differentiation of the residual error with
respect to the coefficients {sn} . Since sn is, in general, complex-valued sn = an + jbn we have
to differentiate with respect to both real and imaginary parts :

d
dan
Ee = d

dan

∫∞
−∞
[
s(t)−∑K

k=1 skfk(t)
] [
s(t)−∑K

n=1 snfn(t)
]∗
dt = 0

⇒ − ∫∞−∞ anfn(t)
[
s(t)−∑K

n=1 snfn(t)
]∗
+ a∗nf

∗
n(t)

[
s(t)−∑K

n=1 snfn(t)
]
dt = 0

⇒ −2an ∫∞−∞Re
{
f ∗
n(t)

[
s(t)−∑K

n=1 snfn(t)
]}
dt = 0

⇒ ∫∞
−∞Re

{
f ∗
n(t)

[
s(t)−∑K

n=1 snfn(t)
]}
dt = 0, n = 1, 2, ..., K

where we have exploited the identity : (x+ x∗) = 2Re{x}. Differentiation of Ee with respect to
bn will give the corresponding relationship for the imaginary part; combining the two we get
(1).

Problem 4.7 :

The procedure is very similar to the one for the real-valued signals described in the book (pages
167-168). The only difference is that the projections should conform to the complex-valued
vector space :

c12=

∫ ∞

−∞
s2(t)f

∗
1 (t)dt

and, in general for the k-th function :

cik =
∫ ∞

−∞
sk(t)f

∗
i (t)dt, i = 1, 2, ..., k − 1

Problem 4.8 :

For real-valued signals the correlation coefficients are given by : ρkm = 1√EkEm

∫∞
−∞ sk(t)sm(t)dt

and the Euclidean distances by : d
(e)
km =

{
Ek + Em − 2

√EkEmρkm
}1/2

. For the signals in this
problem :

E1 = 2, E2 = 2, E3 = 3, E4 = 3

ρ12 = 0 ρ13 =
2√
6

ρ14 = − 2√
6

ρ23 = 0 ρ24 = 0
ρ34 = −1

3
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and:

d
(e)
12 = 2 d

(e)
13 =

√
2 + 3− 2√6 2√

6
= 1 d

(e)
14 =

√
2 + 3 + 2

√
6 2√

6
= 3

d
(e)
23 =

√
2 + 3 =

√
5 d

(e)
24 =

√
5

d
(e)
34 =

√
3 + 3 + 2 ∗ 31

3
= 2
√
2

Problem 4.9 :

The energy of the signal waveform s′m(t) is :

E ′ =
∫ ∞

−∞
|s′m(t)|2 dt =

∫ ∞

−∞

∣∣∣∣∣sm(t)− 1

M

M∑
k=1

sk(t)

∣∣∣∣∣
2

dt

=
∫ ∞

−∞
s2
m(t)dt+

1

M2

M∑
k=1

M∑
l=1

∫ ∞

−∞
sk(t)sl(t)dt

− 1

M

M∑
k=1

∫ ∞

−∞
sm(t)sk(t)dt− 1

M

M∑
l=1

∫ ∞

−∞
sm(t)sl(t)dt

= E + 1

M2

M∑
k=1

M∑
l=1

Eδkl − 2

M
E

= E + 1

M
E − 2

M
E =

(
M − 1
M

)
E

The correlation coefficient is given by :

ρmn =
1

E ′
∫ ∞

−∞
s′m(t)s

′
n(t)dt =

1

E ′
∫ ∞

−∞

(
sm(t)− 1

M

M∑
k=1

sk(t)

)(
sn(t)− 1

M

M∑
l=1

sl(t)

)
dt

=
1

E ′
(∫ ∞

−∞
sm(t)sn(t)dt+

1

M2

M∑
k=1

M∑
l=1

∫ ∞

−∞
sk(t)sl(t)dt

)

− 1

E ′
(
1

M

M∑
k=1

∫ ∞

−∞
sn(t)sk(t)dt+

1

M

M∑
l=1

∫ ∞

−∞
sm(t)sl(t)dt

)

=
1
M2ME − 1

M
E − 1

M
E

M−1
M
E = − 1

M − 1

Problem 4.10 :

(a) To show that the waveforms fn(t), n = 1, . . . , 3 are orthogonal we have to prove that:∫ ∞

−∞
fm(t)fn(t)dt = 0, m 
= n
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Clearly:

c12 =
∫ ∞

−∞
f1(t)f2(t)dt =

∫ 4

0
f1(t)f2(t)dt

=
∫ 2

0
f1(t)f2(t)dt+

∫ 4

2
f1(t)f2(t)dt

=
1

4

∫ 2

0
dt− 1

4

∫ 4

2
dt =

1

4
× 2− 1

4
× (4− 2)

= 0

Similarly:

c13 =
∫ ∞

−∞
f1(t)f3(t)dt =

∫ 4

0
f1(t)f3(t)dt

=
1

4

∫ 1

0
dt− 1

4

∫ 2

1
dt− 1

4

∫ 3

2
dt+

1

4

∫ 4

3
dt

= 0

and :

c23 =
∫ ∞

−∞
f2(t)f3(t)dt =

∫ 4

0
f2(t)f3(t)dt

=
1

4

∫ 1

0
dt− 1

4

∫ 2

1
dt+

1

4

∫ 3

2
dt− 1

4

∫ 4

3
dt

= 0

Thus, the signals fn(t) are orthogonal. It is also straightforward to prove that the signals have
unit energy : ∫ ∞

−∞
|fi(t)|2dt = 1, i = 1, 2, 3

Hence, they are orthonormal.

(b) We first determine the weighting coefficients

xn =
∫ ∞

−∞
x(t)fn(t)dt, n = 1, 2, 3

x1 =
∫ 4

0
x(t)f1(t)dt = −1

2

∫ 1

0
dt+

1

2

∫ 2

1
dt− 1

2

∫ 3

2
dt+

1

2

∫ 4

3
dt = 0

x2 =
∫ 4

0
x(t)f2(t)dt =

1

2

∫ 4

0
x(t)dt = 0

x3 =
∫ 4

0
x(t)f3(t)dt = −1

2

∫ 1

0
dt− 1

2

∫ 2

1
dt+

1

2

∫ 3

2
dt+

1

2

∫ 4

3
dt = 0

As it is observed, x(t) is orthogonal to the signal wavaforms fn(t), n = 1, 2, 3 and thus it can
not represented as a linear combination of these functions.
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Problem 4.11 :

(a) As an orthonormal set of basis functions we consider the set

f1(t) =

{
1 0 ≤ t < 1
0 o.w

f2(t) =

{
1 1 ≤ t < 2
0 o.w

f3(t) =

{
1 2 ≤ t < 3
0 o.w

f4(t) =

{
1 3 ≤ t < 4
0 o.w

In matrix notation, the four waveforms can be represented as

s1(t)
s2(t)
s3(t)
s4(t)


 =




2 −1 −1 −1
−2 1 1 0
1 −1 1 −1
1 −2 −2 2





f1(t)
f2(t)
f3(t)
f4(t)




Note that the rank of the transformation matrix is 4 and therefore, the dimensionality of the
waveforms is 4

(b) The representation vectors are

s1 =
[
2 −1 −1 −1

]
s2 =

[
−2 1 1 0

]
s3 =

[
1 −1 1 −1

]
s4 =

[
1 −2 −2 2

]

(c) The distance between the first and the second vector is:

d1,2 =
√
|s1 − s2|2 =

√∣∣∣[ 4 −2 −2 −1 ]∣∣∣2 = √25
Similarly we find that :

d1,3 =
√
|s1 − s3|2 =

√∣∣∣[ 1 0 −2 0
]∣∣∣2 = √5

d1,4 =
√
|s1 − s4|2 =

√∣∣∣[ 1 1 1 −3
]∣∣∣2 = √12

d2,3 =
√
|s2 − s3|2 =

√∣∣∣[ −3 2 0 1
]∣∣∣2 = √14

d2,4 =
√
|s2 − s4|2 =

√∣∣∣[ −3 3 3 −2
]∣∣∣2 = √31

d3,4 =
√
|s3 − s4|2 =

√∣∣∣[ 0 1 3 −3
]∣∣∣2 = √19
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Thus, the minimum distance between any pair of vectors is dmin =
√
5.

Problem 4.12 :

As a set of orthonormal functions we consider the waveforms

f1(t) =

{
1 0 ≤ t < 1
0 o.w

f2(t) =

{
1 1 ≤ t < 2
0 o.w

f3(t) =

{
1 2 ≤ t < 3
0 o.w

The vector representation of the signals is

s1 =
[
2 2 2

]
s2 =

[
2 0 0

]
s3 =

[
0 −2 −2

]
s4 =

[
2 2 0

]

Note that s3(t) = s2(t)− s1(t) and that the dimensionality of the waveforms is 3.

Problem 4.13 :

The power spectral density of X(t) corresponds to : φxx(t) = 2BN0
sin 2πBt

2πBt
. From the result of

Problem 2.14 :

φyy(τ) = φ2
xx(0) + 2φ2

xx(τ) = (2BN0)
2 + 8B2N2

0

(
sin 2πBt

2πBt

)2

Also :
Φyy(f) = φ2

xx(0)δ(f) + 2Φxx(f) ∗ Φxx(f)

The following figure shows the power spectral density of Y (t) :

✻

✑
✑
✑
✑
✑
✑
✑✑






−2B 0 2B

f

2N2
0B

(2BN0)
2δ(f)

æ
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Problem 4.14 :

u(t) =
∑
n

[ang(t− 2nT )− jbng(t− 2nT − T )]

(a) Since the signaling rate is 1/2T for each sequence and since g(t) has duration 2T, for any
time instant only g(t−2nT ) and g(t−2nT −T ) or g(t−2nT +T ) will contribute to u(t). Hence,
for 2nT ≤ t ≤ 2nT + T :

|u(t)|2 = |ang(t− 2nT )− jbng(t− 2nT + T )|2

= a2
ng

2(t− 2nT ) + b2ng
2(t− 2nT + T )

= g2(t− 2nT ) + g2(t− 2nT + T ) = sin 2 πt
2T
+ sin 2 π(t+T )

2T

= sin 2 πt
2T
+ cos 2 πt

2T
= 1, ∀ t

(b) The power density spectrum is :

Φuu(f) =
1

T
|G(f)|2

where G(f) =
∫∞
−∞ g(t) exp(−j2πft)dt = ∫ 2T

0 sin πt
2T
exp(−j2πft)dt. By using the trigonometric

identity sin x = exp(jx)−exp(−jx)
2j

it is easily shown that :

G(f) =
4T

π

cos 2πTf

1− 16T 2f 2
e−j2πfT

Hence :

G(f) =
(

4T
π

)2 cos 22πTf

(1−16T 2f2)2

Φuu(f) = 1
T

(
4T
π

)2 cos 22πTf

(1−16T 2f2)2

= 16T
π2

cos 22πTf

(1−16T 2f2)2

(c) The above power density spectrum is identical to that for the MSK signal. Therefore, the
MSK signal can be generated as a staggered four phase PSK signal with a half-period sinusoidal
pulse for g(t).
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Problem 4.15:

We have that Φuu(f) =
1
T
|G(f)|2Φii(f) But E(In) = 0, E

(
|In|2

)
= 1, hence : φii (m) ={

1, m = 0
0, m 
= 0

}
. Therefore : Φii(f) = 1⇒ Φuu(f) =

1
T
|G(f)|2 .

(a) For the rectangular pulse :

G(f) = AT
sin πfT

πfT
e−j2πfT/2 ⇒ |G(f)|2 = A2T 2 sin

2πfT

(πfT )2

where the factor e−j2πfT/2 is due to the T/2 shift of the rectangular pulse from the center t = 0.
Hence :

Φuu(f) = A2T
sin 2πfT

(πfT )2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

fT

Sv
(f

)

(b) For the sinusoidal pulse : G(f) =
∫ T
0 sin πt

T
exp(−j2πft)dt. By using the trigonometric

identity sin x = exp(jx)−exp(−jx)
2j

it is easily shown that :

G(f) =
2AT

π

cosπTf

1− 4T 2f 2
e−j2πfT/2 ⇒ |G(f)|2 =

(
2AT

π

)2 cos 2πTf

(1− 4T 2f 2)2

Hence :

Φuu(f) =
(
2A

π

)2

T
cos 2πTf

(1− 4T 2f 2)2
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(c) The 3-db frequency for (a) is :

sin 2πf3dbT

(πf3dbT )
2 =

1

2
⇒ f3db =

0.44

T

(where this solution is obtained graphically), while the 3-db frequency for the sinusoidal pulse
on (b) is :

cos 2πTf

(1− 4T 2f 2)2
=
1

2
⇒ f3db =

0.59

T

The rectangular pulse spectrum has the first spectral null at f = 1/T, whereas the spectrum
of the sinusoidal pulse has the first null at f = 3/2T = 1.5/T. Clearly the spectrum for the
rectangular pulse has a narrower main lobe. However, it has higher sidelobes.

Problem 4.16 :

u(t) = X cos 2πft− Y sin 2πft

E [u(t)] = E(X) cos 2πft− E(Y ) sin 2πft

and :

φuu(t, t+ τ) = E {[X cos 2πft− Y sin 2πft] [X cos 2πf(t+ τ)− Y sin 2πf(t+ τ)]}

= E (X2) [cos 2πf(2t+ τ) + cos 2πfτ ] + E (Y 2) [− cos 2πf(2t+ τ) + cos 2πfτ ]

−E (XY ) sin 2πf(2t+ τ)
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For u(t) to be wide-sense stationary, we must have : E [u(t)] =constant and φuu(t, t+τ) = φuu(τ).
We note that if E(X) = E(Y ) = 0, and E(XY ) = 0 and E(X2) = E(Y 2), then the above
requirements for WSS hold; hence these conditions are necessary. Conversely, if any of the
above conditions does not hold, then either E [u(t)] 
=constant, or φuu(t, t+ τ) 
= φuu(τ). Hence,
the conditions are also necessary.

Problem 4.17 :

The first basis function is :

g4(t) =
s4(t)√E4 =

s4(t)√
3
=

{
−1/√3, 0 ≤ t ≤ 3

0, o.w.

}

Then, for the second basis function :

c43 =
∫ ∞

−∞
s3(t)g4(t)dt = −1/

√
3⇒ g′3(t) = s3(t)− c43g4(t) =




2/3, 0 ≤ t ≤ 2
−4/3, 2 ≤ t ≤ 3
0, o.w




Hence :

g3(t) =
g′3(t)√
E3

=




1/
√
6, 0 ≤ t ≤ 2

−2/√6, 2 ≤ t ≤ 3
0, o.w




where E3 denotes the energy of g
′
3(t) : E3 =

∫ 3
0 (g

′
3(t))

2 dt = 8/3.
For the third basis function :

c42 =
∫ ∞

−∞
s2(t)g4(t)dt = 0 and c32 =

∫ ∞

−∞
s2(t)g3(t)dt = 0

Hence :
g′2(t) = s2(t)− c42g4(t)− c32g3(t) = s2(t)

and

g2(t) =
g′2(t)√E2 =




1/
√
2, 0 ≤ t ≤ 1

−1/√2, 1 ≤ t ≤ 2
0, o.w




where : E2 = ∫ 2
0 (s2(t))

2 dt = 2.
Finally for the fourth basis function :

c41 =
∫ ∞

−∞
s1(t)g4(t)dt = −2/

√
3, c31 =

∫ ∞

−∞
s1(t)g3(t)dt = 2/

√
6, c21 = 0

Hence :
g′1(t) = s1(t)− c41g4(t)− c31g3(t)− c21g2(t) = 0⇒ g1(t) = 0
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The last result is expected, since the dimensionality of the vector space generated by these
signals is 3. Based on the basis functions (g2(t), g3(t), g4(t)) the basis representation of the
signals is :

s4 =
(
0, 0,
√
3
)
⇒ E4 = 3

s3 =
(
0,
√
8/3,−1/√3

)
⇒ E3 = 3

s2 =
(√

2, 0, 0
)
⇒ E2 = 2

s1 =
(
2/
√
6,−2/√3, 0

)
⇒ E1 = 2

Problem 4.18 :

s1 =
(√E , 0)

s2 =
(
−√E , 0

)
s3 =

(
0,
√E
)

s4 =
(
0,−√E

)

✻

✲

f2

f1

s1s2

s4

s3

o o

o

o

æ
As we see, this signal set is indeed equivalent to a 4-phase PSK signal.

Problem 4.19 :

(a)(b) The signal space diagram, together with the Gray encoding of each signal point is given
in the following figure :
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11
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The signal points that may be transmitted at times t = 2nT n = 0, 1, ... are given with blank
circles, while the ones that may be transmitted at times t = 2nT + 1, n = 0, 1, ... are given
with filled circles.

Problem 4.20 :

The autocorrelation function for u∆(t) is :

φu∆u∆
(t) = 1

2
E [u∆(t+ τ)u∗∆(t)]

= 1
2

∑∞
n=−∞

∑∞
m=−∞E (ImI

∗
n)E [u(t+ τ −mT −∆)u∗(t− nT −∆)]

= 1
2

∑∞
n=−∞

∑∞
m=−∞ φii(m− n)E [u(t+ τ −mT −∆)u∗(t− nT −∆)]

= 1
2

∑∞
m=−∞ φii(m)

∑∞
n=−∞E [u(t+ τ −mT − nT −∆)u∗(t− nT −∆)]

= 1
2

∑∞
m=−∞ φii(m)

∑∞
n=−∞

∫ T
0

1
T
u(t+ τ −mT − nT −∆)u∗(t− nT −∆)d∆

Let a = ∆+ nT, da = d∆, and a ∈ (−∞,∞). Then :
φu∆u∆

(t) = 1
2

∑∞
m=−∞ φii(m)

∑∞
n=−∞

∫ (n+1)T
nT

1
T
u(t+ τ −mT − a)u∗(t− a)da

= 1
2

∑∞
m=−∞ φii(m)

1
T

∫∞
−∞ u(t+ τ −mT − a)u∗(t− a)da

= 1
T

∑∞
m=−∞ φii(m)φuu(τ −mT )

Thus we have obtained the same autocorrelation function as given by (4.4.11). Consequently
the power spectral density of u∆(t) is the same as the one given by (4.4.12) :

Φu∆u∆
(f) =

1

T
|G(f)|2Φii(f)
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Problem 4.21 :

(a) Bn = In + In−1. Hence :
In In−1 Bn

1 1 2
1 −1 0
−1 1 0
−1 −1 −2

The signal space representation is given in the following figure, with P (Bn = 2) = P (Bn =
−2) = 1/4, P (Bn = 0) = 1/2.

✲o oI

-2 2

Bn

0 æ

(b)
φBB(m) = E [Bn+mBn] = E [(In+m + In+m−1) (In + In−1)]

= φii(m) + φii(m− 1) + φii(m+ 1)

Since the sequence {In} consists of independent symbols :

φii(m) =

{
E [In+m]E [In] = 0 · 0 = 0, m 
= 0

E [I2
n] = 1, m = 0

}

Hence :

φBB(m) =



2, m = 0
1, m = ±1
0, o.w




and

ΦBB(f) =
∑∞

m=−∞ φBB(m) exp(−j2πfmT ) = 2 + exp(j2πfT ) + exp(−j2πfT )
= 2 [1 + cos 2πfT ] = 4 cos 2πfT

A plot of the power spectral density ΦB(f) is given in the following figure :

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5
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3.5

4

4.5

5

Normalized frequency fT

Power spectral density of B
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(c) The transition matrix is :

In−1 In Bn In+1 Bn+1

−1 −1 −2 −1 −2
−1 −1 −2 1 0
−1 1 0 −1 0
−1 1 0 1 2
1 −1 0 −1 −2
1 −1 0 1 0
1 1 2 −1 0
1 1 2 1 2

The corresponding Markov chain model is illustrated in the following figure :
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✲

✛
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1/2

1/2

0
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Problem 4.22 :

(a) In = an−an−2,with the sequence {an} being uncorrelated random variables (i.eE (an+man) =
δ(m)). Hence :

φii(m) = E [In+mIn] = E [(an+m − an+m−2) (an − an−2)]
= 2δ(m)− δ(m− 2)− δ(m+ 2)

=




2, m = 0
−1, m = ±2
0, o.w.




(b) Φuu(f) =
1
T
|G(f)|2Φii(f) where :

Φii(f) =
∑∞

m=−∞ φii(m) exp(−j2πfmT ) = 2− exp(j4πfT )− exp(−j4πfT )
= 2 [1− cos 4πfT ] = 4 sin 22πfT

and

|G(f)|2 = (AT )2
(
sin πfT

πfT

)2
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Therefore :

Φuu(f) = 4A2T

(
sin πfT

πfT

)2

sin 22πfT

(c) If {an} takes the values (0,1) with equal probability then E(an) = 1/2 and E(an+man) ={
1/4, m 
= 0
1/2, m = 0

}
= [1 + δ(m)] /4. Then :

φii(m) = E [In+mIn] = 2φaa(0)− φaa(2)− φaa(−2)
= 1

4
[2δ(m)− δ(m− 2)− δ(m+ 2)]

and
Φii(f) =

∑∞
m=−∞ φii(m) exp(−j2πfmT ) = sin 22πfT

Φuu(f) = A2T
(

sinπfT
πfT

)2
sin 22πfT

Thus, we obtain the same result as in (b) , but the magnitude of the various quantities is reduced
by a factor of 4 .

Problem 4.23 :

x(t) = Re [u(t) exp (j2πfct)] where u(t) = s(t)± jŝ(t). Hence :

U(f) = S(f)± jŜ(f) where Ŝ(f) =

{ −jS(f), f > 0
jS(f), f < 0

}

So :

U(f) =

{
S(f)± S(f), f > 0
S(f)∓ S(f), f < 0

}
=

{
2S(f) or 0, f > 0
0 or 2S(f), f < 0

}

Since the lowpass equivalent of x(t) is single-sideband, we conclude that x(t) is a single-sideband
signal, too. Suppose, for example, that s(t) has the following spectrum. Then, the spectra of
the signals u(t) (shown in the figure for the case u(t) = s(t)+jŝ(t)) and x(t) are single-sideband
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Problem 4.24 :

We may use the result in (4.4.60), where we set K = 2, p1 = p2 = 1/2 :

Φ(f) =
1

T 2

∞∑
l=−∞

∣∣∣∣∣
2∑
i=1

1

2
Si

(
l

T

)∣∣∣∣∣
2

δ

(
f − l

T

)
+
1

T

2∑
i=1

1

4
|Si(f)|2 − 2

T

1

4
Re [S1(f)S

∗
2(f)]

To simplify the computations we may define the signals over the symmetric interval −T/2 ≤
t ≤ T/2. Then :

Si(f) =
T

2j

[
sin π(f − fi)T

π(f − fi)T − sin π(f + fi)T

π(f + fi)T

]
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(the well-known rectangular pulse spectrum, modulated by sin 2πfit) and :

|Si(f)|2 =
(
T

2

)2

(sin π(f − fi)T

π(f − fi)T
)2

+

(
sin π(f + fi)T

π(f + fi)T

)2



where the cross-term involving the product sinπ(f−fi)T
π(f−fi)T

· sinπ(f+fi)T
π(f+fi)T

is negligible when fi >> 0.
Also :

S1

(
l
T

)
= T

2j

[
sinπ( l

T
− n

2T
)T

π( l
T
− n

2T
)T
− sinπ( l

T
+ n

2T
)T

π( l
T

+ n
2T

)T

]

= T
2j

[
sin(πl−πn

2
)

(πl−πn
2

)
− sin(πl+ πn

2
)

(πl+ πn
2

)

]

= T
2j
2l(−1)l+1

(
sin πn

2

)
/π (l2 − n2/4)

= lT
j
(−1)l+1 sin πn

2

π(l2−n2/4)

and similarly for S2(
l
T
) (with m instead of n). Note that if n(m) is even then S1(2)(

l
T
) = 0 for

all l except at l = ±n(m)/2, where S1(2)(
n(m)
2T

) = ± T
2j
. For this case

1

T 2

∞∑
l=−∞

∣∣∣∣∣
2∑
i=1

1

2
Si

(
l

T

)∣∣∣∣∣
2

δ

(
f − l

T

)
=

1

16

[
δ
(
f − n

2T

)
+ δ

(
f +

n

2T

)
+ δ

(
f − m

2T

)
+ δ

(
f − m

2T

)]

The third term in (4.4.60) involves the product of S1(f) and S2(f) which is negligible since they
have little spectral overlap. Hence :

Φ(f) =
1

16

[
δ
(
f − n

2T

)
+ δ

(
f +

n

2T

)
+ δ

(
f − m

2T

)
+ δ

(
f − m

2T

)]
+

1

4T

[
|S1(f)|2 + |S2(f)|2

]

In comparison with the spectrum of the MSK signal, we note that this signal has impulses in
the spectrum.

Problem 4.25 :

MFSK signal with waveforms : si(t) = sin 2πit
T
, i = 1, 2, ...,M 0 ≤ t ≤ T

The expression for the power density spectrum is given by (4.4.60) with K =M and pi = 1/M.
From Problem 4.23 we have that :

Si(f) =
T

2j

[
sin π(f − fi)T

π(f − fi)T − sin π(f + fi)T

π(f + fi)T

]

for a signal si(t) shifted to the left by T/2 (which does not affect the power spectrum). We also
have that :

Si

(
n

T

)
=

{ ±T/2j, n = ±i
0, o.w.

}
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Hence from (4.4.60) we obtain :

Φ(f) = 1
T 2

(
1
M

)2 (
T 2

4

)∑M
i=1 [δ(f − fi) + δ(f + fi)]

+ 1
T

(
1
M

)2∑M
i=1 |Si(f)|2

− 2
T

∑M
i=1

∑M
j=i+1

(
1
M

)2
Re
[
Si(f)S

∗
j (f)

]

=
(

1
2M

)2∑M
i=1 [δ(f − fi) + δ(f + fi)] +

1
TM2

∑M
i=1 |Si(f)|2

− 2
TM2

∑M
i=1

∑M
j=i+1Re

[
Si(f)S

∗
j (f)

]

Problem 4.26 :

QPRS signal v(t) =
∑

n (Bn + jCn)u(t− nT ), Bn = In + In−1, Cn = Jn + Jn−1.

(a) Similarly to Problem 4.20, the sequence Bn can take the values : P (Bn = 2) = P (Bn =
−2) = 1/4, P (Bn = 0) = 1/2. The same holds for the sequence Cn; since these two sequences
are independent :

P {Bn = i, Cn = j} = P {Bn = 1}P {Cn = j}
Hence, since they are also in phase quadrature the signal space representation will be as shown
in the following figure (next to each symbol is the corresponding probability of occurrence) :

✻

✲

✛ ✲

o o

o

o o

o

o o

Cn

Bn

1/16

1/161/16

1/16

1/8

o
1/8

1/8

1/41/8

2 æ

(b) If we name Zn = Bn + jCn :

φZZ(m) = 1
2
E [(Bn+m + jCn+m) (Bn − jCn)]

= 1
2
{E [Bn+mBn] + E [Cn+mCn]} = 1

2
(φBB(m) + φCC(m)) = φBB(m) = φCC(m)
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since the sequences Bn, Cn are independent, and have the same statistics. Now, from Problem
4.20 :

φBB(m) =



2, m = 0
1, m = ±1
0, o.w


 = φCC(m) = φZZ(m)

Hence, from (4-4-11) :

φvs(τ) =
1

T

∞∑
m=−∞

φBB(m)φuu(τ −mT ) = φvc(τ) = φv(τ)

Also :

Φvs(f) = Φvc(f) = Φv(f) =
1

T
|U(f)|2ΦBB(f)

since the corresponding autocorrelations are the same . From Problem 4.20 : ΦBB(f) =
4 cos 2πfT , so

Φvs(f) = Φvc(f) = Φv(f) =
4

T
|U(f)|2 cos 2πfT

Therefore, the composite QPRS signal has the same power density spectrum as the in-phase
and quadrature components.

(c) The transition probabilities for the Bn, Cn sequences are independent, so the probability of
a transition between one state of the QPRS signal to another state, will be the product of the
probabilities of the respective B-transition and C-transition. Hence, the Markov chain model
will be the Cartesian product of the Markov model that was derived in Problem 4.20 for the
sequence Bn alone. For example, the transition probability from the state (Bn, Cn) = (0, 0) to
the same state will be : P (Bn+1 = 0|Bn = 0) ·P (Cn+1 = 0|Cn = 0) = 1

2
1
2
= 1

4
and so on. Below,

we give a partial sketch of the Markov chain model; the rest of it can be derived easily, from
the symmetries of this model.
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Problem 4.27 :

The MSK and offset QPSK signals have the following form :

v(t) =
∑
n

[anu(t− 2nT )− jbnu(t− 2nT − T )]

where for the QPSK :

u(t) =

{
1, 0 ≤ t ≤ 2T
0, o.w.

}

and for MSK :

u(t) =

{
sin πt

2T
, 0 ≤ t ≤ 2T
0, o.w.

}

The derivation is identical to that given in Sec. 4.4.1 with 2T substituted for T. Hence, the
result is:

φvv(τ) = 1
2T

∑∞
m=−∞ φii(m)φuu(τ −m2T )

= 1
2T

∑∞
m=−∞ (σ2

a + σ2
b ) δ(m)φuu(τ −m2T )

= σ2
a

T
φuu(τ)
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and :

Φvv(f) =
σ2
a

T
|U(f)|2

For the rectangular pulse of QPSK, we have :

φuu(τ) = 2T

(
1− |τ |

2T

)
, 0 ≤ |τ | ≤ 2T

For the MSK pulse :

φuu(τ) =
∫∞
−∞ u(t+ τ)u∗(t)dt =

∫ 2T−τ
0 sin πt

2T
sin π(t+τ)

2T
dt

= T
(
1− |τ |

2T

)
cos π|τ |

2T
+ τ

π
sin π|τ |

2T

Problem 4.28 :

(a) For simplicity we assume binary CPM. Since it is partial response :

q(T ) =
∫ T
0 u(t)dt = 1/4

q(2T ) =
∫ 2T
0 u(t)dt = 1/2, q(t) = 1/2, t > 2T

so only the last two symbols will have an effect on the phase :

φ(t; I) = 2πh
∑n

k=−∞ Ikq(t− kT ), nT ≤ t ≤ nT + T
= π

2

∑n−2
k=−∞ Ik + π (In−1q(t− (n− 1)T ) + Inq(t− nT )) ,

It is easy to see that, after the first symbol, the phase slope is : 0 if In,In−1 have different signs,
and sgn(In)π/(2T ) if In,In−1 have the same sign. At the terminal point t = (n+ 1)T the phase
is :

φ((n+ 1)T ; I) =
π

2

n−1∑
k=−∞

Ik +
π

4
In

Hence the phase tree is as shown in the following figure :
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(b) The state trellis is obtained from the phase-tree modulo 2π:
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(c) The state diagram is shown in the following figure (with the (In,In−1) or (In−1,In) that cause
the respective transitions shown in parentheses)
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Problem 4.29 :

φ(t; I) = 2πh
n∑

k=−∞
Ikq(t− kT )

(a) Full response binary CPFSK (q(T ) = 1/2):
(i) h = 2/3. At the end of each bit interval the phase is : 2π 2

3
1
2

∑n
k=−∞ Ik =

2π
3

∑n
k=−∞ Ik. Hence

the possible terminal phase states are {0, 2π/3, 4π/3} .
(ii) h = 3/4. At the end of each bit interval the phase is : 2π 3

4
1
2

∑n
k=−∞ Ik =

3π
4

∑n
k=−∞ Ik. Hence

the possible terminal phase states are {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}

(b) Partial response L = 3, binary CPFSK : q(T ) = 1/6, q(2T ) = 1/3, q(3T ) = 1/2. Hence, at
the end of each bit interval the phase is :

πh
n−2∑

k=−∞
Ik + 2πh (In−1/3 + In/6) = πh

n−2∑
k=−∞

Ik +
πh

3
(2In−1 + In)

The symbol levels in the parenthesis can take the values {−3,−1, 1, 3} . So :
(i) h = 2/3. The possible terminal phase states are :

{0, 2π/9, 4π/9, 2π/3, 8π/9, 10π/9, 4π/3, 14π/9, 16π/9}
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(ii) h = 3/4. The possible terminal phase states are : {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}

Problem 4.30 :

The 16-QAM signal is represented as s(t) = In cos 2πft+Qn sin 2πft, where In = {±1,±3} , Qn =
{±1,±3} . A superposition of two 4-QAM (4-PSK) signals is :

s(t) = G [An cos 2πft+Bn sin 2πft] + Cn cos 2πft+ Cn sin 2πft

where An, Bn,Cn, Dn = {±1} . Clearly : In = GAn+Cn, Qn = GBn+Dn. From these equations
it is easy to see that G = 2 gives the requires equivalence.

Problem 4.31 :

We are given by Equation (4.3-77) that the pulses ck(t) are defined as

ck(t) = s0(t)
L−1∏
n=1

s0[t+ (n+ Lak,n)], 0 ≤ t ≤ T ·min
n
[L(2− ak,n − n]

Hence, the time support of the pulse ck(t) is

0 ≤ t ≤ T ·min
n
[L(2− ak,n)− n]

We need to find the index n̂ which minimizes S = L(2 − ak,n) − n, or equivalently maximizes
S1 = Lak,n + n :

n̂ = argmax
n
[Lak,n + n], n = 1, ..., L− 1, ak,n = 0, 1

It is easy to show that
n̂ = L− 1 (1)

if all ak,n, n = 0, 1, ..., L− 1 are zero (for a specific k), and
n̂ = max {n : ak,n = 1} (2)

otherwise.
The first case (1) is shown immediately, since if all ak,n, n = 0, 1, ..., L − 1 are zero, then
maxn S1 = maxn n, n = 0, 1, ..., L − 1. For the second case (2), assume that there are n1, n2

such that : n1 < n2 and ak,n1 = 1, ak,n2 = 0. Then S1(n1) = L + n1 > n2(= S1(n2)), since
n2 − n1 < L− 1 due to the allowable range of n.
So, finding the binary representation of k, k = 0, 1, ..., 2L−1−1, we find n̂ and the corresponding
S(n) which gives the extent of the time support of ck(t):

k = 0 ⇒ ak,L−1 = 0, ..., ak,2 = 0, ak,1 = 0 ⇒ n̂ = L− 1 ⇒ S = L+ 1
k = 1 ⇒ ak,L−1 = 0, ..., ak,2 = 0, ak,1 = 1 ⇒ n̂ = 1 ⇒ S = L− 1
k = 2/3 ⇒ ak,L−1 = 0, ..., ak,2 = 1, ak,1 = 0/1 ⇒ n̂ = 2 ⇒ S = L− 2

70



and so on, using the binary representation of the integers between 1 and 2L−1 − 1.

Problem 4.32 :

sk(t) = Iks(t)⇒ Sk(f) = IkS(f), E(Ik) = µi, σ2
i = E(I2

k)− µ2
i

∣∣∣∣∣
K∑
k=1

pkSk(f)

∣∣∣∣∣
2

= |S(f)|2
∣∣∣∣∣
K∑
k=1

pkIk

∣∣∣∣∣
2

= µ2
i |S(f)|2

Therefore, the discrete frequency component becomes :

µ2
i

T 2

∞∑
n=−∞

∣∣∣∣S
(
n

T

)∣∣∣∣2 δ
(
f − n

T

)

The continuous frequency component is :

1
T

∑K
k=1 pk(1− pk) |Sk(f)|2 − 2

T

∑∑
i<j pipjRe

[
Si(f)S

∗
j (f)

]

= 1
T
|S(f)|2

[∑K
k=1 pk |Ik|2 −

∑K
k=1 p

2
k |Ik|2

]
− 2

T

∑∑
i<j pipj |S(f)|2 IiI∗j +I∗i Ij

2

= 1
T
|S(f)|2

[∑K
k=1 pk |Ik|2 −

∑K
k=1 p

2
k |Ik|2 −

∑∑
i<j pipj |S(f)|

(
2IiI

∗
j + I∗i Ij

)]

= 1
T
|S(f)|2

{∑K
k=1 pk |Ik|2 −

∣∣∣∑K
k=1 pkIk

∣∣∣2}

=
σ2

i

T
|S(f)|2

Thus, we have obtained the result in (4.4.18)

Problem 4.33 :

The line spectrum in (4.4.60) consists of the term :

1

T 2

∞∑
n=−∞

∣∣∣∣∣
K∑
k=1

pkSk

(
n

T

)∣∣∣∣∣
2

δ
(
f − n

T

)

Now, if
∑K

k=1pksk(t) = 0, then
∑K

k=1pkSk(f) = 0, ∀f. Therefore, the condition ∑K
k=1pksk(t) = 0

is sufficient for eliminating the line spectrum.
Now, suppose that

∑K
k=1pksk(t) 
= 0 for some t ∈ [t0, t1]. For example, if sk(t) = Iks(t), then∑K

k=1pksk(t) = s(t)
∑K

k=1pkIk, where
∑K

k=1pkIk ≡ µi 
= 0 and s(t) is a signal pulse. Then, the
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line spectrum vanishes if S(n/T ) = 0 for all n. A signal pulse that satisfies this condition is
shown below :

✲

✻

-T

T
t

s(t)

1

æ
In this case, S(f) = T

(
sinπTf
πTf

)
sin πTf, so that S(n/T ) = 0 for all n. Therefore, the condition∑K

k=1pksk(t) = 0 is not necessary.

Problem 4.34 :

(a) Since : µa = 0, σ2
a = 1, we have : Φss(f) =

1
T
|G(f)|2 . But :

G(f) = T
2

sinπfT/2
πfT/2

e−j2πfT/4 − T
2

sinπfT/2
πfT/2

e−j2πf3T/4

= T
2

sinπfT/2
πfT/2

e−jπfT (2j sin πfT/2)

= jT sin 2πfT/2
πfT/2

e−jπfT ⇒

|G(f)|2 = T 2
(

sin 2πfT/2
πfT/2

)2 ⇒

Φss(f) = T
(

sin 2πfT/2
πfT/2

)2

(b) For non-independent information sequence the power spectrum of s(t) is given by : Φss(f) =
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1
T
|G(f)|2Φbb(f). But :

φbb(m) = E [bn+mbn]
= E [an+man] + kE [an+m−1an] + kE [an+man−1] + k2E [an+m−1an−1]

=



1 + k2, m = 0

k, m = ±1
0, o.w.




Hence :

Φbb(f) =
∞∑

m=−∞
φbb(m)e

−j2πfmT = 1 + k2 + 2k cos 2πfT

We want :
Φss(1/T ) = 0⇒ Φbb(1/T ) = 0⇒ 1 + k2 + 2k = 0⇒ k = −1

and the resulting power spectrum is :

Φss(f) = 4T

(
sin 2πfT/2

πfT/2

)2

sin 2πfT

(c) The requirement for zeros at f = l/4T, l = ±1,±2, ... means : Φbb(l/4T ) = 0 ⇒ 1 + k2 +
2k cos πl/2 = 0, which cannot be satisfied for all l. We can avoid that by using precoding in the
form :bn = an + kan−4. Then :

φbb(m) =



1 + k2, m = 0

k, m = ±4
0, o.w.


⇒ Φbb(f) = 1 + k2 + 2k cos 2πf4T

and , similarly to (b), a value of k = −1, will zero this spectrum in all multiples of 1/4T.

Problem 4.35 :

P =




0 1/2 0 1/2
0 0 1/2 1/2

1/2 1/2 0 0
1/2 0 1/2 0


 , ρ =




1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1




By straightforward matrix multiplication we verify that indeed :

P4ρ = −1
4
ρ
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Problem 4.36 :

(a) The power spectral density of the FSK signal may be evaluated by using equation (4-4-60)
with K = 2 (binary) signals and probabilities p0 = p1 =

1
2
. Thus, when the condition that the

carrier phase θ0 and and θ1 are fixed, we obtain

Φ(f) =
1

4T 2

∞∑
n=−∞

|S0(
n

T
) + S1(

n

T
)|2δ(f − n

T
) +

1

4T
|S0(f)− S1(f)|2

where S0(f) and S1(f) are the fourier transforms of s0(t) and s1(t). In particular :

S0(f) =
∫ T

0
s0(t)e

−j2πft dt

=

√
2Eb
T

∫ T

0
cos(2πf0t+ θ0)e

j2πft dt, f0 = fc − ∆f

2

=

√
TEb
2

[
sin πT (f − f0)

π(f − f0)
+
sin πT (f + f0)

π(f + f0)

]
e−jπfT ejθ0

Similarly :

S1(f) =
∫ T

0
s1(t)e

−j2πft dt

=

√
TEb
2

[
sin πT (f − f1)

π(f − f1)
+
sin πT (f + f1)

π(f + f1)

]
e−jπfT ejθ1

where f1 = fc +
∆f
2
. By expressing Φ(f) as :

Φ(f) =
1

4T 2

∞∑
n=−∞

[
|S0(

n

T
)|2 + |S1(

n

T
)|2 + 2Re[S0(

n

T
)S∗

1(
n

T
)]
]
δ(f − n

T
)

+
1

4T

[
|S0(f)|2 + |S1(f)|2 − 2Re[S0(f)S

∗
1(f)]

]

we note that the carrier phases θ0 and θ1 affect only the terms Re(S0S
∗
1). If we average over the

random phases, these terms drop out. Hence, we have :

Φ(f) =
1

4T 2

∞∑
n=−∞

[
|S0(

n

T
)|2 + |S1(

n

T
)|2
]
δ(f − n

T
)

+
1

4T

[
|S0(f)|2 + |S1(f)|2

]

where :

|Sk(f)|2 = TEb
2

∣∣∣∣∣sin πT (f − fk)

π(f − fk) +
sin πT (f + fk)

π(f + fk)

∣∣∣∣∣
2

, k = 0, 1
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Note that the first term in Φ(f) consists of a sequence of samples and the second term constitutes
the continuous spectrum.

(b) Note that :

|Sk(f)|2 = TEb
2



(
sin πT (f − fk)

π(f − fk)

)2

+

(
sin πT (f + fk)

π(f + fk)

)2



because the product
sin πT (f − fk)
π(f − fk)

× sin πT (f + fk)

π(f + fk)
≈ 0

if fk is large enough. Hence |Sk(f)|2 decays proportionally to 1
(f−fk)2

approx 1
f2 for f � fc.

Consequently, Φ(f) exhibits the same behaviour.
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CHAPTER 5

Problem 5.1 :

(a) Taking the inverse Fourier transform of H(f), we obtain :

h(t) = F−1[H(f)] = F−1

[
1

j2πf

]
− F−1

[
e−j2πfT

j2πf

]

= sgn(t)− sgn(t− T ) = 2Π

(
t− T

2

T

)

where sgn(x) is the signum signal (1 if x > 0, -1 if x < 0, and 0 if x = 0) and Π(x) is a
rectangular pulse of unit height and width, centered at x = 0.

(b) The signal waveform, to which h(t) is matched, is :

s(t) = h(T − t) = 2Π

(
T − t− T

2

T

)
= 2Π

(
T
2
− t
T

)
= h(t)

where we have used the symmetry of Π
(
t−T

2

T

)
with respect to the t = T

2
axis.

Problem 5.2 :

(a) The impulse response of the matched filter is :

h(t) = s(T − t) =

{
A
T
(T − t) cos(2πfc(T − t)) 0 ≤ t ≤ T

0 otherwise

(b) The output of the matched filter at t = T is :

g(T ) = h(t) � s(t)|t=T =
∫ T

0
h(T − τ)s(τ)dτ

=
A2

T 2

∫ T

0
(T − τ)2 cos2(2πfc(T − τ))dτ

v=T−τ
=

A2

T 2

∫ T

0
v2 cos2(2πfcv)dv

=
A2

T 2

[
v3

6
+

(
v2

4× 2πfc
− 1

8× (2πfc)3

)
sin(4πfcv) +

v cos(4πfcv)

4(2πfc)2

] ∣∣∣∣T
0

=
A2

T 2

[
T 3

6
+

(
T 2

4× 2πfc
− 1

8× (2πfc)3

)
sin(4πfcT ) +

T cos(4πfcT )

4(2πfc)2

]

76



(c) The output of the correlator at t = T is :

q(T ) =
∫ T

0
s2(τ)dτ

=
A2

T 2

∫ T

0
τ 2 cos2(2πfcτ)dτ

However, this is the same expression with the case of the output of the matched filter sampled
at t = T . Thus, the correlator can substitute the matched filter in a demodulation system and
vice versa.

Problem 5.3 :

(a) In binary DPSK, the information bit 1 is transmitted by shifting the phase of the carrier
by π radians relative to the phase in the previous interval, while if the information bit is 0 then
the phase is not shifted. With this in mind :

Data : 1 1 0 1 0 0 0 1 0 1 1 0
Phase θ : (π) 0 π π 0 0 0 0 π π 0 π π

Note : since the phase in the first bit interval is 0, we conclude that the phase before that was
π.

(b) We know that the power spectrum of the equivalent lowpass signal u(t) is :

Φuu(f) =
1

T
|G(f)|2 Φii(f)

where G(f) = AT sinπfT
πfT

, is the spectrum of the rectangular pulse of amplitude A that is used,

and Φii(f) is the power spectral density of the information sequence. It is straightforward to
see that the information sequence In is simply the phase of the lowpass signal, i.e. it is ejπ or
ej0 depending on the bit to be transmitted an(= 0, 1). We have :

In = ejθn = ejπanejθn−1 = ejπ
∑

k
ak

The statistics of In are (remember that {an} are uncorrelated) :

E [In] = E
[
ejπ

∑
k
ak

]
=
∏
k E [ejπak ] =

∏
k

[
1
2
ejπ − 1

2
ej0

]
=
∏
k 0 = 0

E
[
|In|2

]
= E

[
ejπ

∑
k
ake−jπ

∑
k
ak

]
= 1

E [In+mI
∗
n] = E

[
ejπ

∑n+m

k=0
ake−jπ

∑n

k=0
ak

]
= E

[
ejπ

∑m

k=n+1
ak
]

=
∏m
k=n+1E [ejπak ] = 0

Hence, In is an uncorrelated sequence with zero mean and unit variance, so Φii(f) = 1, and

Φuu(f) = 1
T
|G(f)|2 = A2T sinπfT

πfT

Φss(f) = 1
2
[Φuu(f − fc) + Φuu(−f − fc)]
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A sketch of the signal power spectrum Φss(f) is given in the following figure :

  −fc  0   fc  
 

 

 

 

 

 

 

 

f

Power spectral density of s(t)

Problem 5.4 :

(a) The correlation type demodulator employes a filter :

f(t) =

{
1√
T

0 ≤ t ≤ T

0 o.w

}

as given in Example 5-1-1. Hence, the sampled outputs of the crosscorrelators are :

r = sm + n, m = 0, 1

where s0 = 0, s1 = A
√
T and the noise term n is a zero-mean Gaussian random variable with

variance :

σ2
n

N0

2

The probability density function for the sampled output is :

p(r|s0) =
1√
πN0

e
− r2

N0

p(r|s1) =
1√
πN0

e
− (r−A

√
T )2

N0

Since the signals are equally probable, the optimal detector decides in favor of s0 if

PM(r, s0) = p(r|s0) > p(r|s1) = PM(r, s1)
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otherwise it decides in favor of s1. The decision rule may be expressed as:

PM(r, s0)

PM(r, s1)
= e

(r−A
√

T )2−r2

N0 = e
− (2r−A

√
T )A

√
T

N0

s0
>
<
s1

1

or equivalently :

r

s1
>
<
s0

1

2
A
√
T

The optimum threshold is 1
2
A
√
T .

(b) The average probability of error is:

P (e) =
1

2
P (e|s0) +

1

2
P (e|s1)

=
1

2

∫ ∞
1
2
A
√
T
p(r|s0)dr +

1

2

∫ 1
2
A
√
T

−∞
p(r|s1)dr

=
1

2

∫ ∞
1
2
A
√
T

1√
πN0

e
− r2

N0 dr +
1

2

∫ 1
2
A
√
T

−∞
1√
πN0

e
− (r−A

√
T )2

N0 dr

=
1

2

∫ ∞
1
2

√
2

N0
A
√
T

1√
2π
e−

x2

2 dx+
1

2

∫ − 1
2

√
2

N0
A
√
T

−∞
1√
2π
e−

x2

2 dx

= Q

[
1

2

√
2

N0
A
√
T

]
= Q

[√
SNR

]

where

SNR =
1
2
A2T

N0

Thus, the on-off signaling requires a factor of two more energy to achieve the same probability
of error as the antipodal signaling.

Problem 5.5 :

Since {fn(t)} constitute an orthonormal basis for the signal space : r(t) =
∑N
n=1 rnfn(t), sm(t) =
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∑N
n=1 smnfn(t). Hence, for any m :

C(r, sm) = 2
∫ T
0 r(t)sm(t)dt− ∫ T

0 s
2
m(t)dt

= 2
∫ T
0

∑N
n=1 rnfn(t)

∑N
l=1 smlfl(t)dt−

∫ T
0

∑N
n=1 smnfn(t)

∑N
l=1 smlfl(t)dt

= 2
∑N
n=1 rn

∑N
l=1 sml

∫ T
0 fn(t)fl(t)dt−

∑N
n=1 smn

∑N
l=1 sml

∫ T
0 fn(t)fl(t)dt

= 2
∑N
n=1 rnsmn −

∑N
n=1 s

2
mn

where we have exploited the orthonormality of {fn(t)} :
∫ T
0 fn(t)fl(t)dt = δnl. The last form is

indeed the original form of the correlation metrics C(r, sm).

Problem 5.6 :

The SNR at the filter output will be :

SNR =
|y(T )|2

E
[
|n(T )|2

]

where y(t) is the part of the filter output that is due to the signal sl(t), and n(t) is the part due
to the noise z(t). The denominator is :

E
[
|n(T )|2

]
=

∫ T
0

∫ T
0 E [z(a)z∗(b)] hl(T − a)h∗l (T − b)dadb

= 2N0

∫ T
0 |hl(T − t)|2 dt

so we want to maximize :

SNR =

∣∣∣∫ T0 sl(t)hl(T − t)dt
∣∣∣2

2N0

∫ T
0 |hl(T − t)|2 dt

From Schwartz inequality :

∣∣∣∣∣
∫ T

0
sl(t)hl(T − t)dt

∣∣∣∣∣
2

≤
∫ T

0
|hl(T − t)|2 dt

∫ T

0
|sl(t)|2 dt

Hence :

SNR ≤ 1

2N0

∫ T

0
|sl(t)|2 dt =

E
N0

= SNRmax

and the maximum occurs when :

sl(t) = h∗l (T − t)⇔ hl(t) = s∗l (T − t)
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Problem 5.7 :

Nmr = Re

[∫ T

0
z(t)f ∗m(t)dt

]

(a) Define am =
∫ T
0 z(t)f

∗
m(t)dt. Then, Nmr = Re(am) = 1

2
[am + a∗m] .

E(Nmr) = Re

[∫ T

0
E (z(t)) f ∗m(t)dt

]
= 0

since, E [z(t)] = 0. Also :

E
(
N2
mr

)
= E

[
a2
m + (a∗m)2 + 2ama

∗
m

4

]

But E (a2
m) = E

[∫ T
0

∫ T
0 z(a)z(b)f

∗
m(a)f ∗m(b)dadb

]
= 0, since E [z(a)z(b)] = 0 (Problem 4.3), and

the same is true for E
[
(a∗m)2

]
= 0, since E [z∗(a)z∗(b)] = 0 Hence :

E (N2
mr) = E

[
ama∗m

2

]
= 1

2

∫ T
0

∫ T
0 E [z(a)z∗(b)] f ∗m(a)fm(b)dadb

= N0

∫ T
0 |fm(a)|2 da = 2EN0

(b) For m �= k :

E [NmrNkr] = E
[
am+a∗m

2

ak+a∗
k

2

]
= E

[
amak+a∗mak+ama∗k+a∗ma∗k

4

]
But, similarly to part (a), E [amak] = E [a∗ma

∗
k] = 0, hence, E [NmrNkr] = E

[
a∗mak+ama∗k

4

]
. Now :

E [ama
∗
k] =

∫ T
0

∫ T
0 E [z(a)z∗(b)] f ∗m(a)fk(b)dadb

= 2N0

∫ T
0 f

∗
m(a)fk(a)da = 0

since, for m �= k, the waveforms are orthogonal.
Similarly : E [a∗mak] = 0, hence : E [NmrNkr] = 0.

Problem 5.8 :

(a) Since the given waveforms are the equivalent lowpass signals :

E1 = 1
2

∫ T
0 |s1(t)|2 dt = 1

2
A2

∫ T
0 dt = A2T/2

E2 = 1
2

∫ T
0 |s2(t)|2 dt = 1

2
A2

∫ T
0 dt = A2T/2
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Hence E1 = E2 = E . Also :ρ12 = 1
2E
∫ T
0 s1(t)s

∗
2(t)dt = 0.

(b) Each matched filter has an equivalent lowpass impulse response : hi(t) = si(T − t) . The
following figure shows hi(t) :

✻

✲

✻

✲t

h1(t)

-A

T

A

t

h2(t)

T

A

æ

(c)

✻

✲✲
❡
❡
❡
❡❡✪
✪
✪
✪
✪
✪
✪
✪
✪❡
❡
❡
❡❡

✻

✪
✪
✪
✪
✪
✪
✪
✪
✪❡
❡
❡
❡
❡
❡
❡
❡
❡

h2(t) ∗ s2(t)

tt

h1(t) ∗ s2(t)

0

−A2T/2

A2T/2

T 2T T 2T

A2T

0

æ
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(d)

✻

✲✲

✻

✚
✚
✚
✚
✚✚



 ✚

✚
✚
✚
✚
✚
✚
✚
✚
✚
✚✚

∫ T
0 s1(τ)s2(τ)dτ

tt

∫ T
0 s1(τ)s2(τ)dτ

0

A2T/2

A2T

0
T T

æ

(e) The outputs of the matched filters are different from the outputs of the correlators. The
two sets of outputs agree at the sampling time t = T.

(f) Since the signals are orthogonal (ρ12 = 0) the error probability for AWGN is P2 = Q
(√ E

N0

)
,

where E = A2T/2.

Problem 5.9 :

(a) The joint pdf of a, b is :

pab(a, b) = pxy(a−mr, b−mi) = px(a−mr)py(b−mi) =
1

2πσ2
e−

1
2σ2 [(a−mr)2+(b−mi)2]

(b) u =
√
a2 + b2, φ = tan−1b/a ⇒ a = u cosφ, b = u sinφ The Jacobian of the transforma-

tion is : J(a, b) =

∣∣∣∣∣ ∂a/∂u ∂a/∂φ
∂b/∂u ∂b/∂φ

∣∣∣∣∣ = u, hence :

puφ(u, φ) =
u

2πσ2
e−

1
2σ2 [(u cosφ−mr)2+(u sinφ−mi)2]

=
u

2πσ2
e−

1
2σ2 [u2+M2−2uM cos(φ−θ)]

where we have used the transformation :{
M =

√
m2
r +m2

i

θ = tan −1mi/mr

}
⇒

{
mr =M cos θ
mi =M sin θ

}
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(c)

pu(u) =
∫ 2π

0
puφ(u, φ)dφ

=
u

2πσ2
e−

u2+M2

2σ2

∫ 2π

0
e−

1
2σ2 [−2uM cos(φ−θ)]dφ

=
u

σ2
e−

u2+M2

2σ2
1

2π

∫ 2π

0
euM cos(φ−θ)/σ2

dφ

=
u

σ2
e−

u2+M2

2σ2 Io
(
uM/σ2

)

Problem 5.10 :

(a) U = Re
[∫ T

0 r(t)s
∗(t)dt

]
, where r(t) =



s(t) + z(t)
−s(t) + z(t)

z(t)


 depending on which signal was

sent. If we assume that s(t) was sent :

U = Re

[∫ T

0
s(t)s∗(t)dt

]
+Re

[∫ T

0
z(t)s∗(t)dt

]
= 2E +N

where E = 1
2

∫ T
0 s(t)s

∗(t)dt, and N = Re
[∫ T

0 z(t)s
∗(t)dt

]
is a Gaussian random variable with

zero mean and variance 2EN0 (as we have seen in Problem 5.7). Hence, given that s(t) was
sent, the probability of error is :

Pe1 = P (2E +N < A) = P (N < −(2E − A)) = Q

(
2E − A√

2N0E

)

When −s(t) is transmitted : U = −2E+N, and the corresponding conditional error probability
is :

Pe2 = P (−2E +N > −A) = P (N > (2E −A)) = Q

(
2E − A√

2N0E

)

and finally, when 0 is transmitted : U = N, and the corresponding error probability is :

Pe3 = P (N > A or N < −A) = 2P (N > A) = 2Q

(
A√

2N0E

)

(b)

Pe =
1

3
(Pe1 + Pe2 + Pe3) =

2

3

[
Q

(
2E −A√

2N0E

)
+Q

(
A√

2N0E

)]
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(c) In order to minimize Pe :
dPe
dA

= 0⇒ A = E

where we differentiate Q(x) =
∫∞
x

1√
2π

exp(−t2/2)dt with respect to x, using the Leibnitz rule :
d
dx

(∫∞
f(x) g(a)da

)
= − df

dx
g(f(x)). Using this threshold :

Pe =
4

3
Q

(
E√

2N0E

)
=

4

3
Q

(√
E

2N0

)

Problem 5.11 :

(a) The transmitted energy is :

E1 = 1
2

∫ T
0 |s1(t)|2 dt = A2T/2

E2 = 1
2

∫ T
0 |s2(t)|2 dt = A2T/2

(b) The correlation coefficient for the two signals is :

ρ =
1

2E
∫ T

0
s1(t)s

∗
2(t)dt = 1/2

Hence, the bit error probability for coherent detection is :

P2 = Q

(√ E
N0

(1− ρ)
)

= Q

(√ E
2N0

)

(c) The bit error probability for non-coherent detection is given by (5-4-53) :

P2,nc = Q1(a, b)− 1

2
e−(a2+b2)/2I0(ab)

where Q1(.) is the generalized Marcum Q function (given in (2-1-123)) and :

a =

√
E

2N0

(
1−

√
1− |ρ|2

)
=

√
E

2N0

(
1−

√
3

2

)

b =

√
E

2N0

(
1 +

√
1− |ρ|2

)
=

√
E

2N0

(
1 +

√
3

2

)
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Problem 5.12 :

The correlation of the two signals in binary FSK is:

ρ =
sin(2π∆fT )

2π∆fT

To find the minimum value of the correlation, we set the derivative of ρ with respect to ∆f
equal to zero. Thus:

ϑρ

ϑ∆f
= 0 =

cos(2π∆fT )2πT

2π∆fT
− sin(2π∆fT )

(2π∆fT )2
2πT

and therefore :
2π∆fT = tan(2π∆fT )

Solving numerically (or graphically) the equation x = tan(x), we obtain x = 4.4934. Thus,

2π∆fT = 4.4934 =⇒ ∆f =
0.7151

T

and the value of ρ is −0.2172.
We know that the probability of error can be expressed in terms of the distance d12 between the
signal points, as :

Pe = Q



√
d2

12

2N0




where the distance between the two signal points is :

d2
12 = 2Eb(1− ρ)

and therefore :

Pe = Q



√

2Eb(1− ρ)
2N0


 = Q

[√
1.2172Eb
N0

]

Problem 5.13 :

(a) It is straightforward to see that :

Set I : Four− level PAM
Set II : Orthogonal
Set III : Biorthogonal
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(b) The transmitted waveforms in the first set have energy : 1
2
A2 or 1

2
9A2. Hence for the first

set the average energy is :

E1 =
1

4

(
2
1

2
A2 + 2

1

2
9A2

)
= 2.5A2

All the waveforms in the second and third sets have the same energy : 1
2
A2.Hence :

E2 = E3 = A2/2

(c) The average probability of a symbol error for M-PAM is (5-2-45) :

P4,PAM =
2(M − 1)

M
Q

(√
6Eav

(M2 − 1)N0

)
=

3

2
Q



√
A2

N0




(d) For coherent detection, a union bound can be given by (5-2-25) :

P4,orth < (M − 1)Q
(√
Es/N0

)
= 3Q



√
A2

2N0




while for non-coherent detection :

P4,orth,nc ≤ (M − 1)P2,nc = 3
1

2
e−Es/2N0 =

3

2
e−A

2/4N0 ??

(e) It is not possible to use non-coherent detection for a biorthogonal signal set : e.g. without
phase knowledge, we cannot distinguish between the signals u1(t) and u3(t) (or u2(t)/u4(t)).

(f) The bit rate to bandwidth ratio for M-PAM is given by (5-2-85) :

(
R

W

)
1

= 2 log 2M = 2 log 24 = 4

For orthogonal signals we can use the expression given by (5-2-86) or notice that we use a symbol
interval 4 times larger than the one used in set I, resulting in a bit rate 4 times smaller :

(
R

W

)
2

=
2 log 2M

M
= 1

Finally, the biorthogonal set has double the bandwidth efficiency of the orthogonal set :

(
R

W

)
3

= 2

Hence, set I is the most bandwidth efficient (at the expense of larger average power), but set III
will also be satisfactory.
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Problem 5.14 :

The following graph shows the decision regions for the four signals :

✻

✲ ✲

✻

❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅❅�

�
�
�
�
�
�
�
�
�
�
�
�
��

AB

C

D

U1

U2 A = U1 > +|U2|
B = U1 < −|U2|
C = U2 > +|U1|
D = U2 < −|U1|

W2

W1

A

B D

C

æ

As we see, using the transformation W1 = U1 +U2, W2 = U1−U2 alters the decision regions to :
(W1 > 0,W2 > 0→ s1(t);W1 > 0,W2 < 0→ s2(t); etc.) . Assuming that s1(t) was transmitted,
the outputs of the matched filters will be :

U1 = 2E +N1r

U2 = N2r

where N1r, N2r are uncorrelated (Prob. 5.7) Gaussian-distributed terms with zero mean and
variance 2EN0. Then :

W1 = 2E + (N1r +N2r)
W2 = 2E + (N1r −N2r)

will be Gaussian distributed with means : E [W1] = E [W2] = 2E , and variances : E [W 2
1 ] =

E [W 2
2 ] = 4EN0. Since U1, U2 are independent, it is straightforward to prove that W1,W2 are

independent, too. Hence, the probability that a correct decision is made, assuming that s1(t)
was transmitted is :

Pc|s1 = P [W1 > 0]P [W2 > 0] = (P [W1 > 0])2

= (1− P [W1 < 0])2 =
(
1−Q

(
2E√
4EN0

))2

=
(
1−Q

(√ E
N0

))2
=
(
1−Q

(√
2Eb

N0

))2

where Eb = E/2 is the transmitted energy per bit. Then :

Pe|s1 = 1− Pc|s1 = 1−
(

1−Q
(√

2Eb
N0

))2

= 2Q

(√
2Eb
N0

)[
1− 1

2
Q

(√
2Eb
N0

)]
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This is the exact symbol error probability for the 4-PSK signal, which is expected since the
vector space representations of the 4-biorthogonal and 4-PSK signals are identical.

Problem 5.15 :

(a) The output of the matched filter can be expressed as :

y(t) = Re
[
v(t)ej2πfct

]
where v(t) is the lowpass equivalent of the output :

v(t) =
∫ t

0
s0(τ)h(t− τ)dτ =

{ ∫ t
0 Ae

−(t−τ)/T dτ = AT
(
1− e−t/T

)
, 0 ≤ t ≤ T∫ T

0 Ae
−(t−τ)/T dτ = AT (e− 1)e−t/T , T ≤ t

}

(b) A sketch of v(t) is given in the following figure :

0   T        
 

 

 

 

 

 

 

 

t

v(t)

(c) y(t) = v(t) cos 2πfct, where fc >> 1/T. Hence the maximum value of y corresponds to the
maximum value of v, or ymax = y(T ) = vmax = v(T ) = AT (1− e−1).

(d) Working with lowpass equivalent signals, the noise term at the sampling instant will be :

vN(T ) =
∫ T

0
z(τ)h(T − τ)dτ

The mean is : E [vN(T )] =
∫ T
0 E [z(τ)] h(T − τ)dτ = 0, and the second moment :

E
[
|vN(T )|2

]
= E

[∫ T
0 z(τ)h(T − τ)dτ

∫ T
0 z

∗(w)h(T − w)dw
]

= 2N0

∫ T
0 h

2(T − τ)dτ
= N0T (1− e−2)
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The variance of the real-valued noise component can be obtained using the relationship Re[N ] =
1
2
(N +N∗) to obtain : σ2

Nr = 1
2
E
[
|vN(T )|2

]
= 1

2
N0T (1− e−2)

(e) The SNR is defined as :

γ =
|vmax|2

E
[
|vN(T )|2

] =
A2T

N0

e− 1

e+ 1

(the same result is obtained if we consider the real bandpass signal, when the energy term
has the additional factor 1/2 compared to the lowpass energy term, and the noise term is

σ2
Nr = 1

2
E
[
|vN(T )|2

]
)

(f) If we have a filter matched to s0(t), then the output of the noise-free matched filter will be :

vmax = v(T ) =
∫ T

0
s2o(t) = A2T

and the noise term will have second moment :

E
[
|vN(T )|2

]
= E

[∫ T
0 z(τ)s0(T − τ)dτ

∫ T
0 z

∗(w)s0(T − w)dw
]

= 2N0

∫ T
0 s

2
0(T − τ)dτ

= 2N0A
2T

giving an SNR of :

γ =
|vmax|2

E
[
|vN(T )|2

] =
A2T

2N0

Compared with the result we obtained in (e), using a sub-optimum filter, the loss in SNR is

equal to :
(
e−1
e+1

) (
1
2

)−1
= 0.925 or approximately 0.35 dB

Problem 5.16 :

(a) Consider the QAM constellation of Fig. P5-16. Using the Pythagorean theorem we can find
the radius of the inner circle as:

a2 + a2 = A2 =⇒ a =
1√
2
A

The radius of the outer circle can be found using the cosine rule. Since b is the third side of a
triangle with a and A the two other sides and angle between then equal to θ = 75o, we obtain:

b2 = a2 + A2 − 2aA cos 75o =⇒ b =
1 +
√

3

2
A
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(b) If we denote by r the radius of the circle, then using the cosine theorem we obtain:

A2 = r2 + r2 − 2r cos 45o =⇒ r =
A√

2−√2

(c) The average transmitted power of the PSK constellation is:

PPSK = 8× 1

8
×

 A√

2−√2




2

=⇒ PPSK =
A2

2−√2

whereas the average transmitted power of the QAM constellation:

PQAM =
1

8

(
4
A2

2
+ 4

(1 +
√

3)2

4
A2

)
=⇒ PQAM =

[
2 + (1 +

√
3)2

8

]
A2

The relative power advantage of the PSK constellation over the QAM constellation is:

gain =
PPSK
PQAM

=
8

(2 + (1 +
√

3)2)(2−√2)
= 1.5927 dB

Problem 5.17 :

(a) Although it is possible to assign three bits to each point of the 8-PSK signal constellation
so that adjacent points differ in only one bit, (e.g. going in a clockwise direction : 000, 001,
011, 010, 110, 111, 101, 100). this is not the case for the 8-QAM constellation of Figure P5-16.
This is because there are fully connected graphs consisted of three points. To see this consider
an equilateral triangle with vertices A, B and C. If, without loss of generality, we assign the all
zero sequence {0, 0, . . . , 0} to point A, then point B and C should have the form

B = {0, . . . , 0, 1, 0, . . . , 0} C = {0, . . . , 0, 1, 0, . . . , 0}

where the position of the 1 in the sequences is not the same, otherwise B=C. Thus, the sequences
of B and C differ in two bits.

(b) Since each symbol conveys 3 bits of information, the resulted symbol rate is :

Rs =
90× 106

3
= 30× 106 symbols/sec
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Problem 5.18 :

For binary phase modulation, the error probability is

P2 = Q

[√
2Eb
N0

]
= Q



√
A2T

N0




With P2 = 10−6 we find from tables that√
A2T

N0

= 4.74 =⇒ A2T = 44.9352× 10−10

If the data rate is 10 Kbps, then the bit interval is T = 10−4 and therefore, the signal amplitude
is

A =
√

44.9352× 10−10 × 104 = 6.7034× 10−3

Similarly we find that when the rate is 105 bps and 106 bps, the required amplitude of the signal
is A = 2.12× 10−2 and A = 6.703× 10−2 respectively.

Problem 5.19 :

(a) The PDF of the noise n is :

p(n) =
λ

2
e−λ|n|

where λ =
√

2
σ

The optimal receiver uses the criterion :

p(r|A)

p(r| −A)
= e−λ[|r−A|−|r+A|]

A
>
<

−A
1 =⇒ r

A
>
<

−A
0

The average probability of error is :

P (e) =
1

2
P (e|A) +

1

2
P (e| − A)

=
1

2

∫ 0

−∞
f(r|A)dr +

1

2

∫ ∞

0
f(r| − A)dr

=
1

2

∫ 0

−∞
λ2e

−λ|r−A|dr +
1

2

∫ ∞

0
λ2e

−λ|r+A|dr

=
λ

4

∫ −A

−∞
e−λ|x|dx+

λ

4

∫ ∞

A
e−λ|x|dx

=
1

2
e−λA =

1

2
e

−√
2A

σ
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(b) The variance of the noise is :

σ2
n =

λ

2

∫ ∞

−∞
e−λ|x|x2dx

= λ
∫ ∞

0
e−λxx2dx = λ

2!

λ3
=

2

λ2
= σ2

Hence, the SNR is:

SNR =
A2

σ2

and the probability of error is given by:

P (e) =
1

2
e−

√
2SNR

For P (e) = 10−5 we obtain:

ln(2× 10−5) = −
√

2SNR =⇒ SNR = 58.534 = 17.6741 dB

If the noise was Gaussian, then the probability of error for antipodal signalling is:

P (e) = Q

[√
2Eb
N0

]
= Q

[√
SNR

]

where SNR is the signal to noise ratio at the output of the matched filter. With P (e) = 10−5

we find
√
SNR = 4.26 and therefore SNR = 18.1476 = 12.594 dB. Thus the required signal to

noise ratio is 5 dB less when the additive noise is Gaussian.

Problem 5.20 :

The constellation of Fig. P5-20(a) has four points at a distance 2A from the origin and four
points at a distance 2

√
2A. Thus, the average transmitted power of the constellation is:

Pa =
1

8

[
4× (2A)2 + 4× (2

√
2A)2

]
= 6A2

The second constellation has four points at a distance
√

7A from the origin, two points at a
distance

√
3A and two points at a distance A. Thus, the average transmitted power of the

second constellation is:

Pb =
1

8

[
4× (

√
7A)2 + 2× (

√
3A)2 + 2A2

]
=

9

2
A2

Since Pb < Pa the second constellation is more power efficient.
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Problem 5.21 :

The optimum decision boundary of a point is determined by the perpedicular bisectors of each
line segment connecting the point with its neighbors. The decision regions for this QAM con-
stellation are depicted in the next figure:
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O
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Problem 5.22 :

One way to label the points of the V.29 constellation using the Gray-code is depicted in the
next figure.
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Problem 5.23 :

The transmitted signal energy is

Eb =
A2T

2

where T is the bit interval and A is the signal amplitude. Since both carriers are used to transmit
information over the same channel, the bit SNR, Eb

N0
, is constant if A2T is constant. Hence, the

desired relation between the carrier amplitudes and the supported transmission rate R = 1
T

is

Ac
As

=

√
Ts
Tc

=

√
Rc
Rs

With
Rc
Rs

=
10× 103

100× 103
= 0.1

we obtain
Ac
As

= 0.3162
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Problem 5.24 :

(a) Since m2(t) = −m3(t) the dimensionality of the signal space is two.

(b) As a basis of the signal space we consider the functions:

f1(t) =

{
1√
T

0 ≤ t ≤ T
0 otherwise

f2(t) =




1√
T

0 ≤ t ≤ T
2

− 1√
T

T
2
< t ≤ T

0 otherwise

The vector representation of the signals is:

m1 = [
√
T , 0]

m2 = [0,
√
T ]

m3 = [0, −
√
T ]

(c) The signal constellation is depicted in the next figure :

✈

✈
✈

(0,−√T )

(0,
√
T )

(
√
T , 0)

(d) The three possible outputs of the matched filters, corresponding to the three possible trans-
mitted signals are (r1, r2) = (

√
T + n1, n2), (n1,

√
T + n2) and (n1,−

√
T + n2), where n1, n2 are

zero-mean Gaussian random variables with variance N0

2
. If all the signals are equiprobable the

optimum decision rule selects the signal that maximizes the metric (see 5-1-44):

C(r,mi) = 2r ·mi − |mi|2

or since |mi|2 is the same for all i,

C ′(r,mi) = r ·mi

Thus the optimal decision region R1 for m1 is the set of points (r1, r2), such that (r1, r2) ·m1 >
(r1, r2) ·m2 and (r1, r2) ·m1 > (r1, r2) ·m3. Since (r1, r2) ·m1 =

√
Tr1, (r1, r2) ·m2 =

√
Tr2 and

(r1, r2) ·m3 = −√Tr2, the previous conditions are written as

r1 > r2 and r1 > −r2

96



Similarly we find that R2 is the set of points (r1, r2) that satisfy r2 > 0, r2 > r1 and R3 is the
region such that r2 < 0 and r2 < −r1. The regions R1, R2 and R3 are shown in the next figure.

�
�
�
�
�
�

❅
❅
❅
❅
❅
❅

0

R3

R2

R1

(e) If the signals are equiprobable then:

P (e|m1) = P (|r−m1|2 > |r−m2|2|m1) + P (|r−m1|2 > |r−m3|2|m1)

When m1 is transmitted then r = [
√
T + n1, n2] and therefore, P (e|m1) is written as:

P (e|m1) = P (n2 − n1 >
√
T ) + P (n1 + n2 < −

√
T )

Since, n1, n2 are zero-mean statistically independent Gaussian random variables, each with
variance N0

2
, the random variables x = n1 − n2 and y = n1 + n2 are zero-mean Gaussian with

variance N0. Hence:

P (e|m1) =
1√

2πN0

∫ ∞
√
T
e
− x2

2N0 dx+
1√

2πN0

∫ −√
T

−∞
e
− y2

2N0 dy

= Q

[√
T

N0

]
+Q

[√
T

N0

]
= 2Q

[√
T

N0

]

When m2 is transmitted then r = [n1, n2 +
√
T ] and therefore:

P (e|m2) = P (n1 − n2 >
√
T ) + P (n2 < −

√
T )

= Q

[√
T

N0

]
+Q

[√
2T

N0

]

Similarly from the symmetry of the problem, we obtain:

P (e|m2) = P (e|m3) = Q

[√
T

N0

]
+Q

[√
2T

N0

]

Since Q[·] is momononically decreasing, we obtain:

Q

[√
2T

N0

]
< Q

[√
T

N0

]
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and therefore, the probability of error P (e|m1) is larger than P (e|m2) and P (e|m3). Hence, the
message m1 is more vulnerable to errors. The reason for that is that it has both threshold lines
close to it, while the other two signals have one of the their threshold lines further away.

Problem 5.25 :

(a) If the power spectral density of the additive noise is Sn(f), then the PSD of the noise at
the output of the prewhitening filter is

Sν(f) = Sn(f)|Hp(f)|2

In order for Sν(f) to be flat (white noise), Hp(f) should be such that

Hp(f) =
1√
Sn(f)

(b) Let hp(t) be the impulse response of the prewhitening filter Hp(f). That is, hp(t) =
F−1[Hp(f)]. Then, the input to the matched filter is the signal s̃(t) = s(t)�hp(t). The frequency
response of the filter matched to s̃(t) is

S̃m(f) = S̃∗(f)e−j2πft0 == S∗(f)H∗
p(f)e

−j2πft0

where t0 is some nominal time-delay at which we sample the filter output.

(c) The frequency response of the overall system, prewhitenig filter followed by the matched
filter, is

G(f) = S̃m(f)Hp(f) = S∗(f)|Hp(f)|2e−j2πft0 =
S∗(f)
Sn(f)e

−j2πft0

(d) The variance of the noise at the output of the generalized matched filter is

σ2 =
∫ ∞

−∞
Sn(f)|G(f)|2df =

∫ ∞

−∞
|S(f)|2
Sn(f) df

At the sampling instant t = t0 = T , the signal component at the output of the matched filter is

y(T ) =
∫ ∞

−∞
Y (f)ej2πfTdf =

∫ ∞

−∞
s(τ)g(T − τ)dτ

=
∫ ∞

−∞
S(f)

S∗(f)
Sn(f)df =

∫ ∞

−∞
|S(f)|2
Sn(f) df

Hence, the output SNR is

SNR =
y2(T )

σ2
=
∫ ∞

−∞
|S(f)|2
Sn(f) df
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Problem 5.26 :

(a) The number of bits per symbol is

k =
4800

R
=

4800

2400
= 2

Thus, a 4-QAM constellation is used for transmission. The probability of error for an M-ary
QAM system with M = 2k, is

PM = 1−
(

1− 2

(
1− 1√

M

)
Q

[√
3kEb

(M − 1)N0

])2

With PM = 10−5 and k = 2 we obtain

Q

[√
2Eb
N0

]
= 5× 10−6 =⇒ Eb

N0
= 9.7682

(b) If the bit rate of transmission is 9600 bps, then

k =
9600

2400
= 4

In this case a 16-QAM constellation is used and the probability of error is

PM = 1−
(

1− 2
(
1− 1

4

)
Q

[√
3× 4× Eb
15×N0

])2

Thus,

Q

[√
3× Eb

15×N0

]
=

1

3
× 10−5 =⇒ Eb

N0
= 25.3688

(c) If the bit rate of transmission is 19200 bps, then

k =
19200

2400
= 8

In this case a 256-QAM constellation is used and the probability of error is

PM = 1−
(

1− 2
(
1− 1

16

)
Q

[√
3× 8× Eb
255×N0

])2

With PM = 10−5 we obtain
Eb
N0

= 659.8922
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(d) The following table gives the SNR per bit and the corresponding number of bits per symbol
for the constellations used in parts a)-c).

k 2 4 8
SNR (db) 9.89 14.04 28.19

As it is observed there is an increase in transmitted power of approximately 3 dB per additional
bit per symbol.

Problem 5.27 :

Using the Pythagorean theorem for the four-phase constellation, we find:

r21 + r21 = d2 =⇒ r1 =
d√
2

The radius of the 8-PSK constellation is found using the cosine rule. Thus:

d2 = r22 + r22 − 2r22 cos(45o) =⇒ r2 =
d√

2−√2

The average transmitted power of the 4-PSK and the 8-PSK constellation is given by:

P4,av =
d2

2
, P8,av =

d2

2−√2

Thus, the additional transmitted power needed by the 8-PSK signal is:

P = 10 log10

2d2

(2−√2)d2
= 5.3329 dB

We obtain the same results if we use the probability of error given by (see 5-2-61) :

PM = 2Q
[√

2γs sin
π

M

]

where γs is the SNR per symbol. In this case, equal error probability for the two signaling
schemes, implies that

γ4,s sin2 π

4
= γ8,s sin2 π

8
=⇒ 10 log10

γ8,s

γ4,s

= 20 log10

sin π
4

sin π
8

= 5.3329 dB

Since we consider that error ocuur only between adjacent points, the above result is equal to
the additional transmitted power we need for the 8-PSK scheme to achieve the same distance d
between adjacent points.
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Problem 5.28 :

For 4-phase PSK (M = 4) we have the following realtionship between the symbol rate 1/T , the
required bandwith W and the bit rate R = k · 1/T = log2M

T
(see 5-2-84):

W =
R

log2M
→ R =Wlog2M = 2W = 200 kbits/sec

For binary FSK (M = 2) the required frequency separation is 1/2T (assuming coherent receiver)
and (see 5-2-86):

W =
M

log2M
R→ R =

2Wlog2M

M
=W = 100 kbits/sec

Finally, for 4-frequency non-coherent FSK, the required frequency separation is 1/T , so the
symbol rate is half that of binary coherent FSK, but since we have two bits/symbol, the bit ate
is tha same as in binary FSK :

R =W = 100 kbits/sec

Problem 5.29 :

We assume that the input bits 0, 1 are mapped to the symbols -1 and 1 respectively. The
terminal phase of an MSK signal at time instant n is given by

θ(n; a) =
π

2

k∑
k=0

ak + θ0

where θ0 is the initial phase and ak is ±1 depending on the input bit at the time instant k.
The following table shows θ(n; a) for two different values of θ0 (0, π), and the four input pairs
of data: {00, 01, 10, 11}.

θ0 b0 b1 a0 a1 θ(n; a)
0 0 0 -1 -1 −π
0 0 1 -1 1 0
0 1 0 1 -1 0
0 1 1 1 1 π
π 0 0 -1 -1 0
π 0 1 -1 1 π
π 1 0 1 -1 π
π 1 1 1 1 2π
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Problem 5.30 :

(a) The envelope of the signal is

|s(t)| =
√
|sc(t)|2 + |ss(t)|2

=

√
2Eb
Tb

cos2

(
πt

2Tb

)
+

2Eb
Tb

sin2
(
πt

2Tb

)

=

√
2Eb
Tb

Thus, the signal has constant amplitude.

(b) The signal s(t) is equivalent to an MSK signal. A block diagram of the modulator for
synthesizing the signal is given in the next figure.

❧❧

�

��

�

�✛✛

❄

✻

❄

✻

❄❄

✲

✻

❄

✲✲

✲✲

✲
s(t)

+cos(2πfct)cos( πt
2Tb

)

×

×

˜˜
−π

2

×

−π
2

×

a2n+1

a2n

Demux
Parallel
Serial /

data an

Serial

(c) A sketch of the demodulator is shown in the next figure.
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❧

❅❅
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✲

✲

❄

❄

✻
✛

❄

❄

✻
✛

✲
❄

✻

✲

✲

✲

✲

✲

t = 2Tb

t = 2Tb

−π
2

˜
×

×

cos( πt
2Tb

)cos(2πfct))

×

−π
2

×

˜r(t)

∫ 2Tb
0 (·)dt

∫ 2Tb
0 (·)dt

Threshold

Threshold

Parallel to
Serial
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Problem 5.31 :

h =
1

2
, L = 2

Based on (5-3-7), we obtain the 4 phase states :

Θs = {0, π/2, π, 3π/2}

The states in the trellis are the combination of the phase state and the correlative state, which
take the values In−1 = {±1} . The transition from state to state are determined by

θn+1 = θn +
π

2
In−1

and the resulting state trellis and state diagram are given in the following figures, where a solid
line corresponds to In = 1, while a dotted line corresponds to In = −1.
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(θn, In−1)

(0, 1)

(0,−1)

(π/2, 1)

(π/2,−1)

(π, 1)

(π,−1)

(3π/2, 1)

(2π/2,−1) æ
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(0, +1)

(0, −1)

(π/2, 1)

(π/2, −1)

(π, 1)

(π, −1)

(3π/2,1)

(3π/2,−1)

The treatment in Probl. 4.27 involved the terminal phase states only, which were deter-
mined to be {π/4, 3π/4, 5π/4, 7π/4} . We can easily verify that each two of the combined
states, which were obtained in this problem, give one terminal phase state. For example
(θn, In−1) = (3π/2,−1) and (θn, In−1) = (π,+1) , give the same terminal phase state at
t = (n + 1)T :

φ ((n+ 1)T ; I) = θn + θ(t; I) = θn + 2πhIn−1q(2T ) + 2πhInq(T )⇒
φ ((n+ 1)T ; I) = θn + π

2
In−1 + π

4
In = 3π

2
+ π

4
In = 5π/4 or 7π/4

Problem 5.32 :

(a)
(i) There are no correlative states in this system, since it is a full response CPM. Based on
(5-3-6), we obtain the phase states :

Θs =
{
0,

2π

3
,
4π

3

}
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(ii) Based on (5-3-7), we obtain the phase states :

Θs =
{
0,

3π

4
,
3π

2
,
9π

4
≡ π

4
, π,

15π

4
≡ 7π

4
,
18π

4
≡ π

2
,
21π

4
≡ 5π

4

}

(b)

(i) The combined states are Sn = (θn, In−1, In−2) , where
{
, In−1/n−2

}
take the values ±1. Hence

there are 3× 2× 2 = 12 combined states in all.
(ii) The combined states are Sn = (θn, In−1, In−2) , where

{
, In−1/n−2

}
take the values ±1. Hence

there are 8×2× 2 = 32 combined states in all.

Problem 5.33 :

A biorthogonal signal set with M = 8 signal points has vector space dimensionallity 4. Hence,
the detector first checks which one of the four correlation metrics is the largest in absolute value,
and then decides about the two possible symbols associated with this correlation metric,based
on the sign of this metric. Hence, the error probability is the probability of the union of the
event E1 that another correlation metric is greater in absolute value and the event E2 that the
signal correlation metric has the wrong sign. A union bound on the symbol error probability
can be given by :

PM ≤ P (E1) + P (E2)

But P (E2) is simply the probability of error for an antipodal signal set : P (E2) = Q
(√

2Es

N0

)
and the probability of the event E1 can be union bounded by :

P (E1) ≤ 3 [P (|C2| > |C1|)] = 3 [2P (C2 > C1)] = 6P (C2 > C1) = 6Q

(√ Es
N0

)

where Ci is the correlation metric corresponding to the i-th vector space dimension; the proba-
bility that a correlation metric is greater that the correct one is given by the error probability for

orthogonal signals Q
(√ Es

N0

)
(since these correlation metrics correspond to orthogonal signals).

Hence :

PM ≤ 6Q

(√ Es
N0

)
+Q

(√
2Es
N0

)

(sum of the probabilities to chose one of the 6 orthogonal, to the correct one, signal points and
the probability to chose the signal point which is antipodal to the correct one).

Problem 5.34 :

It is convenient to find first the probability of a correct decision. Since all signals are equiprob-
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able,

P (C) =
M∑
i=1

1

M
P (C|si)

All the P (C|si), i = 1, . . . ,M are identical because of the symmetry of the constellation. By
translating the vector si to the origin we can find the probability of a correct decison, given that
si was transmitted, as :

P (C|si) =
∫ ∞

− d
2

f(n1)dn1

∫ ∞

− d
2

f(n2)dn2 . . .
∫ ∞

− d
2

f(nN )dnN

where the number of the integrals on the right side of the equation is N , d is the minimum
distance between the points and :

f(ni) =
1√

2πσ2
e−

n2
i

2σ2 =
1√
πN0

e
− n2

i
N0

Hence :

P (C|si) =

(∫ ∞

− d
2

f(n)dn

)N
=

(
1−

∫ − d
2

−∞
f(n)dn

)N

=

(
1−Q

[
d√
2N0

])N

and therefore, the probability of error is given by :

P (e) = 1− P (C) = 1−
M∑
i=1

1

M

(
1−Q

[
d√
2N0

])N

= 1−
(

1−Q
[

d√
2N0

])N

Note that since :

Es =
N∑
i=1

s2m,i =
N∑
i=1

(
d

2
)2 = N

d2

4

the probability of error can be written as :

P (e) = 1−
(

1−Q
[√

2Es
NN0

])N

Problem 5.35 :

Consider first the signal :

y(t) =
n∑
k=1

ckδ(t− kTc)
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The signal y(t) has duration T = nTc and its matched filter is :

g(t) = y(T − t) = y(nTc − t) =
n∑
k=1

ckδ(nTc − kTc − t)

=
n∑
i=1

cn−i+1δ((i− 1)Tc − t) =
n∑
i=1

cn−i+1δ(t− (i− 1)Tc)

that is, a sequence of impulses starting at t = 0 and weighted by the mirror image sequence of
{ci}. Since,

s(t) =
n∑
k=1

ckp(t− kTc) = p(t) �
n∑
k=1

ckδ(t− kTc)

the Fourier transform of the signal s(t) is :

S(f) = P (f)
n∑
k=1

cke
−j2πfkTc

and therefore, the Fourier transform of the signal matched to s(t) is :

H(f) = S∗(f)e−j2πfT = S∗(f)e−j2πfnTc

= P ∗(f)
n∑
k=1

cke
j2πfkTce−j2πfnTc

= P ∗(f)
n∑
i=1

cn−i+1e
−j2πf(i−1)Tc

= P ∗(f)F [g(t)]

Thus, the matched filter H(f) can be considered as the cascade of a filter,with impulse response
p(−t), matched to the pulse p(t) and a filter, with impulse response g(t), matched to the signal
y(t) =

∑n
k=1 ckδ(t− kTc). The output of the matched filter at t = nTc is (see 5-1-27) :

∫ ∞

−∞
|s(t)|2 =

n∑
k=1

c2k

∫ ∞

−∞
p2(t− kTc)dt

= Tc
n∑
k=1

c2k

where we have used the fact that p(t) is a rectangular pulse of unit amplitude and duration Tc.

Problem 5.36 :

The bandwidth required for transmission of an M-ary PAM signal is

W =
R

2 log2M
Hz
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Since,

R = 8× 103 samples

sec
× 8

bits

sample
= 64× 103 bits

sec

we obtain

W =




16 KHz M = 4
10.667 KHz M = 8
8 KHz M = 16

Problem 5.37 :

(a) The inner product of si(t) and sj(t) is

∫ ∞

−∞
si(t)sj(t)dt =

∫ ∞

−∞

n∑
k=1

cikp(t− kTc)
n∑
l=1

cjlp(t− lTc)dt

=
n∑
k=1

n∑
l=1

cikcjl

∫ ∞

−∞
p(t− kTc)p(t− lTc)dt

=
n∑
k=1

n∑
l=1

cikcjlEpδkl

= Ep
n∑
k=1

cikcjk

The quantity
∑n
k=1 cikcjk is the inner product of the row vectors Ci and Cj . Since the rows of

the matrix Hn are orthogonal by construction, we obtain

∫ ∞

−∞
si(t)sj(t)dt = Ep

n∑
k=1

c2ikδij = nEpδij

Thus, the waveforms si(t) and sj(t) are orthogonal.

(b) Using the results of Problem 5.35, we obtain that the filter matched to the waveform

si(t) =
n∑
k=1

cikp(t− kTc)

can be realized as the cascade of a filter matched to p(t) followed by a discrete-time filter matched
to the vector Ci = [ci1, . . . , cin]. Since the pulse p(t) is common to all the signal waveforms si(t),
we conclude that the n matched filters can be realized by a filter matched to p(t) followed by n
discrete-time filters matched to the vectors Ci, i = 1, . . . , n.
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Problem 5.38 :

(a) The optimal ML detector (see 5-1-41) selects the sequence Ci that minimizes the quantity:

D(r, Ci) =
n∑
k=1

(rk −
√
EbCik)2

The metrics of the two possible transmitted sequences are

D(r, C1) =
w∑
k=1

(rk −
√
Eb)2 +

n∑
k=w+1

(rk −
√
Eb)2

and

D(r, C2) =
w∑
k=1

(rk −
√
Eb)2 +

n∑
k=w+1

(rk +
√
Eb)2

Since the first term of the right side is common for the two equations, we conclude that the
optimal ML detector can base its decisions only on the last n−w received elements of r. That
is

n∑
k=w+1

(rk −
√
Eb)2 −

n∑
k=w+1

(rk +
√
Eb)2

C2

>
<

C1

0

or equivalently

n∑
k=w+1

rk

C1

>
<

C2

0

(b) Since rk =
√EbCik + nk, the probability of error P (e|C1) is

P (e|C1) = P


√Eb(n− w) +

n∑
k=w+1

nk < 0




= P


 n∑
k=w+1

nk < −(n− w)
√
Eb



The random variable u =
∑n
k=w+1 nk is zero-mean Gaussian with variance σ2

u = (n − w)σ2.
Hence

P (e|C1) =
1√

2π(n− w)σ2

∫ −√Eb(n−w)

−∞
exp(− x2

2π(n− w)σ2
)dx = Q



√
Eb(n− w)

σ2



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Similarly we find that P (e|C2) = P (e|C1) and since the two sequences are equiprobable

P (e) = Q



√
Eb(n− w)

σ2




(c) The probability of error P (e) is minimized when Eb(n−w)
σ2 is maximized, that is for w = 0.

This implies that C1 = −C2 and thus the distance between the two sequences is the maximum
possible.

Problem 5.39 :

rl(t) = sl1(t)e
jφ + z(t). Hence, the output of a correlator-type receiver will be :

r1 =
∫ T
0 rl(t)s

∗
l1(t)dt =

∫ T
0

(
sl1(t)e

jφ + z(t)
)
s∗l1(t)dt

= ejφ
∫ T
0 sl1(t)s

∗
l1(t)dt+

∫ T
0 z(t)s

∗
l1(t)dt

= ejφ2E + n1c + jn1s = 2E cos φ+ n1c + j (2E sin φ+ n1s)

where n1c = Re
[∫ T

0 z(t)s
∗
l1(t)dt

]
, n1s = Im

[∫ T
0 z(t)s

∗
l1(t)dt

]
. Similarly for the second correlator

output:

r2 =
∫ T
0 rl(t)s

∗
l2(t)dt =

∫ T
0

(
sl1(t)e

jφ + z(t)
)
s∗l2(t)dt

= ejφ
∫ T
0 sl1(t)s

∗
l2(t)dt+

∫ T
0 z(t)s

∗
l2(t)dt

= ejφ2Eρ∗ + n2c + jn2s = ejφ2E |ρ| e−ja0 + n2c + jn2s

= 2E |ρ| cos (φ− a0) + n2c + j (2E |ρ| sin (φ− a0) + n2s)

where n2c = Re
[∫ T

0 z(t)s
∗
l2(t)dt

]
, n2s = Im

[∫ T
0 z(t)s

∗
l2(t)dt

]
.

Problem 5.40 :

nic = Re
[∫ T

0 z(t)s
∗
li(t)dt

]
, nis = Im

[∫ T
0 z(t)s

∗
li(t)dt

]
, i = 1, 2. The variances of the noise terms
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are:
E [n1cn1c] = E

[
Re

[∫ T
0 z(t)s

∗
l1(t)dt

]
Re

[∫ T
0 z(t)s

∗
l1(t)dt

]]

= 1
4
E
[(∫ T

0 z(t)s
∗
l1(t)dt+

∫ T
0 z

∗(t)sl1(t)dt
)2
]

= 1
4
2
∫ T
0

∫ T
0 E [z(a)z∗(t)] sl1(t)s∗l1(a)dtda

= 1
4
2 · 2N0

∫ T
0 sl1(t)s

∗
l1(t)dt = 2N0E

where we have used the identity Re [z] = 1
2
(z + z∗) , and the fact from Problem 5.7 (or 4.3) that

E [z(t)z(t + τ)] = 0, E [z∗(t)z∗(t+ τ)] = 0. Similarly :

E [n2cn2c] = E [n1sn1s] = E [n2sn2s] = 2N0E

where for the quadrature noise term components we use the identity : Im [z] = 1
2j

(z − z∗) .
The covariance between the in-phase terms for the two correlators is :

E [n1cn2c] = 1
4
E
[(∫ T

0 z(t)s
∗
l1(t)dt+

∫ T
0 z

∗(t)sl1(t)dt
) (∫ T

0 z(t)s
∗
l2(t)dt+

∫ T
0 z

∗(t)sl2(t)dt
)]

= 0

because the 4 crossterms that are obtained from the above expressions contain one of :

E [z(t)z(t + τ)] = E [z∗(t)z∗(t+ τ)] =
∫ T

0
sl2(t)s

∗
l1(t)dt =

∫ T

0
sl1(t)s

∗
l2(t)dt = 0

Similarly : E [n1cn2s] = E [n1sn2s] = E [n1sn2c] = 0.
Finally, the covariance between the in-phase and the quadrature component of the same corre-
lator output is :

E [n1cn1s] = 1
4j
E
[(∫ T

0 z(t)s
∗
l1(t)dt+

∫ T
0 z

∗(t)sl1(t)dt
) (∫ T

0 z(t)s
∗
l1(t)dt−

∫ T
0 z

∗(t)sl1(t)dt
)]

= 1
4j

(∫ T
0

∫ T
0 E [z(a)z(t)] s∗l1(a)s

∗
l1(t)dtda+

∫ T
0

∫ T
0 E [z∗(a)z∗(t)] sl1(a)s∗l1dtda

)
+ 1

4j

(∫ T
0

∫ T
0 E [z∗(a)z(t)] sl1(a)s∗l1(t)dtda−

∫ T
0

∫ T
0 E [z∗(a)z(t)] sl1(a)s∗l1(t)dtda

)

= 1
4j

(∫ T
0

∫ T
0 E [z(a)z(t)] s∗l1(a)s

∗
l1(t)dtda+

∫ T
0

∫ T
0 E [z∗(a)z∗(t)] sl1(a)s∗l1dtda

)

= 0

Similarly : E [n2cn2s] = 0.
The joint pdf is simply the product of the marginal pdf’s, since these noise terms are Gaussian
and uncorrelated, and thus they are also statistically independent :

p(n1c, n2c, n1s, n2s) = p(n1c)p(n2c)p(n1s)p(n2s)
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where, e.g : p(n1c) = 1√
4πNoE exp(−n2

1c/4N0E).

Problem 5.41 :

The first matched filter output is :

r1 =
∫ T

0
rl(τ)h1(T − τ)dτ =

∫ T

0
rl(τ)s

∗
l1(T − (T − τ))dτ =

∫ T

0
rl(τ)s

∗
l1(τ)dτ

Similarly :

r2 =
∫ T

0
rl(τ)h2(T − τ)dτ =

∫ T

0
rl(τ)s

∗
l2(T − (T − τ))dτ =

∫ T

0
rl(τ)s

∗
l2(τ)dτ

which are the same as those of the correlation-type receiver of Problem 5.39. From this point,
following the exact same steps as in Problem 5.39, we get :

r1 = 2E cosφ+ n1c + j (2E sinφ+ n1s)
r2 = 2E |ρ| cos (φ− a0) + n2c + j (2E |ρ| sin (φ− a0) + n2s)

Problem 5.42 :

(a) The noncoherent envelope detector for the on-off keying signal is depicted in the next figure.

❧

�

�
✛

✲✲

✻

❄

❄

❄

✻

✲

✲

✲

✲

✲

❅❅

❅❅

r

rs

rc

(·)2

(·)2

t = T

t = T

√
2
T

cos(2πfct)

Device
Threshold

VT

×

−π
2

×

+
r(t)

∫ t
0(·)dτ

∫ t
0(·)dτ

(b) If s0(t) is sent, then the received signal is r(t) = n(t) and therefore the sampled outputs rc,
rs are zero-mean independent Gaussian random variables with variance N0

2
. Hence, the random

variable r =
√
r2c + r2s is Rayleigh distributed and the PDF is given by :

p(r|s0(t)) =
r

σ2
e−

r2

2σ2 =
2r

N0

e
− r2

N0
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If s1(t) is transmitted, then the received signal is :

r(t) =

√
2Eb
Tb

cos(2πfct+ φ) + n(t)

Crosscorrelating r(t) by
√

2
T

cos(2πfct) and sampling the output at t = T , results in

rc =
∫ T

0
r(t)

√
2

T
cos(2πfct)dt

=
∫ T

0

2
√Eb
Tb

cos(2πfct+ φ) cos(2πfct)dt+
∫ T

0
n(t)

√
2

T
cos(2πfct)dt

=
2
√Eb
Tb

∫ T

0

1

2
(cos(2π2fct+ φ) + cos(φ)) dt+ nc

=
√
Eb cos(φ) + nc

where nc is zero-mean Gaussian random variable with variance N0

2
. Similarly, for the quadrature

component we have :

rs =
√
Eb sin(φ) + ns

The PDF of the random variable r =
√
r2c + r2s =

√
Eb + n2

c + n2
s follows the Rician distibution :

p(r|s1(t)) =
r

σ2
e−

r2+Eb
2σ2 I0

(
r
√Eb
σ2

)
=

2r

N0
e
− r2+Eb

N0 I0

(
2r
√Eb
N0

)

(c) For equiprobable signals the probability of error is given by:

P (error) =
1

2

∫ VT

−∞
p(r|s1(t))dr +

1

2

∫ ∞

VT

p(r|s0(t))dr

Since r > 0 the expression for the probability of error takes the form

P (error) =
1

2

∫ VT

0
p(r|s1(t))dr +

1

2

∫ ∞

VT

p(r|s0(t))dr

=
1

2

∫ VT

0

r

σ2
e−

r2+Eb
2σ2 I0

(
r
√Eb
σ2

)
dr +

1

2

∫ ∞

VT

r

σ2
e−

r2

2σ2 dr

The optimum threshold level is the value of VT that minimizes the probability of error. However,
when Eb

N0
� 1 the optimum value is close to:

√Eb

2
and we will use this threshold to simplify the

analysis. The integral involving the Bessel function cannot be evaluated in closed form. Instead
of I0(x) we will use the approximation :

I0(x) ≈ ex√
2πx
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which is valid for large x, that is for high SNR. In this case :

1

2

∫ VT

0

r

σ2
e−

r2+Eb
2σ2 I0

(
r
√Eb
σ2

)
dr ≈ 1

2

∫ √Eb
2

0

√
r

2πσ2
√Eb e

−(r−√Eb)
2/2σ2

dr

This integral is further simplified if we observe that for high SNR, the integrand is dominant in
the vicinity of

√Eb and therefore, the lower limit can be substituted by −∞. Also

√
r

2πσ2
√Eb ≈

√
1

2πσ2

and therefore :

1

2

∫ √Eb
2

0

√
r

2πσ2
√Eb e

−(r−√Eb)
2/2σ2

dr ≈ 1

2

∫ √Eb
2

−∞

√
1

2πσ2
e−(r−√Eb)

2/2σ2

dr

=
1

2
Q

[√ Eb
2N0

]

Finally :

P (error) =
1

2
Q

[√ Eb
2N0

]
+

1

2

∫ ∞
√Eb

2

2r

N0
e
− r2

N0 dr

≤ 1

2
Q

[√ Eb
2N0

]
+

1

2
e
− Eb

4N0

Problem 5.43 :

(a) D = Re
(
VmV

∗
m−1

)
where Vm = Xm + jYm. Then :

D = Re ((Xm + jYm)(Xm−1 − jYm−1))
= XmXm−1 + YmYm−1

=
(
Xm+Xm−1

2

)2 −
(
Xm−Xm−1

2

)2
+
(
Ym+Ym−1

2

)2 −
(
Ym−Ym−1

2

)2

(b) Vk = Xk + jYk = 2aE cos(θ − φ) + j2aE sin(θ − φ) +Nk,real +Nk,imag. Hence :

U1 = Xm+Xm−1

2
, E(U1) = 2aE cos(θ − φ)

U2 = Ym+Ym−1

2
, E(U2) = 2aE sin(θ − φ)

U3 = Xm−Xm−1

2
, E(U3) = 0

U4 = Ym−Ym−1

2
, E(U4) = 0
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The variance of U1 is : E [U1 − E(U1)]
2 = E

[
1
2
(Nm,real +Nm−1,real)

]2
= E [Nm,real]

2 = 2EN0,

and similarly : E [Ui − E(Ui)]
2 = 2EN0, i = 2, 3, 4. The covariances are (e.g for U1, U2):

cov(U1, U2) = E [(U1 − E(U1)) (U2 −E(U2))] = E
[

1
4
(Nm,r +Nm−1,r) (Nm,i +Nm−1,i)

]
= 0, since

the noise components are uncorrelated and have zero mean. Similarly for any i, j : cov(Ui, Uj) =
0 . The condition cov(Ui, Uj) = 0, implies that these random variables {Ui} are uncorrelated,
and since they are Gaussian, they are also statistically independent.

Since U3 and U4 are zero-mean Gaussian, the random variable R2 =
√
U2

3 + U2
4 has a Rayleigh

distribution; on the other hand R1 =
√
U2

1 + U2
2 has a Rice distribution.

(c) W1 = U2
1 + U2

2 , with U1, U2 being statistically independent Gaussian variables with means
2aE cos(θ−φ), 2aE(sin θ−φ) and identical variances σ2 = 2EN0. Then,W1 follows a non-central
chi-square distribution with pdf given by (2-1-118):

p(w1) =
1

4EN0
e−(4a2E2+w1)/4EN0I0

(
a

N0

√
w1

)
, w1 ≥ 0

Also, W2 = U2
3 +U2

4 , with U3, U4 being zero-mean Gaussian with the same variance. Hence, W1

follows a central chi-square distribution, with pfd given by (2-1-110) :

p(w2) =
1

4EN0
e−w2/4EN0 , w2 ≥ 0

(d)
Pb = P (D < 0) = P (W1 −W2 < 0)

=
∫∞
0 P (w2 > w1|w1)p(w1)dw1

=
∫∞
0

(∫∞
w1
p(w2)dw2

)
p(w1)dw1

=
∫∞
0 e−w1/4EN0p(w1)dw1

= ψ(jv)|v=j/4EN0

= 1
(1−2jvσ2)

exp
(
jv4a2E2

1−2jvσ2

)
|v=j/4EN0

= 1
2
e−a

2E/N0

where we have used the characteristic function of the non-central chi-square distribution given
by (2-1-117) in the book.
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Problem 5.44 :

v(t) =
∑
k [Iku(t− 2kTb) + jJku(t− 2kTb − Tb)] where u(t) =

{
sin πt

2Tb
, 0 ≤ t ≤ Tb

0, o.w.

}
. Note

that

u(t− Tb) = sin
π(t− Tb)

2Tb
= − cos

πt

2Tb
, Tb ≤ t ≤ 3Tb

Hence, v(t) may be expressed as :

v(t) =
∑
k

[
Ik sin

π(t− 2kTb)

2Tb
− jJk cos

π(t− 2kTb)

2Tb

]

The transmitted signal is :

Re
[
v(t)ej2πfct

]
=
∑
k

[
Ik sin

π(t− 2kTb)

2Tb
cos 2πfct+ Jk cos

π(t− 2kTb)

2Tb
sin 2πfct

]

(a)

✍✌✎�

✍✌✎�

✲ ✲ �
�

✲ ✲

✻

✲ ✲ �
�

✲ ✲

✻

Threshold
Detector

Sampler
t = (2k + 2)Tb

X
∫ (2k+2)Tb

2kTb
()dt

Îk

sin π
2Tb

cos2πfct

Threshold
Detector

Sampler
t = (2k + 2)Tb

X
∫ (2k+2)Tb

2kTb
()dt

Îk

cos π
2Tb

sin2πfct

Input

æ

(b) The offset QPSK signal is equivalent to two independent binary PSK systems. Hence for
coherent detection, the error probability is :

Pe = Q
(√

2γb

)
, γb =

Eb
N0

, Eb =
1

2

∫ T

0
|u(t)|2 dt

(c) Viterbi decoding (MLSE) of the MSK signal yields identical performance to that of part
(b).
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(d) MSK is basically binary FSK with frequency separation of ∆f = 1/2T. For this frequency
separation the binary signals are orthogonal with coherent detection. Consequently, the error
probability for symbol-by-symbol detection of the MSK signal yields an error probability of

Pe = Q (
√
γb)

which is 3dB poorer relative to the optimum Viterbi detection scheme.
For non-coherent detection of the MSK signal, the correlation coefficient for ∆f = 1/2T is :

|ρ| = sin π/2

π/2
= 0.637

From the results in Sec. 5-4-4 we observe that the performance of the non coherent detector
method is about 4 dB worse than the coherent FSK detector. hence the loss is about 7 dB
compared to the optimum demodulator for the MSK signal.

Problem 5.45 :

(a) For n repeaters in cascade, the probability of i out of n repeaters to produce an error is
given by the binomial distribution

Pi =

(
n
i

)
pi(1− p)n−i

However, there is a bit error at the output of the terminal receiver only when an odd number
of repeaters produces an error. Hence, the overall probability of error is

Pn = Podd =
∑
i=odd

(
n
i

)
pi(1− p)n−i

Let Peven be the probability that an even number of repeaters produces an error. Then

Peven =
∑

i=even

(
n
i

)
pi(1− p)n−i

and therefore,

Peven + Podd =
n∑
i=0

(
n
i

)
pi(1− p)n−i = (p+ 1− p)n = 1

One more relation between Peven and Podd can be provided if we consider the difference Peven −
Podd. Clearly,

Peven − Podd =
∑

i=even

(
n
i

)
pi(1− p)n−i − ∑

i=odd

(
n
i

)
pi(1− p)n−i

a
=

∑
i=even

(
n
i

)
(−p)i(1− p)n−i + ∑

i=odd

(
n
i

)
(−p)i(1− p)n−i

= (1− p− p)n = (1− 2p)n
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where the equality (a) follows from the fact that (−1)i is 1 for i even and −1 when i is odd.
Solving the system

Peven + Podd = 1

Peven − Podd = (1− 2p)n

we obtain

Pn = Podd =
1

2
(1− (1− 2p)n)

(b) Expanding the quantity (1− 2p)n, we obtain

(1− 2p)n = 1− n2p+
n(n− 1)

2
(2p)2 + · · ·

Since, p� 1 we can ignore all the powers of p which are greater than one. Hence,

Pn ≈ 1

2
(1− 1 + n2p) = np = 100× 10−6 = 10−4

Problem 5.46 :

The overall probability of error is approximated by (see 5-5-2)

P (e) = KQ

[√
2Eb
N0

]

Thus, with P (e) = 10−6 and K = 100, we obtain the probability of each repeater Pr =

Q
[√

2Eb

N0

]
= 10−8. The argument of the function Q[·] that provides a value of 10−8 is found

from tables to be √
2Eb
N0

= 5.61

Hence, the required Eb

N0
is 5.612/2 = 15.7

Problem 5.47 :

(a) The antenna gain for a parabolic antenna of diameter D is :

GR = η
(
πD

λ

)2
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If we assume that the efficiency factor is 0.5, then with :

λ =
c

f
=

3× 108

109
= 0.3 m D = 3× 0.3048 m

we obtain :
GR = GT = 45.8458 = 16.61 dB

(b) The effective radiated power is :

EIRP = PTGT = GT = 16.61 dB

(c) The received power is :

PR =
PTGTGR(

4πd
λ

)2 = 2.995× 10−9 = −85.23 dB = −55.23 dBm

Note that :

dBm = 10 log10

(
actual power in Watts

10−3

)
= 30 + 10 log10(power in Watts )

Problem 5.48 :

(a) The antenna gain for a parabolic antenna of diameter D is :

GR = η
(
πD

λ

)2

If we assume that the efficiency factor is 0.5, then with :

λ =
c

f
=

3× 108

109
= 0.3 m and D = 1 m

we obtain :
GR = GT = 54.83 = 17.39 dB

(b) The effective radiated power is :

EIRP = PTGT = 0.1× 54.83 = 7.39 dB
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(c) The received power is :

PR =
PTGTGR(

4πd
λ

)2 = 1.904× 10−10 = −97.20 dB = −67.20 dBm

Problem 5.49 :

The wavelength of the transmitted signal is:

λ =
3× 108

10× 109
= 0.03 m

The gain of the parabolic antenna is:

GR = η
(
πD

λ

)2

= 0.6
(
π10

0.03

)2

= 6.58× 105 = 58.18 dB

The received power at the output of the receiver antenna is:

PR =
PTGTGR

(4π d
λ
)2

=
3× 101.5 × 6.58× 105

(4× 3.14159× 4×107

0.03
)2

= 2.22× 10−13 = −126.53 dB

Problem 5.50 :

(a) Since T = 3000K, it follows that

N0 = kT = 1.38× 10−23 × 300 = 4.14× 10−21 W/Hz

If we assume that the receiving antenna has an efficiency η = 0.5, then its gain is given by :

GR = η
(
πD

λ

)2

= 0.5


3.14159× 50

3×108

2×109




2

= 5.483× 105 = 57.39 dB

Hence, the received power level is :

PR =
PTGTGR

(4π d
λ
)2

=
10× 10× 5.483× 105

(4× 3.14159× 108

0.15
)2

= 7.8125× 10−13 = −121.07 dB

(b) If Eb

N0
= 10 dB = 10, then

R =
PR
N0

( Eb
N0

)−1

=
7.8125× 10−13

4.14× 10−21
× 10−1 = 1.8871× 107 = 18.871 Mbits/sec
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Problem 5.51 :

The wavelength of the transmission is :

λ =
c

f
=

3× 108

4× 109
= 0.75 m

If 1 MHz is the passband bandwidth, then the rate of binary transmission is Rb = W = 106 bps.
Hence, with N0 = 4.1× 10−21 W/Hz we obtain :

PR
N0

= Rb
Eb
N0

=⇒ 106 × 4.1× 10−21 × 101.5 = 1.2965× 10−13

The transmitted power is related to the received power through the relation (see 5-5-6) :

PR =
PTGTGR

(4π d
λ
)2

=⇒ PT =
PR
GTGR

(
4π
d

λ

)2

Substituting in this expression the values GT = 100.6, GR = 105, d = 36× 106 and λ = 0.75 we
obtain

PT = 0.1185 = −9.26 dBW
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CHAPTER 6

Problem 6.1 :

Using the relationship r(t) =
∑N
n=1 rnfn(t) and s(t;ψ) =

∑N
n=1 sn(ψ)fn(t) we have :

1
N0

∫
[r(t)− s(t;ψ)]2 dt = 1

N0

∫ [∑N
n=1(rn − sn(ψ))fn(t)

]2
dt

= 1
N0

∫ ∑N
n=1

∑N
m=1(rn − sn(ψ))(rm − sm(ψ))fn(t)fm(t)dt

= 1
N0

∑N
n=1

∑N
m=1(rn − sn(ψ))(rm − sm(ψ))δmn

= 1
N0

∑N
n=1(rn − sn(ψ))(rn − sn(ψ))

= 1
2σ2

∑N
n=1 [rn − sn(ψ)]

2

where we have exploited the orthonormality of the basis functions fn(t) :
∫
T0
fn(t)fm(t)dt = δmn

and σ2 = N0

2
.

Problem 6.2 :

A block diagram of a binary PSK receiver that employs match filtering is given in the following
figure :

❧✲

✲

✲

✻

✲

✻

✲ ✲

Carrier phase
recovery

Symbol
synchronization

Matched filter
h(t) = g(T − t)X

Sampler and
Detector

Output dataReceived signal

cos(2πfct + φ̂)

æ
As we note, the received signal is, first, multiplied with cos(2πfct+ φ̂) and then fed the matched
filter. This allows us to have the filter matched to the baseband pulse g(t) and not to the
passband signal.
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If we want to have the filter matched to the passband signal, then the carrier phase estimate is
fed into the matched filter, which should have an impulse response:

h(t) = s(T − t) = g(T − t)cos(2πfc(T − t) + φ̂)

= g(T − t)[cos(2πfcT )cos(−2πfct+ φ̂) + sin(2πfcT )sin(−2πfct+ φ̂)

= g(T − t)cos(−2πfct+ φ̂) = g(T − t)cos(2πfct− φ̂)

where we have assumed that fcT is an integer so that : cos(2πfcT ) = 1, sin(2πfcT ) = 0. As we
note, in this case the impulse response of the filter should change according to the carrier phase
estimate, something that is difficult to implement in practise. Hence, the initial realization
(shown in the figure) is preferable.

Problem 6.3 :

(a) The closed loop transfer function is :

H(s) =
G(s)/s

1 +G(s)/s
=

G(s)

s +G(s)
=

1

s2 +
√
2s+ 1

The poles of the system are the roots of the denominator, that is

ρ1,2 =
−√2±√2− 4

2
= − 1√

2
± j

1√
2

Since the real part of the roots is negative, the poles lie in the left half plane and therefore, the
system is stable.

(b) Writing the denominator in the form :

D = s2 + 2ζωns+ ω2
n

we identify the natural frequency of the loop as ωn = 1 and the damping factor as ζ =
1√
2

Problem 6.4 :

(a) The closed loop transfer function is :

H(s) =
G(s)/s

1 +G(s)/s
=

G(s)

s+G(s)
=

K

τ1s2 + s+K
=

K
τ1

s2 + 1
τ1
s+ K

τ1

The gain of the system at f = 0 is :

|H(0)| = |H(s)|s=0 = 1
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(b) The poles of the system are the roots of the denominator, that is

ρ1,2 =
−1±√1− 4Kτ1

2τ1

In order for the system to be stable the real part of the poles must be negative. Since K
is greater than zero, the latter implies that τ1 is positive. If in addition we require that the
damping factor ζ = 1

2
√
τ1K

is less than 1, then the gain K should satisfy the condition :

K >
1

4τ1

Problem 6.5 :

The transfer function of the RC circuit is :

G(s) =
R2 +

1
Cs

R1 +R2 +
1
Cs

=
1 +R2Cs

1 + (R1 +R2)Cs
=
1 + τ2s

1 + τ1s

From the last equality we identify the time constants as :

τ2 = R2C, τ1 = (R1 +R2)C

Problem 6.6 :

Assuming that the input resistance of the operational amplifier is high so that no current flows
through it, then the voltage-current equations of the circuit are :

V2 = −AV1

V1 − V2 =
(
R1 +

1

Cs

)
i

V1 − V0 = iR

where, V1, V2 is the input and output voltage of the amplifier respectively, and V0 is the signal
at the input of the filter. Eliminating i and V1, we obtain :

V2

V1
=

R1+ 1
Cs

R

1 + 1
A
− R1+ 1

Cs

AR

If we let A→∞ (ideal amplifier), then :

V2

V1

=
1 +R1Cs

RCs
=
1 + τ2s

τ1s
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Hence, the constants τ1, τ2 of the active filter are given by :

τ1 = RC, τ2 = R1C

Problem 6.7 :

In the non decision-directed timing recovery method we maximize the function :

ΛL(τ) =
∑
m

y2
m(τ)

with respect to τ . Thus, we obtain the condition :

dΛL(τ)

dτ
= 2

∑
m

ym(τ)
dym(τ)

dτ
= 0

Suppose now that we approximate the derivative of the log-likelihood ΛL(τ) by the finite differ-
ence :

dΛL(τ)

dτ
≈ ΛL(τ + δ)− ΛL(τ − δ)

2δ
Then, if we substitute the expression of ΛL(τ) in the previous approximation, we obtain :

dΛL(τ)

dτ
=

∑
m y2

m(τ + δ)−∑m y2
m(τ − δ)

2δ

=
1

2δ

∑
m

[(∫
r(t)g(t−mT − τ − δ)dt

)2

−
(∫

r(t)g(t−mT − τ + δ)dt
)2
]

where g(−t) is the impulse response of the matched filter in the receiver. However, this is the
expression of the early-late gate synchronizer, where the lowpass filter has been substituted by
the summation operator. Thus, the early-late gate synchronizer is a close approximation to the
timing recovery system.

Problem 6.8 :

An on-off keying signal is represented as :

s1(t) = A cos(2πfct+ φc), 0 ≤ t ≤ T (binary 1)
s2(t) = 0, 0 ≤ t ≤ T (binary 0)

Let r(t) be the received signal, that is r(t) = s(t;φc) + n(t) where s(t;φc) is either s1(t) or
s2(t) and n(t) is white Gaussian noise with variance

N0

2
. The likelihood function, that is to be

maximized with respect to φc over the inteval [0, T ], is proportional to :

Λ(φc) = exp

[
− 2

N0

∫ T

0
[r(t)− s(t;φc)]

2dt

]
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Maximization of Λ(φc) is equivalent to the maximization of the log-likelihood function :

ΛL(φc) = − 2

N0

∫ T

0
[r(t)− s(t;φc)]

2dt

= − 2

N0

∫ T

0
r2(t)dt+

4

N0

∫ T

0
r(t)s(t;φc)dt− 2

N0

∫ T

0
s2(t;φc)dt

Since the first term does not involve the parameter of interest φc and the last term is simply a
constant equal to the signal energy of the signal over [0, T ] which is independent of the carrier
phase, we can carry the maximization over the function :

V (φc) =
∫ T

0
r(t)s(t;φc)dt

Note that s(t;φc) can take two different values, s1(t) and s2(t), depending on the transmission
of a binary 1 or 0. Thus, a more appropriate function to maximize is the average log-likelihood

V̄ (φc) =
1

2

∫ T

0
r(t)s1(t)dt+

1

2

∫ T

0
r(t)s2(t)dt

Since s2(t) = 0, the function V̄ (φc) takes the form :

V̄ (φc) =
1

2

∫ T

0
r(t)A cos(2πfct+ φc)dt

Setting the derivative of V̄ (φc) with respect to φc equal to zero, we obtain :

ϑV̄ (φc)

ϑφc
= 0 =

1

2

∫ T

0
r(t)A sin(2πfct+ φc)dt

= cosφc
1

2

∫ T

0
r(t)A sin(2πfct)dt+ sin φc

1

2

∫ T

0
r(t)A cos(2πfct)dt

Thus, the maximum likelihood estimate of the carrier phase is :

φ̂c,ML = − arctan
[ ∫ T

0 r(t) sin(2πfct)dt∫ T
0 r(t) cos(2πfct)dt

]

Problem 6.9 :

(a) The wavelength λ is :

λ =
3× 108

109
m =

3

10
m

Hence, the Doppler frequency shift is :

fD = ±u
λ
= ±100 Km/hr3

10
m

= ±100× 10
3 × 10

3× 3600 Hz = ±92.5926 Hz
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The plus sign holds when the vehicle travels towards the transmitter whereas the minus sign
holds when the vehicle moves away from the transmitter.

(b) The maximum difference in the Doppler frequency shift, when the vehicle travels at speed
100 km/hr and f = 1 GHz, is :

∆fDmax = 2fD = 185.1852 Hz

This should be the bandwith of the Doppler frequency tracking loop.

(c) The maximum Doppler frequency shift is obtained when f = 1 GHz + 1 MHz and the
vehicle moves towards the transmitter. In this case :

λmin =
3× 108

109 + 106
m = 0.2997 m

and therefore :

fDmax =
100× 103

0.2997× 3600 = 92.6853 Hz
Thus, the Doppler frequency spread is Bd = 2fDmax = 185.3706 Hz.

Problem 6.10 :

The maximum likelihood phase estimate given by (6-2-38) is :

φ̂ML = − tan−1
Im

[∑K−1
n=0 I∗nyn

]
Re

[∑K−1
n=0 I∗nyn

]

where yn =
∫ (n+1)T
nT r(t)g∗(t − nT )dt. The Re(yn), Im(yn) are statistically independent compo-

nents of yn. Since r(t) = e−jφ
∑
n Ing(t− nT ) + z(t) it follows that yn = Ine

−jφ + zn, where the
pulse energy is normalized to unity. Then :

K−1∑
n=0

I∗nyn =
K−1∑
n=0

[
|In|2 e−jφ + I∗nzn

]

Hence :

E

{
Im

[
K−1∑
n=0

[
|In|2 e−jφ + I∗nzn

]]}
= −K

∣∣∣Īn∣∣∣2 sin φ
and

E

{
Re

[
K−1∑
n=0

[
|In|2 e−jφ + I∗nzn

]]}
= −K

∣∣∣Īn∣∣∣2 cosφ

127



Consequently : E
[
φ̂ML

]
= − tan−1− sinφ

cosφ
= φ, and hence, φ̂ML is an unbiased estimate of the

true phase φ.

Problem 6.11 :

The procedure that is used in Sec. 5-2-7 to derive the pdf p(Θr) for the phase of a PSK signal
may be used to determine the pdf p(φ̂ML). Specifically, we have :

φ̂ML = − tan−1
Im

[∑K−1
n=0 I∗nyn

]
Re

[∑K−1
n=0 I∗nyn

]

where yn =
∫ (n+1)T
nT r(t)g∗(t− nT )dt and r(t) = e−jφ

∑
n Ing(t− nT ) + z(t). Substitution of r(t)

into yn yields : yn = Ine
−jφ + zn. Hence :

K−1∑
n=0

I∗nyn = e−jφ
K−1∑
n=0

|In|2 +
K−1∑
n=0

I∗nzn

U + jV = Ce−jφ + z = C cosφ+ x+ j(y − C sinφ)

where C =
∑K−1
n=0 |In|2 and z =

∑K−1
n=0 I∗nzn = x+ jy. The random variables (x,y) are zero-mean,

Gaussian random variables with variances σ2.Hence :

p(U, V ) =
1

2πσ2
e−[(U−C cos φ)2−(V−C sinφ)2]

By defining R =
√
U2 + V 2 and φ̂ML = tan

−1 V
U
and making the change in variables, we obtain

p(R, φ̂ML) and finally, p(φ̂ML) =
∫∞
0 p(r, φ̂ML)dr. Upon performing the integration over R, as in

Sec. 5-2-7, we obtain :

p(φ̂ML) =
1

2π
e−2γ sin 2φ̂ML

∫ ∞

0
re−(r−

√
4γ cos φ̂ML)

2
/2dr

where γ = C2/2σ2. The graph of p(φ̂ML) is identical to that given on page 271, Fig. 5-2-9. We
observe that E(φ̂ML) = φ, so that the estimate is unbiased.

Problem 6.12 :

We begin with the log-likelihood function given in (6-2-35), namely :

ΛL(φ) = Re
{[

1

N0

∫
T0

r(t)s∗l (t)dt
]
ejφ
}
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where sl(t) is given as : sl(t) =
∑
n Ing(t − nT ) + j

∑
n Jnu(t − nT − T/2). Again we define

yn =
∫ (n+1)T
nT r(t)s∗l (t− nT )dt. Also, let : xn =

∫ (n+3/2)T
(n+1/2)T r(t)s∗l (t− nT − T/2)dt. Then :

ΛL(φ) = Re
{
ejφ

N0

[∑K−1
n=0 I∗nyn − j

∑K−1
n=0 J∗

nxn
]}

= Re [A cosφ+ jA sinφ]

where A =
∑K−1
n=0 I∗nyn − j

∑K−1
n=0 J∗

nxn. Thus : ΛL(φ) = Re(A) cosφ− Im(A) sinφ and :

dΛL(φ)

dφ
= −Re(A) sin φ− Im(A) cosφ = 0⇒

φ̂ML = − tan−1
Im

[∑K−1
n=0 I∗nyn − j

∑K−1
n=0 J∗

nxn
]

Re
[∑K−1

n=0 I∗nyn − j
∑K−1
n=0 J∗

nxn
]

Problem 6.13 :

Assume that the signal um(t) is the input to the Costas loop. Then um(t) is multiplied by
cos(2πfct+ φ̂) and sin(2πfct+ φ̂), where cos(2πfct+ φ̂) is the output of the VCO. Hence :

umc(t)

= AmgT (t) cos(2πfct) cos(2πfct+ φ̂)− AmĝT (t) sin(2πfct) cos(2πfct+ φ̂)

=
AmgT (t)

2

[
cos(2π2fct+ φ̂) + cos(φ̂)

]
− AmĝT (t)

2

[
sin(2π2fct+ φ̂)− sin(φ̂)

]
ums(t)

= AmgT (t) cos(2πfct) sin(2πfct+ φ̂)− AmĝT (t) sin(2πfct) sin(2πfct+ φ̂)

=
AmgT (t)

2

[
sin(2π2fct+ φ̂) + sin(φ̂)

]
− AmĝT (t)

2

[
cos(φ̂)− cos(2π2fct+ φ̂)

]

The lowpass filters of the Costas loop will reject the double frequency components, so that :

ymc(t) =
AmgT (t)

2
cos(φ̂) +

AmĝT (t)

2
sin(φ̂)

yms(t) =
AmgT (t)

2
sin(φ̂)− AmĝT (t)

2
cos(φ̂)

Note that when the carrier phase has been extracted correctly, φ̂ = 0 and therefore :

ymc(t) =
AmgT (t)

2
, yms(t) = −AmĝT (t)

2

If the second signal, yms(t) is passed through a Hilbert transformer, then :

ŷms(t) = −Am
ˆ̂gT (t)

2
=

AmgT (t)

2
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and by adding this signal to ymc(t) we obtain the original unmodulated signal.

Problem 6.14 :

(a) The signal r(t) can be written as :

r(t) = ±
√
2Ps cos(2πfct+ φ) +

√
2Pc sin(2πfct+ φ)

=
√
2(Pc + Ps) sin

(
2πfct+ φ+ an tan

−1

(√
Ps
Pc

))

=
√
2PT sin

(
2πfct+ φ+ an cos

−1

(√
Pc
PT

))

where an = ±1 are the information symbols and PT is the total transmitted power. As it is
observed the signal has the form of a PM signal where :

θn = an cos
−1

(√
Pc
PT

)

Any method used to extract the carrier phase from the received signal can be employed at the
receiver. The following figure shows the structure of a receiver that employs a decision-feedback
PLL. The operation of the PLL is described in the next part.

✍✌✎� 


✲✲

✻
✲

✲✲ × Threshold

t = Tb∫ Tb
0 (·)dt

cos(2πfct+ φ̂)
DFPLL

v(t)

(b) At the receiver (DFPLL) the signal is demodulated by crosscorrelating the received signal :

r(t) =
√
2PT sin

(
2πfct+ φ+ an cos

−1

(√
Pc
PT

))
+ n(t)

with cos(2πfct+ φ̂) and sin(2πfct+ φ̂). The sampled values at the ouput of the correlators are :

r1 =
1

2

[√
2PT − ns(t)

]
sin(φ− φ̂+ θn) +

1

2
nc(t) cos(φ− φ̂+ θn)

r2 =
1

2

[√
2PT − ns(t)

]
cos(φ− φ̂+ θn) +

1

2
nc(t) sin(φ̂− φ− θn)
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where nc(t), ns(t) are the in-phase and quadrature components of the noise n(t). If the detector
has made the correct decision on the transmitted point, then by multiplying r1 by cos(θn) and
r2 by sin(θn) and subtracting the results, we obtain (after ignoring the noise) :

r1 cos(θn) =
1

2

√
2PT

[
sin(φ− φ̂) cos2(θn) + cos(φ− φ̂) sin(θn) cos(θn)

]

r2 sin(θn) =
1

2

√
2PT

[
cos(φ− φ̂) cos(θn) sin(θn)− sin(φ− φ̂) sin2(θn)

]

e(t) = r1 cos(θn)− r2 sin(θn) =
1

2

√
2PT sin(φ− φ̂)

The error e(t) is passed to the loop filter of the DFPLL that drives the VCO. As it is seen only
the phase θn is used to estimate the carrier phase.

(c) Having a correct carrier phase estimate, the output of the lowpass filter sampled at t = Tb
is :

r = ±1
2

√
2PT sin cos

−1

(√
Pc
PT

)
+ n

= ±1
2

√
2PT

√
1− Pc

PT
+ n

= ±1
2

√
2PT

(
1− Pc

PT

)
+ n

where n is a zero-mean Gaussian random variable with variance :

σ2
n = E

[∫ Tb

0

∫ Tb

0
n(t)n(τ) cos(2πfct+ φ) cos(2πfcτ + φ)dtdτ

]

=
N0

2

∫ Tb

0
cos2(2πfct+ φ)dt

=
N0

4

Note that Tb has been normalized to 1 since the problem has been stated in terms of the power
of the involved signals. The probability of error is given by :

P (error) = Q

[√
2PT
N0

(
1− Pc

PT

)]

The loss due to the allocation of power to the pilot signal is :

SNRloss = 10 log10

(
1− Pc

PT

)

When Pc/PT = 0.1, then SNRloss = 10 log10(0.9) = −0.4576 dB. The negative sign indicates
that the SNR is decreased by 0.4576 dB.
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Problem 6.15 :

The received signal-plus-noise vector at the output of the matched filter may be represented as
(see (5-2-63) for example) :

rn =
√
Esej(θn−φ) +Nn

where θn = 0, π/2, π, 3π/2 for QPSK, and φ is the carrier phase. By raising rn to the fourth
power and neglecting all products of noise terms, we obtain :

r4
n ≈

(√Es)4
ej4(θn−φ) + 4

(√Es)3
Nn

≈
(√Es)3 [√Ese−j4φ + 4Nn

]
If the estimate is formed by averaging the received vectors {r4

n} over K signal intervals, we have
the resultant vector U = K

√Ese−jφ + 4∑K
n=1Nn. Let φ4 ≡ 4φ. Then, the estimate of φ4 is :

φ̂4 = − tan −1 Im(U)

Re(U)

Nn is a complex-valued Gaussian noise component with zero mean and variance σ
2 = N0/2.

Hence, the pdf of φ̂4 is given by (5-2-55) where :

γs =

(
K
√Es

)2

16 (2Kσ2)
=

K2Es
16KN0

=
KEs
16N0

To a first approximation, the variance of the estimate is :

σ2
φ̂4
≈ 1

γs
=

16

KEs/N0

Problem 6.16 :

The PDF of the carrier phase error φe, is given by :

p(φe) =
1√
2πσφ

e
− φ2

e
2σ2

φ

Thus the average probability of error is :

P̄2 =
∫ ∞

−∞
P2(φe)p(φe)dφe

=
∫ ∞

−∞
Q

[√
2Eb
N0

cos2 φe

]
p(φe)dφe

=
1

2πσφ

∫ ∞

−∞

∫ ∞√
2Eb
N0

cos2 φe

exp

[
−1
2

(
x2 +

φ2
e

σ2
φ

)]
dxdφe
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Problem 6.17:

The log-likelihood function of the symbol timing may be expressed in terms of the equivalent
low-pass signals as

ΛL(τ) = �
[

1
N0

∫
T0
r(t)sl

∗(t; τ)dt
]

= �
[

1
N0

∫
T0
r(t)

∑
n In

∗g∗(t− nT − τ)dt
]

= �
[

1
N0

∑
n In

∗yn(τ)
]

where yn(τ) =
∫
T0
r(t)g∗(t− nT − τ)dt.

A necessary condition for τ̂ to be the ML estimate of τ is

dΛL(τ)
τ

= 0 ⇒
d
dτ
[
∑
n In

∗yn(τ) +
∑
n Inyn

∗(τ)] = 0 ⇒∑
n In

∗ d
dτ
yn(τ) +

∑
n In

d
dτ
yn

∗(τ) = 0

If we express yn(τ) into its real and imaginary parts : yn(τ) = an(τ) + jbn(τ), the above
expression simplifies to the following condition for the ML estimate of the timing τ̂

∑
n

�[In] d
dτ

an(τ) +
∑
n

�[In] d
dτ

bn(τ) = 0

Problem 6.18:

We follow the exact same steps of the derivation found in Sec. 6.4. For a PAM signal In
∗ = In

and Jn = 0. Since the pulse g(t) is real, it follows that B(τ) in expression (6.4-6) is zero,
therefore (6.4-7) can be rewritten as

ΛL(φ, τ) = A(τ) cosφ

where

A(τ) =
1

N0

∑
Inyn(τ)

Then the necessary conditions for the estimates of φ and τ to be the ML estimates (6.4-8) and
(6.4-9) give

φ̂ML = 0

and ∑
n

In
d

dτ
[yn(τ)]τ=τ̂ML

= 0
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Problem 6.19:

The derivation for the ML estimates of φ and τ for an offset QPSK signal follow the derivation
found in Sec. 6.4, with the added simplification that, since w(t) = g(t − T/2), we have that
xn(τ) = yn(τ + T/2).
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CHAPTER 7

Problem 7.1 :

I(xj;Y ) =
∑

Q−1
i=0 P (yi|xj) log P (yi|xj)

P (yi)

Since
q−1∑
j=0

P (xj) =
∑

P (xj)�=0

P (Xj) = 1

we have :
I(X;Y ) =

∑q−1
j=0 P (xj)I(xj ;Y ) =

∑
P (xj)�=0CP (xj)

= C
∑

P (xj)�=0 P (xj) = C = maxP (xj) I(X;Y )

Thus, the given set of P (xj) maximizes I(X;Y ) and the condition is sufficient.
To prove that the condition is necessary, we proceed as follows : Since P (xj) satisfies the
condition

∑q−1
j=0 P (xj) = 1, we form the cost function :

C(X) = I(X;Y )− λ

q−1∑
j=0

P (xj)− 1




and use the Lagrange multiplier method to maximize C(X). The partial derivative of C(X)
with respect to all P (Xj) is :

∂C(X)
∂P (xk)

= ∂
∂P (xk)

[∑q−1
j=0 P (xj)I(xj ;Y )− λ∑q−1

j=0 P (xj) + λ
]

= I(xk;Y ) +
∑q−1

j=0 P (xj)
∂

∂P (xk)
I(xj ;Y )− λ = 0

But :

∑q−1
j=0 P (xj)

∂
∂P (xk)

I(xj ;Y ) = − log e
∑q−1

j=0 P (xj)
∑Q−1

i=0 P (yi|xj) P (yi)
P (yi|xj)

P (yi|xj)

−[P (yi)]2
∂P (yi)
∂P (xk)

= − log e
∑Q−1

i=0

[∑q−1
j=0

P (xj)P (yi|xj)

P (yi)

]
P (yi|xk)

= − log e
∑Q−1

i=0
P (yi)
P (yi)

P (yi|xk) = − log e

Therefore:

I(xk;Y ) +
q−1∑
j=0

P (xj)
∂

∂P (xk)
I(xj ;Y )− λ = 0⇒ I(xk;Y ) = λ+ log e, ∀ xk

Now, we consider two cases :
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(i) If there exists a set of P (xk) such that :

q−1∑
k=0

P (xk) = 1, 0 ≤ P (xk) ≤ 1, k = 0, 1, ..., q − 1 and
∂C(X)

∂P (xk)
= 0

then this set will maximize I(X;Y ), since I(X;Y ) is a convex function of P (xk). We have :

C = maxP (xj) I(X;Y ) =
∑q−1

j=0 P (xj)I(xj;Y )

=
∑q−1

j=0 P (xj) [λ+ log e] = λ+ log e = I(xj ;Y )

This provides a sufficient condition for finding a set of P (xk) which maximizes I(X;Y ), for a
symmetric memoryless channel.
(ii) If the set {P (xk)} does not satisfy 0 ≤ P (xk) ≤ 1, k = 0, 1, ..., q − 1, since I(X;Y ) is a
convex function of P (xk), necessary and sufficient conditions on P (xk) for maximizing I(X;Y )
are :

∂I(X;Y )

∂P (xk)
= µ, for P (xk) > 0,

∂I(X;Y )

∂P (xk)
≤ µ, for P (xk) = 0

Hence :
I(xk;Y ) = µ+ log e, P (xk) �= 0
I(xk;Y ) ≤ µ+ log e, P (xk) = 0

is the necessary and sufficient condition on P (xk) for maximizing I(X;Y ) and µ+ log e = C.

Problem 7.2 :

(a) For a set of equally probable inputs with probability 1/M, we have :

I(xk;Y ) =
∑M−1

i=0 P (yi|xk) log P (yi|xk)
P (yi)

= P (yk|xk) log P (yk|xk)
P (yk)

+
∑

i�=k P (yi|xk) log P (yi|xk)
P (yi)

But ∀i:

P (yi) =
M−1∑
j=0

P (yi|xj) =
1

M
P (yi|xi) +

1

M

∑
j �=i

P (yi|xj) =
1

M

(
1− p+ (M − 1)

p

M − 1

)
=

1

M

Hence :
I(xk;Y ) = (1− p) log (1−p)

1/M
+ (M − 1) p

M−1
log p/M−1

1/M

= (1− p) log (M(1− p)) + p log
(

pM
M−1

)
= logM + (1− p) log(1− p) + p log

(
p

M−1

)
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which is the same for all k = 0, 1, ...M − 1. Hence, this set of {P (xk) = 1/M} satisfies the
condition of Probl. 7.1.

(b) From part (a) :

C = logM + (1− p) log(1− p) + p log
(

p

M − 1

)

A plot of the capacity is given in the following figure. We note that the capacity of the channel
is zero when all transitions are equally likely (i.e. when 1 − p = p

M−1
⇒ p = M−1

M
or: p =

0.5, M = 2; p = 0.75,M = 4; p = 0.875,M = 8).
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Problem 7.3 :

In all of these channels, we assume a set of {P (xi)} which, we think, may give the maximum
I(X;Y ) and see if this set of {P (xi)} satisfies the condition of Probl. 7.1(or relationship 7-1-
21). Since all the channels exhibit symmetries, the set of {P (xi)} that we examine first, is the
equiprobable distribution.

(a) Suppose P (xi) = 1/4, ∀i. Then : P (y1) = P (y1|x1)P (x1) + P (y1|x4)P (x4) = 1/4. Similarly
P (yj) = 1/4, ∀j . Hence :

I(x1;Y ) =
4∑

j=1

P (yj|x1) log
P (yj|x1)

P (yj)
=

1

2
log

1/2

1/4
+

1

2
log

1/2

1/4
= log 2 = 1

Similarly : I(xi;Y ) = 1, i = 2, 3, 4. Hence this set of input probabilities satisfies the condition
of Probl. 7.1 and :

C = 1 bit/symbol sent (bit/channel use)

137



(b) We assume that P (xi) = 1/2, i = 1, 2. Then P (y1) = 1
2

(
1
3
+ 1

6

)
= 1

4
and similarly P (yj) =

1/4, j = 2, 3, 4. Hence :

I(x1;Y ) =
4∑

j=1

P (yj|x1) log
P (yj|x1)

P (yj)
= 2

1

3
log

1/3

1/4
+ 2

1

6
log

1/6

1/4
= 0.0817

and the same is true for I(x2;Y ). Thus :

C = 0.0817 bits/symbol sent

(c) We assume that P (xi) = 1/3, i = 1, 2, 3. Then P (y1) = 1
3

(
1
2
+ 1

3
+ 1

6

)
= 1

3
and similarly

P (yj) = 1/3, j = 2, 3. Hence :

I(x1;Y ) =
3∑

j=1

P (yj|x1) log
P (yj|x1)

P (yj)
=

1

2
log

1/2

1/3
+

1

3
log

1/3

1/3
+

1

6
log

1/6

1/3
= 0.1258

and the same is true for I(x2;Y ), I(x3;Y ). Thus :

C = 0.1258 bits/symbol sent

Problem 7.4 :

We expect the first channel (with exhibits a certain symmetry) to achieve its capacity through
equiprobable input symbols; the second one not.

(a) We assume that P (xi) = 1/2, i = 1, 2. Then P (y1) = 1
2
(0.6 + 0.1) = 0.35 and similarly

P (y3) = 0.35, . P (y2) = 0.3. Hence :

I(x1;Y ) =
3∑

j=1

P (yj|x1) log
P (yj|x1)

P (yj)
= 0.6 log

0.6

0.35
+ 0.3 log

0.3

0.3
+ 0.1 log

0.1

0.35
= 0.2858

and the same is true for I(x2;Y ). Thus, equally likely input symbols maximize the information
rate through the channel and :

C = 0.2858 bits/symbol sent

(b) We assume that P (xi) = 1/2, i = 1, 2. Then P (y1) = 1
2
(0.6 + 0.3) = 0.45, and similarly

P (y2) = 0.2, P (y3) = 0.35. Hence :

I(x1;Y ) =
3∑

j=1

P (yj|x1) log
P (yj|x1)

P (yj)
= 0.6 log

0.6

0.45
+ 0.3 log

0.3

0.2
+ 0.1 log

0.1

0.35
= 0.244
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But :

I(x2;Y ) =
3∑

j=1

P (yj|x2) log
P (yj|x2)

P (yj)
= 0.3 log

0.3

0.45
+ 0.1 log

0.1

0.2
+ 0.6 log

0.6

0.35
= 0.191

Since I(x1;Y ) �= I(x2;Y ) the equiprobable input distribution does not maximize the information
rate through the channel. To determine P (x1), P (x2) that give the channel capacity, we assume
that P (x1) = a, P (x2) = 1 − a; then we find P (yi), express I(X;Y ) as a function of a and set
its derivative with respect to a equal to zero.

Problem 7.5 :

(a) Relationship (7-1-31) gives :

C = W log
(
1 +

Pav

WN0

)
= 25.9 Kbits/ sec

(b) From Table 3-5-2 we see that logarithmic PCM uses 7-8 bits/sample and since we sample
the speech signal at 8 KHz, this requires 56 to 64 Kbits/sec for speech transmission. Clearly,
the above channel cannot support this transmission rate.

(c) The achievable transmission rate is :

0.7C = 18.2 Kbits/ sec

From Table 3-5-2 we see that linear predictive coding (LPC) and adaptive delta modulation
(ADM) are viable source coding methods for speech transmission over this channel.

Problem 7.6 :

(a) We assume that P (xi) = 1/2, i = 1, 2. Then P (y1) = 1
2

(
1
2
(1− p) + 1

2
p
)

= 1
4

and similarly

P (yj) = 1/4, j = 2, 3, 4. Hence :

I(x1;Y ) =
∑4

j=1 P (yj|x1) log
P (yj |x1)

P (yj)
= 21

2
(1− p) log (1−p)/2

1/4
+ 21

2
p log p/2

1/4

= 1 + p log p+ (1− p) log(1− p)

and the same is true for I(x2;Y ). Thus, equiprobable input symbols achieve the channel capacity

C = 1 + p log p+ (1− p) log(1− p) bits/symbol sent
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(b) We note that the above capacity is the same to the capacity of the binary symmetric channel.
Indeed, if we consider the grouping of the output symbols into a = {y1, y2} and b = {y3, y4} we
get a binary symmetric channel, with transition probabilities: P (a|x1) = P (y1|x1)+P (y2|x1) =
(1− p), P (a|x2) = p, etc.

Problem 7.7 :

We assume that P (xi) = 1/3, i = 1, 2, 3. Then P (y1) = 1
3
((1− p) + p) = 1

3
and similarly

P (yj) = 1/3, j = 2, 3. Hence :

I(x1;Y ) =
∑3

j=1 P (yj|x1) log
P (yj |x1)

P (yj)
= (1− p) log (1−p)

1/3
+ p log p

1/3

= log 3 + p log p+ (1− p) log(1− p)
and the same is true for I(x2;Y ), I(x3;Y ). Thus, equiprobable input symbols achieve the
channel capacity :

C = log 3 + p log p+ (1− p) log(1− p) bits/symbol sent

Problem 7.8 :

(a) the probability that a codeword transmitted over the BSC is received correctly, is equal to
the probability that all R bits are received correctly. Since each bit transmission is independent
from the others :

P (correct codeword) = (1− p)R

(b)

P ( at least one bit error in the codeword) = 1− P (correct codeword) = 1− (1− p)R

(c)

P ( ne or less errors in R bits) =
ne∑
i=1

(
R

i

)
pi(1− p)R−i

(d) For R = 5, p = 0.01, ne = 5 :

(1− p)R = 0.951
1− (1− p)R = 0.049∑ne

i=1

(
R
i

)
pi(1− p)R−i = 1− (1− p)R = 0.049
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Problem 7.9 :

Let X = (X1, X2, ..., Xn), Y = (Y1, Y2, ..., Yn). Since the channel is memoryless : P (Y|X) =∏n
i=1 P (Yi|Xi) and :

I(X;Y) =
∑

X

∑
Y P (X,Y) log P (Y|X)

P (Y)

=
∑

X

∑
Y P (X,Y) log

∏
i
P (Yi|Xi)

P (Y)

For statistically independent input symbols :

∑n
i=1 I(Xi;Yi) =

∑n
i=1

∑
Xi

∑
Yi
P (Xi, Yi) log

P (Yi|Xi)
P (Yi)

=
∑

X

∑
Y P (X,Y) log

∏
i
P (Yi|Xi)∏
i
P (Yi)

Then :

I(X;Y)−∑n
i=1 I(Xi;Yi) =

∑
X

∑
Y P (X,Y) log

∏
i
P (Yi)

P (Y)

=
∑

Y P (Y) log
∏

i
P (Yi)

P (Y)
=
∑

Y P (Y) ln
∏

i
P (Yi)

P (Y)
log e

≤ ∑
Y P (Y)

[∏
i
P (Yi)

P (Y)
− 1

]
log e

= (
∑

Y

∏
i P (Yi)−∑Y P (Y)) log e = (1− 1) log e = 0

where we have exploited the fact that : ln u ≤ u − 1, with equality iff u = 1. Therefore :
I(X;Y) ≤ ∑n

i=1 I(Xi;Yi) with equality iff the set of input symbols is statistically independent.

Problem 7.10 :

P (X = 0) = a, P (X = 1) = 1− a. Then : P (Y = 0) = (1 − p)a, P (Y = e) = p(1 − a + a) =
p, P (Y = 1) = (1− p)(1− a).

(a)

I(X;Y ) =
∑2

i=1

∑3
j=1 P (yj|xi)P (xi) log

P (yj |xi)

P (yj)

= a(1− p) log 1−p
a(1−p)

+ ap log p
p
+ (1− a)p log p

p
+ (1− a)(1− p) log 1−p

(1−a)(1−p)

= −(1− p) [a log a+ (1− a) log(1− a)]
Note that the term − [a log a+ (1− a) log(1− a)] is the entropy of the source.
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(b) The value of a that maximizes I(X;Y ) is found from :

dI(X;Y )

da
= 0⇒ log a+

a

a
log e− log(1− a)− 1− a

1− a log e = 0⇒ a = 1/2

With this value of a, the resulting channel capacity is :

C = I(X;Y )|a=1/2 = 1− p bits/channel use

(c) I(x; y) = log P (y|x)
P (y)

. Hence :

I(0; 0) = log 1−p
(1−p)/2

= 1

I(1; 1) = log 1−p
(1−p)/2

= 1

I(0; e) = log p
p
= 0

I(1; e) = log p
p
= 0

Problem 7.11 :

(a) The cutoff rate for the binary input, ternary output channel is given by :

R3 = max
pj


− log

2∑
i=0


 1∑
j=0

Pj

√
P (i|j)




2



To maximize the term inside the brackets we want to minimize the argument S of the log

function : S =
∑2

i=0

[∑1
j=0 Pj

√
P (i|j)

]2
. Suppose that P0 = x, P1 = 1− x. Then :

S =
(
x
√

1− p− a+ (1− x)√p
)2

+ (x
√
a+ (1− x)√a)2 +

(
x
√
p+ (1− x)√1− p− a

)2

= 2
(
1− a− 2

√
p− p2 − ap

)
x2 − 2

(
1− a− 2

√
p− p2 − ap

)
x+ 1

By setting : dS
dx

= 0, we obtain x = 1/2 which corresponds to a minimum for S, since d2S
dx2 |x=1/2 >

0. Then :

R3 = − log S = − log

{
1 + a+ 2

√
p− p2 − ap
2

}
= 1− log

(
1 + a + 2

√
p(1− p− a)

)
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(b) For β = 0.65
√
N0/2, we have :

p = 1√
πN0

∫∞
β exp(−(x+

√
Ec)

2/N0) = Q
[
0.65 +

√
2Ec/N0

]
a = 1√

πN0

∫ β
−β exp(−(x+

√
Ec)

2/N0) = Q
[√

2Ec/N0 − 0.65
]
−Q

[√
2Ec/N0 + 0.65

]

The plot of R3 is given in the following figure. In this figure, we have also included the plot of
R∞ = log 2

1+exp(−
√

Ec/N0)
. As we see the difference in performance between continuous-output

(soft-decision-decoding , R∞) and ternary output (R3) is approximately 1 dB.
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Problem 7.12 :

The overall channel is a binary symmetric channel with crossover probability p. To find p note
that an error occurs if an odd number of channels produce an error. Thus :

p =
∑

k=odd

(
n
k

)
εk(1− ε)n−k

Using the results of Problem 5.45, we find that :

p =
1

2

[
1− (1− 2ε)2

]

and therefore :
C = 1−H(p)

If n→∞, then (1− 2ε)n → 0 and p→ 1
2
. In this case

C = lim
n→∞C(n) = 1−H(

1

2
) = 0
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Problem 7.13 :

(a) The capacity of the channel is :

C1 = max
P (x)

[H(Y )−H(Y |X)]

But, H(Y |X) = 0 and therefore, C1 = maxP (x)H(Y ) = 1 which is achieved for P (0) = P (1) = 1
2
.

(b) Let q be the probability of the input symbol 0, and thus (1− q) the probability of the input
symbol 1. Then :

H(Y |X) =
∑
x

P (x)H(Y |X = x)

= qH(Y |X = 0) + (1− q)H(Y |X = 1)

= (1− q)H(Y |X = 1) = (1− q)H(0.5) = (1− q)
The probability mass function of the output symbols is :

P (Y = c) = qP (Y = c|X = 0) + (1− q)P (Y = c|X = 1)

= q + (1− q)0.5 = 0.5 + 0.5q

P (Y = d) = (1− q)0.5 = 0.5− 0.5q

Hence :
C2 = max

q
[H(0.5 + 0.5q)− (1− q)]

To find the probability q that achieves the maximum, we set the derivative of C2 with respect
to q equal to 0. Thus,

ϑC2

ϑq
= 0 = 1− [0.5 log2(0.5 + 0.5q) + (0.5 + 0.5q)

0.5

0.5 + 0.5q

1

ln 2
]

−[−0.5 log2(0.5− 0.5q) + (0.5− 0.5q)
−0.5

0.5− 0.5q

1

ln 2
]

= 1 + 0.5 log2(0.5− 0.5q)− 0.5 log2(0.5 + 0.5q)

Therefore :

log2

0.5− 0.5q

0.5 + 0.5q
= −2 =⇒ q =

3

5

and the channel capacity is :

C2 = H(
1

5
)− 2

5
= 0.3219

(c) The transition probability matrix of the third channel can be written as :

Q =
1

2
Q1 +

1

2
Q2
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where Q1, Q2 are the transition probability matrices of channel 1 and channel 2 respectively. We
have assumed that the output space of both channels has been augmented by adding two new
symbols so that the size of the matrices Q, Q1 and Q2 is the same. The transition probabilities
to these newly added output symbols is equal to zero. Using the fact that the function I(p;Q)
is a convex function in Q we obtain :

C = max
p
I(X;Y ) = max

p
I(p;Q)

= max
p
I(p;

1

2
Q1 +

1

2
Q2)

≤ 1

2
max

p
I(p;Q1) +

1

2
max

p
I(p;Q2)

=
1

2
C1 +

1

2
C2

Since Q1 and Q2 are different, the inequality is strict. Hence :

C <
1

2
C1 +

1

2
C2

Problem 7.14 :

The capacity of a channel is :

C = max
p(x)

I(X;Y ) = max
p(x)

[H(Y )−H(Y |X)] = max
p(x)

[H(X)−H(X|Y )]

Since in general H(X|Y ) ≥ 0 and H(Y |X) ≥ 0, we obtain :

C ≤ min{max[H(Y )],max[H(X)]}
However, the maximum of H(X) is attained when X is uniformly distributed, in which case
max[H(X)] = log |X |. Similarly : max[H(Y )] = log |Y| and by substituting in the previous
inequality, we obtain

C ≤ min{max[H(Y )],max[H(X)]} = min{log |Y|, log |X |}
= min{logM, logN}

Problem 7.15 :

(a) Let q be the probability of the input symbol 0, and therefore (1− q) the probability of the
input symbol 1. Then :

H(Y |X) =
∑
x

P (x)H(Y |X = x)
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= qH(Y |X = 0) + (1− q)H(Y |X = 1)

= (1− q)H(Y |X = 1) = (1− q)H(ε)

The probability mass function of the output symbols is :

P (Y = 0) = qP (Y = 0|X = 0) + (1− q)P (Y = 0|X = 1)

= q + (1− q)(1− ε) = 1− ε+ qε
P (Y = 1) = (1− q)ε = ε− qε

Hence :
C = max

q
[H(ε− qε)− (1− q)H(ε)]

To find the probability q that achieves the maximum, we set the derivative of C with respect to
q equal to 0. Thus :

ϑC

ϑq
= 0 = H(ε) + ε log2(ε− qε)− ε log2(1− ε+ qε)

Therefore :

log2

ε− qε
1− ε+ qε = −H(ε)

ε
=⇒ q =

ε+ 2−
H(ε)

ε (ε− 1)

ε(1 + 2−
H(ε)

ε )

and the channel capacity is

C = H


 2−

H(ε)
ε

1 + 2−
H(ε)

ε


− H(ε)2−

H(ε)
ε

ε(1 + 2−
H(ε)

ε )

(b) If ε→ 0, then using L’Hospital’s rule we find that

lim
ε→0

H(ε)

ε
=∞, lim

ε→0

H(ε)

ε
2−

H(ε)
ε = 0

and therefore
lim
ε→0

C(ε) = H(0) = 0

If ε = 0.5, then H(ε) = 1 and C = H(1
5
)− 2

5
= 0.3219. In this case the probability of the input

symbol 0 is

q =
ε+ 2−

H(ε)
ε (ε− 1)

ε(1 + 2−
H(ε)

ε )
=

0.5 + 0.25× (0.5− 1)

0.5× (1 + 0.25)
=

3

5

If ε = 1, then C = H(0.5) = 1. The input distribution that achieves capacity is P (0) = P (1) =
0.5.
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(c) The following figure shows the topology of the cascade channels. If we start at the input
labeled 0, then the output will be 0. If however we transmit a 1, then the output will be zero
with probability

P (Y = 0|X = 1) = (1− ε) + ε(1− ε) + ε2(1− ε) + · · ·
= (1− ε)(1 + ε+ ε2 + · · ·)
= 1− ε1− ε

n

1− ε = 1− εn

Thus, the resulting system is equivalent to a Z channel with ε1 = εn.

✚
✚
✚
✚✚

✚
✚
✚
✚✚

✚
✚
✚
✚✚ 1− ε1− ε1− ε

εεε

111

1

0

...
1

0

(d) As n→∞, εn → 0 and the capacity of the channel goes to 0.

Problem 7.16 :

The SNR is :

SNR =
2P

N02W
=

P

2W
=

10

10−9 × 106
= 104

Thus the capacity of the channel is :

C =W log2(1 +
P

N0W
) = 106 log2(1 + 10000) ≈ 13.2879× 106 bits/sec

Problem 7.17 :

The capacity of the additive white Gaussian channel is :

C =
1

2
log
(
1 +

P

N0W

)

For the nonwhite Gaussian noise channel, although the noise power is equal to the noise power in
the white Gaussian noise channel, the capacity is higher, The reason is that since noise samples
are correlated, knowledge of the previous noise samples provides partial information on the
future noise samples and therefore reduces their effective variance.
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Problem 7.18 :

(a) The capacity of the binary symmetric channel with crossover probability ε is :

C = 1−H(ε)

where H(ε) is the binary entropy function. The rate distortion function of a zero mean Gaussian
source with variance σ2 per sample is :

R(D) =

{
1
2
log2

σ2

D
D ≤ σ2

0 D > σ2

Since C > 0, we obtain :

1

2
log2

σ2

D
≤ 1−H(ε) =⇒ σ2

22(1−H(ε))
≤ D

and therefore, the minimum value of the distortion attainable at the output of the channel is :

Dmin =
σ2

22(1−H(ε))

(b) The capacity of the additive Gaussian channel is :

C =
1

2
log2

(
1 +

P

σ2
n

)

Hence :
1

2
log2

σ2

D
≤ C =⇒ σ2

22C
≤ D =⇒ σ2

1 + P
σ2

n

≤ D

The minimum attainable distortion is :

Dmin =
σ2

1 + P
σ2

n

(c) Here the source samples are dependent and therefore one sample provides information about
the other samples. This means that we can achieve better results compared to the memoryless
case at a given rate. In other words the distortion at a given rate for a source with memory
is less than the distortion for a comparable source with memory. Differential coding methods
discussed in Chapter 3 are suitable for such sources.

Problem 7.19 :

(a) The entropy of the source is :

H(X) = H(0.3) = 0.8813
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and the capacity of the channel :

C = 1−H(0.1) = 1− 0.469 = 0.531

If the source is directly connected to the channel, then the probability of error at the destination
is :

P (error) = P (X = 0)P (Y = 1|X = 0) + P (X = 1)P (Y = 0|X = 1)

= 0.3× 0.1 + 0.7× 0.1 = 0.1

(b) Since H(X) > C, some distortion at the output of the channel is inevitable. To find the
minimum distortion, we set R(D) = C. For a Bernoulli type of source :

R(D) =

{
H(p)−H(D) 0 ≤ D ≤ min(p, 1− p)

0 otherwise

and therefore, R(D) = H(p)−H(D) = H(0.3)−H(D). If we let R(D) = C = 0.531, we obtain

H(D) = 0.3503 =⇒ D = min(0.07, 0.93) = 0.07

The probability of error is :
P (error) ≤ D = 0.07

(c) For reliable transmission we must have : H(X) = C = 1−H(ε). Hence, with H(X) = 0.8813
we obtain

0.8813 = 1−H(ε) =⇒ ε < 0.016 or ε > 0.984

Problem 7.20 :

Both channels can be viewed as binary symmetric channels with crossover probability the prob-
ability of decoding a bit erroneously. Since :

Pb =


 Q

[√
2Eb

N0

]
antipodal signalling

Q
[√ Eb

N0

]
orthogonal signalling

the capacity of the channel is :

C =


 1−H

(
Q
[√

2Eb

N0

])
antipodal signalling

1−H
(
Q
[√ Eb

N0

])
orthogonal signalling
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In the next figure we plot the capacity of the channel as a function of Eb

N0
for the two signalling

schemes.
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Problem 7.21 :

(a) Since for each time slot [mT, (m + 1)T ] we have f1(t) = ±f2(t), the signals are dependent
and thus only one dimension is needed to represent them in the interval [mT, (m+1)T ]. In this
case the dimensionality of the signal space is upper bounded by the number of the different time
slots used to transmit the message signals.

(b) If f1(t) �= αf2(t), then the dimensionality of the signal space over each time slot is at most
2. Since there are n slots over which we transmit the message signals, the dimensionality of the
signal space is upper bounded by 2n.

(c) Let the decoding rule be that the first codeword is decoded when r is received if

p(r|x1) > p(r|x2)

The set of r that decode into x1 is

R1 = {r : p(r|x1) > p(r|x2)}

The characteristic function of this set χ1(r) is by definition equal to 0 if r �∈ R1 and equal to 1
if r ∈ R1. The characteristic function can be bounded as

1− χ1(r) ≤
(
p(r|x2)

p(r|x1)

) 1
2
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This inequality is true if χ(r) = 1 because the right side is nonnegative. It is also true if χ(r) = 0
because in this case p(r|x2) > p(r|x1) and therefore,

1 ≤ p(r|x2)

p(r|x1)
=⇒ 1 ≤

(
p(r|x2)

p(r|x1)

) 1
2

Given that the first codeword is sent, then the probability of error is

P (error|x1) =
∫
· · ·
∫
RN−R1

p(r|x1)dr

=
∫
· · ·
∫
RN
p(r|x1)[1− χ1(r)]dr

≤
∫
· · ·
∫
RN
p(r|x1)

(
p(r|x2)

p(r|x1)

) 1
2

dr

=
∫
· · ·
∫
RN

√
p(r|x1)p(r|x2)dr

(d) The result follows immediately if we use the union bound on the probability of error. Thus,
assuming that xm was transmitted, then taking the signals xm′ , m′ �= m, one at a time and
ignoring the presence of the rest, we can write

P (error|xm) ≤ ∑
1 ≤ m′ ≤ M

m′ �= m

∫
· · ·
∫
RN

√
p(r|xm)p(r|xm′)dr

(e) Let r = xm+n with n an N -dimensional zero-mean Gaussian random variable with variance
per dimension equal to σ2 = N0

2
. Then,

p(r|xm) = p(n) and p(r|xm′) = p(n + xm − xm′)

and therefore : ∫
· · ·
∫
RN

√
p(r|xm)p(r|xm′)dr

=
∫
· · ·
∫
RN

1

(πN0)
N
4

e
− |n|2

2N0
1

(πN0)
N
4

e
− |n+xm−x

m′ |2
2N0 dn

= e
− |xm−x

m′ |2
4N0

∫
· · ·
∫
RN

1

(πN0)
N
2

e
− 2|n|2+|xm−x

m′ |2/2+2n·(xm−x
m′ )

2N0 dn

= e
− |xm−xm′ |2

4N0

∫
· · ·
∫
RN

1

(πN0)
N
2

e
− |n+

xm−x
m′

2 |2
N0 dn

= e
− |xm−x

m′ |2
4N0
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Using the union bound in part (d), we obtain :

P (error|xm(t) sent) ≤ ∑
1 ≤ m′ ≤ M

m′ �= m

e
− |xm−x

m′ |2
4N0

Problem 7.22 :

Equation (7.3-2) gives that the cutoff rate R2 with two quantization levels is

R2 = max
pin


− log2

1∑
out=0

[
1∑

in=0

pin
√
P (out|in)

]2



By naming the argument of the log2 function as S, the above corresponds to

R2 = − log2 min
pin

S

Suppose the probabilities of the input symbols are p0 = x, p1 = 1− x. Also, the probability of
error for the BSC is p, where p is the error rate for the modulation method employed. Then

S = [x
√

1− p+ (1− x)√x]2 + [x
√
p+ (1− x)√1− p]2

= 2x2(1− 2
√
p(1− p))− 2x(1− 2

√
p(1− p)) + 1

By taking the first derivative of S w.r.t. x we find that the extremum point is

dS

dx
= 0⇒ 4x(1− 2

√
p(1− p))− 2(1− 2

√
p(1− p)) = 0⇒ x = 1/2

and the corresponding S is

minS = S|x=1/2 =
1 + 2

√
p(1− p)
2

Hence,

R2 = − log2 minS = 1− log2

[
1 +

√
4p(1− p)

]

The plot of the comparison between R0 and R2 is given in the following figure:
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As we see, the loss in performance when a two-level hard decision (instead of a soft-decision) is
employed is approximately 2 dB.

Problem 7.23 :

The plot with the cutoff rate R2 for the BSC, when the three different modulation schemes are
employed is given in the following figure:
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As we see, orthogonal signaling is 3 dB worse than antipodal signaling. Also, DPSK is the worst
scheme in very low SNR’s, but approaches antipodal signaling performance as the SNR goes up.
Both these conclusions agree with the well-known results on the performance of these schemes,
as given by their error probabilities given in Chapter 5.
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Problem 7.24 :

Remember that the capacity of the BSC is

C = p log2 2p+ (1− p) log2(2(1− p))
where p is the error probability (for binary antipodal modulation for this particular case). Then,
the plot with the comparison of the capacity vs the cutoff rate R2 for the BSC, with antipodal
signaling, is given in the following figure:

−10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ
c
 (dB)

b
its

/d
im

e
n

si
o

n
C vs R

2
 for BSC

R
2

C

We notice that the difference between the hard-decision cutoff rate and the capacity of the
channel is approximately 2.5 to 3 dB.

Problem 7.25 :

From expression (7.2-31) we have that

R0 = − log2

(
M∑
l=1

M∑
m=1

plpme
−d2

lm/4N0

)

and, since we are given that equiprobable input symbols maximize R0, pl = pm = 1/M and the
above expression becomes

R0 = − log2

(
1

M2

M∑
l=1

M∑
m=1

e−d2
lm

/4N0

)

The M-ary PSK constellation points are symmetrically spaced around the unit circle. Hence,
the sum of the distances between them is the same, independent of the reference point, or∑M

m=1 e
−d2

lm
/4N0 is the same for any l = 0, 1, ...M − 1. Hence,
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R0 = − log2

(
M
M2

∑M
l=1 e

−d2
0m/4N0

)
= log2M − log2

∑M
l=1 e

−d2
0m/4N0

The distance of equally spaced points around a circle with radius
√Ec is dm = 2

√Ec sin mπ
M

. So

R0 = log2M − log2

M∑
l=1

e−(Ec/N0) sin2 mπ
M

The plot of R0 for the various levels of M-ary PSK is given in the following figure:
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CHAPTER 8

Problem 8.1 :

(a) Interchanging the first and third rows, we obtain the systematic form :

G =



1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1




(b)

H =
[
PT |I4

]
=



1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 0 1




(c) Since we have a (7,3) code, there are 23 = 8 valid codewords, and 24 possible syndromes.
From these syndromes the all-zero one corresponds to no error, 7 will correspond to single errors
and 8 will correspond to double errors (the choice is not unique) :

Error pattern Syndrome
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 0 0 0 1 0
1 0 0 0 1 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
0 1 0 0 0 1 0
0 0 0 1 1 0 1

0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
1 1 0 1
0 1 1 1
1 1 1 0
1 1 1 1
1 1 0 0
1 0 1 0
0 1 1 0
0 0 1 1
1 0 0 1
0 1 0 1
1 0 1 1

(d) We note that there are 3 linearly independent columns in H, hence there is a codeword Cm

with weight wm =4 such that CmHT = 0. Accordingly : dmin = 4. This can be also obtained by
generating all 8 codewords for this code and checking their minimum weight.
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(e) 101 generates the codeword : 101→ C = 1010011. Then : CHT = [0000].

Problem 8.2 :

Ga =



1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1


 Gb =



1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1




Message Xm Cma = XmGa Cmb = XmGb

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 0 1 1 1 0 1
0 1 0 1 1 0 0
0 1 0 0 1 1 1
0 1 1 1 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
1 0 1 0 0 1 1
1 0 0 1 1 1 0
1 0 0 0 1 0 1
1 1 1 0 1 0 0
1 1 1 1 1 1 1
1 1 0 0 0 1 0
1 1 0 1 0 0 1

0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 0 1 1 1 0 1
0 1 0 0 1 1 1
0 1 0 1 1 0 0
0 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 0 0 1 0 1
1 0 0 1 1 1 0
1 0 1 0 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 1 0
1 1 0 1 0 0 1
1 1 1 0 1 0 0
1 1 1 1 1 1 1

As we see, the two generator matrices generate the same set of codewords.

Problem 8.3 :

The weight distribution of the (7,4) Hamming code is (n = 7) :

A(x) = 1
8
[(1 + x)7 + 7(1 + x)3(1− x)4]

= 1
8
[8 + 56x3 + 56x4 + 8x7]

= 1 + 7x3 + 7x4 + x7

Hence, we have 1 codeword of weight zero, 7 codewords of weight 3, 7 codewords of weight 4,
and one codeword of weight 7. which agrees with the codewords given in Table 8-1-2.

157



Problem 8.4:

(a) The generator polynomial for the (15,11) Hamming code is given as g(p) = p4 + p + 1. We
will express the powers pl as : pl = Ql(p)g(p) + Rl(p) l = 4, 5, ...14, and the polynomial Rl(p)
will give the parity matrix P, so that G will be G = [I11|P] . We have :

p4 = g(p) + p+ 1
p5 = pg(p) + p2 + p
p6 = p2g(p) + p3 + p2

p7 = (p3 + 1)g(p) + p3 + p+ 1
p8 = (p4 + p+ 1)g(p) + p2 + 1
p9 = (p5 + p2 + p)g(p) + p3 + p
p10 = (p6 + p3 + p2 + 1)g(p) + p2 + p+ 1
p11 = (p7 + p4 + p3 + p)g(p) + p3 + p2 + p
p12 = (p8 + p5 + p4 + p2 + 1)g(p) + p3 + p2 + p+ 1
p13 = (p9 + p6 + p5 + p3 + p+ 1)g(p) + p3 + p2 + 1
p14 = (p10 + p7 + p6 + p4 + p2 + p+ 1)g(p) + p3 + 1

Using Rl(p) (with l = 4 corresponding to the last row of G,... l = 14 corresponding to the first
row) for the parity matrix P we obtain :

G =




1 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1




(b) In order to obtain the generator polynomial for the dual code, we first factor p15 + 1 into :
p15+1 = g(p)h(p) to obtain the parity polynomial h(p) = (p15 + 1)/g(p) = p11 + p8 + p7 + p5 +
p3 + p2 + p+ 1. Then, the generator polynomial for the dual code is given by :

p11h(p−1) = 1 + p3 + p4 + p6 + p8 + p9 + p10 + p11
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Problem 8.5 :

We can determine G, in a systematic form, from the generator polynomial g(p) = p3 + p2 + 1:

p6 = (p3 + p2 + p)g(p) + p2 + p
p5 = (p2 + p+ 1)g(p) + p+ 1
p4 = (p+ 1)g(p) + p2 + p+ 1
p3 = g(p) + p2 + 1

G =



1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1


 H =


 1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1




Hence, the parity check matrix for the extended code will be (according to 8-1-15) :

He =



1 0 1 1 1 0 0 0
1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1




and in systematic form (we add rows 1,2,3 to the last one) :

Hes =



1 0 1 1 1 0 0 0
1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0
1 1 0 1 0 0 0 1


⇒ Ges =



1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0
0 0 0 1 1 0 1 1




Note that Ges can be obtained from the generator matrix G for the initial code, by adding an
overall parity check bit. The code words for the extended systematic code are :

Message Xm Codeword Cm

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1
0 0 1 0 1 1 1 0
0 0 1 1 0 1 0 1
0 1 0 0 0 1 1 1
0 1 0 1 1 1 0 0
0 1 1 0 1 0 0 1
0 1 1 1 0 0 1 0
1 0 0 0 1 1 0 1
1 0 0 1 0 1 1 0
1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 0
1 1 0 0 1 0 1 0
1 1 0 1 0 0 0 1
1 1 1 0 0 1 0 0
1 1 1 1 1 1 1 1
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An alternative way to obtain the codewords for the extended code is to add an additional check
bit to the codewords of the initial (7,4) code which are given in Table 8-1-2. As we see, the
minimum weight is 4 and hence : dmin = 4.

Problem 8.6 :

(a) We have obtained the generator matrix G for the (15,11) Hamming code in the solution of
Problem 8.4. The shortened code will have a generator matrix Gs obtained by G, by dropping
its first 7 rows and the first 7 columns or :

Gs =



1 0 0 0 1 0 1 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1




Then the possible messages and the codewords corresponding to them will be :

Message Xm Codeword Cm

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1
0 0 1 0 0 1 1 0
0 0 1 1 0 1 0 1
0 1 0 0 1 1 0 0
0 1 0 1 1 1 1 1
0 1 1 0 1 0 1 0
0 1 1 1 1 0 0 1
1 0 0 0 1 0 1 1
1 0 0 1 1 0 0 0
1 0 1 0 1 1 0 1
1 0 1 1 1 0 1 0
1 1 0 0 0 1 1 1
1 1 0 1 0 1 0 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 1 0

(b) As we see the minimum weight and hence the minimum distance is 3 : dmin = 3.

Problem 8.7 :

(a)

g(p) = (p4 + p3 + p2 + p+ 1)(p4 + p + 1)(p2 + p+ 1) = p10 + p8 + p5 + p4 + p2 + p+ 1
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Factoring pl, l = 14, ...10, into pl = g(p)Ql(p) + Rl(p) we obtain the generator matrix in
systematic form :

p14 = (p4 + p2 + 1)g(p) + p9 + p7 + p4 + p3 + p+ 1
p13 = (p3 + p)g(p) + p9 + p8 + p7 + p6 + p4 + p2 + p
p12 = (p2 + 1)g(p) + p8 + p7 + p6 + p5 + p3 + p+ 1
p11 = pg(p) + p9 + p6 + p5 + p3 + p2 + p
p10 = g(p) + p8 + p5 + p4 + p2 + p+ 1



⇒

G =




1 0 0 0 0 1 0 1 0 0 1 1 0 1 1
0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
0 0 1 0 0 0 1 1 1 1 0 1 0 1 1
0 0 0 1 0 1 0 0 1 1 0 1 1 1 0
0 0 0 0 1 0 1 0 0 1 1 0 1 1 1




The codewords are obtained from the equation : Cm = XmG, where Xm is the row vector
containing the five message bits.

(b)
dmin = 7

(c) The error-correcting capability of the code is :

t =

[
dmin − 1

2

]
= 3

(d) The error-detecting capability of the code is : dmin − 1 = 6.

(e)
g(p) = (p15 + 1)/(p2 + p + 1) = p13 + p12 + p10 + p9 + p7 + p6 + p4 + p3 + p+ 1

Then :
p14 = (p+ 1)g(p) + p12 + p11 + p9 + p8 + p6 + p5 + p3 + p2 + 1
p13 = g(p) + p12 + p10 + p9 + p7 + p6 + p4 + p3 + p+ 1

Hence, the generator matrix is :

G =

[
1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

]

and the valid codewords :

Xm Codeword Cm

0 0
0 1
1 0
1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
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The minimum distance is : dmin = 10

Problem 8.8 :

The polynomial p7+1 is factors as follows : p7+1 = (p+1)(p3+p2+1)(p3+p+1). The generator
polynomials for the matrices G1,G2 are : g1(p) = p3+p2+1, g2(p) = p3+p+1. Hence the parity
polynomials are : h1(p) = (p7+1)/g1(p) = p4+p3+p2+1, h2(p) = (p7+1)/g2(p) = p4+p2+p+1.
The generator polynomials for the matrices H1,H2 are : p

4h1(p
−1) = 1+p+p2+p4, p4h2(p

−1) =
1 + p2 + p3 + p4. The rows of the matrices H1,H2 are given by : pip4h1/2(p

−1), i = 0, 1, 2, so :

H1 =



1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


 H2 =



1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1




Problem 8.9 :

We have already generated an extended (8,4) code from the (7,4) Hamming code in Probl. 8.5.
Since the generator matrix for the (7,4) Hamming code is not unique, in this problem we will
construct the extended code, starting from the generator matrix given in 8-1-7 :

G =



1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1


⇒ H =



1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1




Then :

He =



1 1 1 0 1 0 0 0
0 1 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1




We can bring this parity matrix into systematic form by adding rows 1,2,3 into the fourth row :

Hes =



1 1 1 0 1 0 0 0
0 1 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 0 1 1 0 0 0 1




Then :

Ge,s =



1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1



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Problem 8.10 :

G =


 1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1


⇒ H =


 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1




Then the standard array is :

000 001 010 011 100 101 110 111
000000 001101 010011 011110 100110 101011 110101 111000
000001 001100 010010 011111 100111 101010 110100 111001
000010 001111 010001 011100 100100 101001 110111 111010
000100 001001 010111 011010 100010 101111 110001 111100
001000 000101 011011 010110 101110 100011 111101 110000
010000 011101 000011 001110 110110 111011 100101 101000
100000 101101 110011 111110 000110 001011 010101 011000
100001 101100 110010 111111 000111 001010 010100 011001

For each column, the first row is the message, the second row is the correct codeword corre-
sponding to this message, and the rest of the rows correspond to the received words which are
the sum of the valid codeword plus the corresponding error pattern (coset leader). The error
patterns that this code can correct are given in the first column (all-zero codeword), and the
corresponding syndromes are :

Ei Si = EiH
T

000000
000001
000010
000100
001000
010000
100000
100001

000
001
010
100
101
011
110
111

We note that this code can correct all single errors and one two-bit error pattern.

Problem 8.11 :

G =



1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


⇒ H =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1



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Then, the standard array will be :

000
0000000
0000001
0000010
0000100
0001000
0010000
0100000
1000000
1100000
1010000
1001000
1000100
1000010
1000001
0010001
0001101

001
0010111
0010110
0010101
0010011
0011111
0000111
0110111
1010111
1110111
1000111
1011111
1010011
1010101
1010110
0000110
0011010

010
0101110
0101111
0101101
0101010
0100110
0111110
0001110
1101110
1001110
1111110
1100110
1101010
1101100
1101111
0111111
0100011

011
0111001
0111000
0111011
0111101
0110001
0101001
0011001
1111001
1011001
1101001
1110001
1111101
1111010
1111001
0101001
0110101

100
1001011
1001010
1001001
1001111
1000011
1011011
1101011
0001011
0101011
0011011
0000011
0001111
0001001
0001010
1011010
1000110

101
1011100
1011101
1011110
1011000
1010100
1001100
1111100
0011100
0111100
0001100
0010100
0011000
0011110
0011101
1001101
1010001

110
1100101
1100100
1100111
1100001
1101101
1110101
1000101
0100101
0000101
0110101
0101101
0100001
0100111
0100100
1110100
1101000

111
1110010
1110011
1110000
1110110
1111010
1100010
1010010
0110010
0010010
0100010
0111010
0110110
0110000
0110011
1100011
1111111

For each column, the first row is the message, the second row is the correct codeword corre-
sponding to this message, and the rest of the rows correspond to the received words which are
the sum of the valid codeword plus the corresponding error pattern (coset leader). The error
patterns that this code can correct are given in the first column (all-zero codeword), and the
corresponding syndromes are :

Ei Si = EiH
T

0000000
0000001
0000010
0000100
0001000
0010000
0100000
1000000
1100000
1010000
1001000
1000100
1000010
1000001
0010001
0001101

0000
0001
0010
0100
1000
0111
1110
1011
0101
11000
0011
1111
1001
1010
0110
1101

We note that this code can correct all single errors, seven two-bit error patterns, and one three-
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bit error pattern.

Problem 5.12 :

The generator matrix for the systematic (7,4) cyclic Hamming code is given by (8-1-37) as :

G =



1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1


⇒ H =



1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1




Then, the correctable error patterns Ei with the corresponding syndrome Si = EiH
T are :

Si

000
001
010
011
100
101
110
111

Ei

0000000
0000001
0000010
0001000
0000100
1000000
0100000
0010000

Problem 8.13 :

We know that : e1 + e2 = C, where C is a valid codeword. Then :

S1 + S2 = e1H
T + e2H

T = (e1 + e2)H
T = CHT = 0

since a valid codeword is orthogonal to the parity matrix. Hence : S1 + S2 = 0, and since
modulo-2 addition is the same with modulo-2 subtraction :

S1 − S2 = 0⇒ S1 = S2

Problem 8.14 :

(a) Let g(p) = p8 + p6 + p4 + p2 +1 be the generator polynomial of an (n, k) cyclic code. Then,
n− k = 8 and the rate of the code is

R =
k

n
= 1− 8

n
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The rate R is minimum when 8
n
is maximum subject to the constraint that R is positive. Thus,

the first choice of n is n = 9. However, the generator polynomial g(p) does not divide p9 + 1
and therefore, it can not generate a (9, 1) cyclic code. The next candidate value of n is 10. In
this case

p10 + 1 = g(p)(p2 + 1)

and therefore, n = 10 is a valid choice. The rate of the code is R = k
n
= 2

10
= 1

5
.

(b) In the next table we list the four codewords of the (10, 2) cyclic code generated by g(p).

Input X(p) Codeword
00 0 0000000000
01 1 0101010101
10 p 1010101010
11 p+ 1 1111111111

As it is observed from the table, the minimum weight of the code is 5 and since the code is
linear dmin = wmin = 5.

(c) The coding gain of the (10, 2) cyclic code in part (a) is

Gcoding = dminR = 5× 2

10
= 1

Problem 8.15 :

(a) For every n
pn + 1 = (p+ 1)(pn−1 + pn−2 + · · ·+ p + 1)

where additions are modulo 2. Since p + 1 divides pn + 1 it can generate a (n, k) cyclic code,
where k = n− 1.

(b) The ith row of the generator matrix has the form

gi = [ 0 · · · 0 1 0 · · · 0 pi,1 ]

where the 1 corresponds to the i-th column (to give a systematic code) and the pi,1, i = 1, . . . , n−
1, can be found by solving the equations

pn−i + pi,1 = pn−i mod p + 1, 1 ≤ i ≤ n− 1

Since pn−i mod p+ 1 = 1 for every i, the generator and the parity check matrix are given by

G =




1 · · · 0 | 1
...

. . .
...
∣∣∣∣ ...

0 · · · 1 | 1


 , H = [ 1 1 · · · 1 | 1 ]
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(c) A vector c = [c1, c2, . . . , cn] is a codeword of the (n, n − 1) cyclic code if it satisfies the
condition cHt = 0. But,

cHt = 0 = c




1
1
...
1


 = c1 + c2 + · · · cn

Thus, the vector c belongs to the code if it has an even weight. Therefore, the cyclic code
generated by the polynomial p+ 1 is a simple parity check code.

Problem 8.16 :

(a) The generator polynomial of degree 4 = n − k should divide the polynomial p6 + 1. Since
the polynomial p6 + 1 assumes the factorization

p6 + 1 = (p+ 1)3(p+ 1)3 = (p+ 1)(p+ 1)(p2 + p+ 1)(p2 + p+ 1)

we find that the shortest possible generator polynomial of degree 4 is

g(p) = p4 + p2 + 1

The ith row of the generator matrix G has the form

gi =
[
0 · · · 0 1 0 · · · 0 pi,1 · · · pi,4

]
where the 1 corresponds to the i-th column (to give a systematic code) and the pi,1, . . . , pi,4 are
obtained from the relation

p6−i + pi,1p
3 + pi,2p

2pi,3p+ pi,4 = p6−i( mod p4 + p2 + 1)

Hence,

p5 mod p4 + p2 + 1 = (p2 + 1)p mod p4 + p2 + 1 = p3 + p

p4 mod p4 + p2 + 1 = p2 + 1 mod p4 + p2 + 1 = p2 + 1

and therefore,

G =

(
1 0
0 1

∣∣∣∣∣ 1 0 1 0
0 1 0 1

)

The codewords of the code are

c1 = [ 0 0 0 0 0 0 ]

c2 = [ 1 0 1 0 1 0 ]

c3 = [ 0 1 0 1 0 1 ]

c4 = [ 1 1 1 1 1 1 ]
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(b) The minimum distance of the linear (6, 2) cyclic code is dmin = wmin = 3. Therefore, the
code can correct

ec =
dmin − 1

2
= 1 error

Problem 8.17 :

Consider two n-tuples in the same row of a standard array. Clearly, if Y1,Y2 denote the n-
tuples, Y1 = Cj+e, Y2 = Ck+e, where Ck,Cj are two valid codewords, and the error pattern
e is the same since they are in the same row of the standard array. Then :

Y1 + Y2 = Cj + e + Ck + e = Cj + Ck = Cm

where Cm is another valid codeword (this follows from the linearity of the code).

Problem 8.18 :

From Table 8-1-6 we find that the coefficients of the generator polynomial for the (15,7) BCH
code are 721→ 111010001 or g(p) = p8 + p7 + p6 + p4 + 1. Then, we can determine the l-th row
of the generator matrix G, using the modulo Rl(p) : pn−l = Ql(p)g(p) + Rl(p), l = 1, 2, ..., 7.
Since the generator matrix of the shortened code is obtained by removing the first three rows
of G, we perform the above calculations for l = 4, 5, 6, 7, only :

p11 = (p3 + p2 + 1)g(p) + p4 + p3 + p2 + 1
p10 = (p2 + p)g(p) + p7 + p6 + p5 + p2 + p
p9 = (p+ 1)g(p) + p6 + p5 + p4 + p+ 1
p8 = (p+ 1)g(p) + p7 + p6 + p4 + 1

Hence :

Gs =



1 0 0 0 0 0 0 1 1 1 0 1
0 1 0 0 1 1 1 0 0 1 1 0
0 0 1 0 0 1 1 1 0 0 1 1
0 0 0 1 1 1 0 1 0 0 0 1




Problem 8.19 :

For M-ary FSK detected coherently, the bandwidth expansion factor is :

(
W

R

)
FSK

=
M

2 log 2M
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For the Hadamard code : In time T (block transmission time), we want to transmit n bits, so
for each bit we have time : Tb = T/n. Since for each bit we use binary PSK, the bandwidth
requirement is approximately : W = 1/Tb = n/T. But T = k/R, hence :

W =
n

k
R⇒ W

R
=

n

k

(this is a general result for binary block-encoded signals). For the specific case of a Hadamard
code the number of waveforms is M = 2n, and also k = log 2M. Hence :

(
W

R

)
Had

=
M

2 log 2M

which is the same as M-ary FSK.

Problem 8.20 :

From (8-1-47) of the text, the correlation coefficient between the all-zero codeword and the l-th
codeword is ρl = 1 − 2wl/n, where wl is the weight of the l-th codeword. For the maximum
length shift register codes : n = 2m − 1 = M − 1 (where m is the parameter of the code) and
wl = 2m−1 for all codewords except the all-zero codeword. Hence :

ρl = 1− 22m−1

2m − 1
= − 1

2m − 1
= − 1

M − 1

for all l. Since the code is linear if follows that ρ = −1/(M − 1) between any pair of codewords.
Note : An alternative way to prove the above is to express each codeword in vector form as

sl =


±
√
E
n
,±
√
E
n
, ...,±

√
E
n


 (n elements in all)

where E = nEb is the energy per codeword and note that any one codeword differs from each
other at exactly 2m−1 bits and agrees with the other at 2m−1 − 1 bits. Then the correlation
coefficient is :

Re [ρmk] =
sl · sk
|sl| |sk| =

E
n
(2m−1 · 1 + (2m−1 − 1) · (−1))

E
n
n

= −1

n
= − 1

M − 1

Problem 8.21 :

We know that the (7,4) Huffman code has dmin = 3 and weight distribution (Problem 8.3) :
w=0 (1 codeword), w=3 (7 codewords), w=4 (7 codewords), w=7 (1 codeword).
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Hence, for soft-decision decoding (8-1-51) :

PM ≤ 7Q



√
24

7
γb


+ 7Q



√
32

7
γb


+Q

(√
8γb

)

or a looser bound (8-1-52) :

PM ≤ 15Q



√
24

7
γb




For hard-decision decoding (8-1-82):

PM ≤
7∑

m=2

(
7

m

)
pm(1− p)7−m = 1−

1∑
m=0

(
7

m

)
pm(1− p)7−m = 1− 7p(1− p)6 − (1− p)7

where p = Q
(√

2Rcγb
)
= Q

(√
8
7
γb
)
or (8-1-90) :

PM ≤ 7 [4p(1− p)]3/2 + 7 [4p(1− p)]2 + [4p(1− p)]7/2

or (8-1-91) :

PM ≤ 14 [4p(1− p)]3/2

Problem 8.22 :

We assume that the all-zero codeword is transmitted and we determine the probability that we
select codeword Cm having weight wm. We define a random variable Xi, i = 1, 2, ...wm as :

Xi =

{
1, with probability p
−1, with probability 1− p

}

where p is the error probability for a bit. Then, we will erroneously select a codeword Cm of
weight wm, if more than wm/2 bits are in error or if

∑wm
i=1 Xi ≥ 0. We assume that p < 1/2 ;

then, following the exact same procedure as in Example 2-1-7 (page 60 of the text), we show
that :

P

(
wm∑
i=1

Xi ≥ 0

)
≤ [4p(1− p)]wm/2

By applying the union bound we obtain the desired result :

PM ≤
M∑

m=2

[4p(1− p)]wm/2
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Problem 8.23 :

(a) The encoder for the (3, 1) convolutional code is depicted in the next figure.
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(b) The state transition diagram for this code is depicted in the next figure.
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(c) In the next figure we draw two frames of the trellis associated with the code. Solid lines
indicate an input equal to 0, whereas dotted lines correspond to an input equal to 1.

✈
✈
✈
✈✈

✈
✈
✈ ✈
✈
✈
✈

. . . . . . . . .

. . . . . . . . . . .. . . . . . . . .. . . . . . .. . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . . . .

✑
✑
✑
✑✑

✑
✑
✑
✑✑

�
�
�
�
�
�

�
�
�
�
�
�

✑
✑
✑
✑✑

✑
✑
✑
✑✑

11

10

01

00

011

100

100

011

000

111

111

000

(d) The diagram used to find the transfer function is shown in the next figure.
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D2J

DNJ

D3NJ
DJ

D2NJ

Xd

Xc Xb Xa′′Xa′

Using the flow graph results, we obtain the system

Xc = D3NJXa′ +NJXb

Xb = D2JXc +DJXd

Xd = DNJXc +D2NJXd

Xa′′ = D3JXb

Eliminating Xb, Xc and Xd results in

T (D,N, J) =
Xa′′

Xa′
=

D8NJ3(1 +NJ −D2NJ)

1−D2NJ(1 +NJ2 + J −D2J2)

To find the free distance of the code we set N = J = 1 in the transfer function, so that

T1(D) = T (D,N, J)|N=J=1 =
D8(1− 2D2)

1−D2(3−D2)
= D8 + 2D10 + · · ·

Hence, dfree = 8

(e) Since there is no self loop corresponding to an input equal to 1 such that the output is the
all zero sequence, the code is not catastrophic.

Problem 8.24 :

The code of Problem 8-23 is a (3, 1) convolutional code with K = 3. The length of the received
sequence y is 15. This means that 5 symbols have been transmitted, and since we assume
that the information sequence has been padded by two 0’s, the actual length of the information
sequence is 3. The following figure depicts 5 frames of the trellis used by the Viterbi decoder.
The numbers on the nodes denote the metric (Hamming distance) of the survivor paths (the
non-survivor paths are shown with an X). In the case of a tie of two merging paths at a node,
we have purged the upper path.
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The decoded sequence is {111, 100, 011, 100, 111} (i.e the path with the minimum final metric -
heavy line) and corresponds to the information sequence {1, 1, 1} followed by two zeros.

Problem 8.25 :

(a) The encoder for the (3, 1) convolutional code is depicted in the next figure.
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(b) The state transition diagram for this code is shown below
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(c) In the next figure we draw two frames of the trellis associated with the code. Solid lines
indicate an input equal to 0, whereas dotted lines correspond to an input equal to 1.
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(d) The diagram used to find the transfer function is shown in the next figure.
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❅
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✲ D2J

DNJ

D2J

DNJ

D3NJ
D2J

Xd

Xc Xb Xa′′Xa′

Using the flow graph results, we obtain the system

Xc = D3NJXa′ +DNJXb

Xb = D2JXc +D2JXd

Xd = DNJXc +DNJXd

Xa′′ = D2JXb

Eliminating Xb, Xc and Xd results in

T (D,N, J) =
Xa′′

Xa′
=

D7NJ3

1−DNJ −D3NJ2

To find the free distance of the code we set N = J = 1 in the transfer function, so that

T1(D) = T (D,N, J)|N=J=1 =
D7

1−D −D3
= D7 +D8 +D9 + · · ·

Hence, dfree = 7

(e) Since there is no self loop corresponding to an input equal to 1 such that the output is the
all zero sequence, the code is not catastrophic.

174



Problem 8.26 :

(a) The state transition diagram for this code is depicted in the next figure.
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(b) The diagram used to find the transfer function is shown in the next figure.
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❅
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D3NJ
DJ

Xd

Xc Xb Xa′′Xa′

Using the flow graph results, we obtain the system

Xc = D3NJXa′ +DNJXb

Xb = DJXc +DJXd

Xd = D2NJXc +D2NJXd

Xa′′ = D2JXb

Eliminating Xb, Xc and Xd results in

T (D,N, J) =
Xa′′

Xa′
=

D6NJ3

1−D2NJ −D2NJ2

(c) To find the free distance of the code we set N = J = 1 in the transfer function, so that

T1(D) = T (D,N, J)|N=J=1 =
D6

1− 2D2
= D6 + 2D8 + 4D10 + · · ·

Hence, dfree = 6

175



(d) The following figure shows 7 frames of the trellis diagram used by the Viterbi decoder. It
is assumed that the input sequence is padded by two zeros, so that the actual length of the
information sequence is 5. The numbers on the nodes indicate the Hamming distance of the
survivor paths. The deleted branches have been marked with an X. In the case of a tie we
deleted the upper branch. The survivor path at the end of the decoding is denoted by a thick
line.
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The information sequence is 11110 and the corresponding codeword 111 110 101 101 010 011
000...

(e) An upper to the bit error probability of the code is given by

Pb ≤ dT (D,N, J = 1)

dN

∣∣∣∣
N=1,D=

√
4p(1−p)

But
dT (D,N, 1)

dN
=

d

dN

[
D6N

1− 2D2N

]
=

D6 − 2D8(1−N)

(1− 2D2N)2

and since p = 10−5, we obtain

Pb ≤ D6

(1− 2D2)2

∣∣∣∣
D=
√

4p(1−p)
≈ 6.14 · 10−14

Problem 8.27 :

(a) The state transition diagram for this code is shown below

176



✍✌✎�

✍✌✎�

.....................

.....................❥.

✛
✲

�
��✒

❅
❅❅� �

��✠

❅
❅❅❘

1/001

0/110

0/011

1/010
1/100

0/101
1/111

0/000

01

11

10

00

(b) The diagram used to find the transfer function is shown in the next figure.
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Xc Xb Xa′′Xa′

Using the flow graph results, we obtain the system

Xc = D3NJXa′ +DNJXb

Xb = D2JXc +D2JXd

Xd = DNJXc +DNJXd

Xa′′ = D2JXb

Eliminating Xb, Xc and Xd results in

T (D,N, J) =
Xa′′

Xa′
=

D7NJ3

1−DNJ −D3NJ2

(c) To find the free distance of the code we set N = J = 1 in the transfer function, so that

T1(D) = T (D,N, J)|N=J=1 =
D7

1−D −D3
= D7 +D8 +D9 + · · ·

Hence, dfree = 7. The path, which is at a distance dfree from the all zero path, is the path
Xa → Xc → Xb → Xa.

(d) The following figure shows 6 frames of the trellis diagram used by the Viterbi algorithm
to decode the sequence {111, 111, 111, 111, 111, 111}. The numbers on the nodes indicate the
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Hamming distance of the survivor paths from the received sequence. The branches that are
dropped by the Viterbi algorithm have been marked with an X. In the case of a tie of two
merging paths, we delete the upper path.
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The decoded sequence is {111, 101, 011, 111, 101, 011} which coresponds to the information se-
quence {x1, x2, x3, x4} = {1, 0, 0, 1} followed by two zeros.

Problem 8.28 :

(a) The state transition diagram and the flow diagram used to find the transfer function for
this code are depicted in the next figure.
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Thus,

Xc = DNJXa′ +D2NJXb

Xb = DJXc +D2JXd

Xd = NJXc +DNJXd
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Xa′′ = DJXb

and by eliminating Xb, Xc and Xd, we obtain

T (D,N, J) =
Xa′′

Xa′
=

D3NJ3

1−DNJ −D3NJ2

To find the transfer function of the code in the form T (D,N), we set J = 1 in T (D,N, J).
Hence,

T (D,N) =
D3N

1−DN −D3N

(b) To find the free distance of the code we set N = 1 in the transfer function T (D,N), so that

T1(D) = T (D,N)|N=1 =
D3

1−D −D3
= D3 +D4 +D5 + 2D6 + · · ·

Hence, dfree = 3

(c) An upper bound on the bit error probability, when hard decision decoding is used, is given
by (see (8-2-34))

Pb ≤ 1

k

dT (D,N)

dN

∣∣∣∣
N=1,D=

√
4p(1−p)

Since
dT (D,N)

dN

∣∣∣∣
N=1

=
d

dN

D3N

1− (D +D3)N

∣∣∣∣
N=1

=
D3

(1− (D +D3))2

with k = 1, p = 10−6 we obtain

Pb ≤ D3

(1− (D +D3))2

∣∣∣∣
D=
√

4p(1−p)
= 8.0321× 10−9

Problem 8.29 :

(a)
g1 = [10], g2 = [11], states : (a) = [0], (b) = [1]

The tree diagram, trellis diagram and state diagram are given in the following figures :
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(b) Redrawing the state diagram :
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a b cJND(2) JD

JND

Xb = JND2Xa + JNDXb ⇒ Xb =
JND2

1− JND
Xa

Xc = JDXb ⇒ Xc

Xa

= T (D,N, J) =
J2ND3

1− JND
= J2ND3 + J3N2D4 + ...

Hence :
dmin = 3

Problem 8.30 :

(a)
g1 = [111], g2 = [101], states : (a) = [00], (b) = [01], (c) = [10], (d) = [11]

The tree diagram, trellis diagram and state diagram are given in the following figures :
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State

a

b

c

d

00 00 00 00

11

11 11

11 11

10 10 10

11

01 01 01

10 10

01 01

00 00

a c d

b

00 10

0111

11 00
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(b) Redrawing the state diagram :

a c
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b eJND(2)

JND

JND
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JD

JN

JD(2)
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


Xc = JND2Xa + JNXb

Xb = JDXc + JDXd

Xd = JNDXd + JNDXc = NXb


⇒ Xb =

J2ND3

1− JND(1 + J)
Xa

Xe = JD2Xb ⇒ Xe

Xa

= T (D,N, J) =
J3ND5

1− JND(1 + J)
= J3ND5 + J4N2D6(1 + J) + ...

Hence :
dmin = 5

Problem 8.31 :

(a)
g1 = [23] = [10011], g2 = [35] = [11101]

1Input

Output

2

(b)
g1 = [25] = [10101], g2 = [33] = [11011], g3 = [37] = [11111]
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Input

Output

3

2

1

(c)
g1 = [17] = [1111], g2 = [06] = [0110], g3 = [15] = [1101]

Input

Output1

2

3

Problem 8.32 :

For the encoder of Probl. 8.31(c), the state diagram is as follows :
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The 2-bit input that forces the transition from one state to another is the 2-bits that characterize
the terminal state.

Problem 8.33 :

The encoder is shown in Probl. 8.30. The channel is binary symmetric and the metric for
Viterbi decoding is the Hamming distance. The trellis and the surviving paths are illustrated
in the following figure :

State

a

b

c

d

d=0 1 2 2 2

d=2

d=2 2 2 2 3 3 3

2 3 3

4 1 3 2 3 2 3

1 2 1 3 2 3 3

185



Problem 8.34 :

In Probl. 8.30 we found :

T (D,N, J) =
J3ND5

1− JND(1 + J)

Setting J = 1 :

T (D,N) =
ND5

1− 2ND
⇒ dT (D,N)

dN
=

D5

(1− 2ND)2

For soft-decision decoding the bit-error probability can be upper-bounded by :

Pbs ≤ 1

2

dT (D,N)

dN
|N=1,D=exp(−γbRc) =

1

2

D5

(1− 2ND)2
|N=1,D=exp(−γb/2) =

1

2

exp(−5γb/2)
(1− exp(−γb/2))2

For hard-decision decoding, the Chernoff bound is :

Pbh ≤ dT (D,N)

dN
|
N=1,D=

√
4p(1−p)

=

[√
4p(1− p)

]5/2
[
1− 2

√
4p(1− p)

]2

where p = Q
(√

γbRc

)
= Q

(√
γb/2

)
(assuming binary PSK). A comparative plot of the bit-error

probabilities is given in the following figure :
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Problem 8.35 :

For the dual-3 (k=3), rate 1/2 code, we have from Table 8-2-36 :


 g1

g2

g3


 =


 100100
010010
001001


 ,


 g4

g5

g6


 =


 110100
001010
100001



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Hence, the encoder will be :

Input

3 bits

Output Symbols

1

2

1,2

1,1

1,3

2,1

2,2

2,3

The state transitions are given in the following figures :
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Self-loop is 

discarded

The states are : (1) = 000, (2) = 001, (3) = 010, (4) = 011, (5) = 100, (6) = 101, (7) =
110, (8) = 111. The state equations are :

X1 = D2NJ (X0 +X3 +X4 +X5 +X6 +X7) +DNJ (X1 +X2)
X2 = D2NJ (X0 +X1 +X3 +X5 +X6 +X7) +DNJ (X2 +X4)
X3 = D2NJ (X0 +X1 +X2 +X4 +X5 +X7) +DNJ (X3 +X6)
X4 = D2NJ (X0 +X1 +X2 +X3 +X6 +X7) +DNJ (X4 +X5)
X5 = D2NJ (X0 +X1 +X2 +X3 +X4 +X6) +DNJ (X5 +X7)
X6 = D2NJ (X0 +X2 +X3 +X4 +X5 +X7) +DNJ (X1 +X6)
X7 = D2NJ (X0 +X1 +X2 +X4 +X5 +X6) +DNJ (X3 +X7)
X ′

0 = D2J (X1 +X2 +X3 +X4 +X5 +X6 +X7)

where, note that D,N correspond to symbols and not bits. If we add the first seven equations,
we obtain :

7∑
i=1

= 7D2NJX0 + 2DNJ
7∑

i=1

Xi + 5D2NJ
7∑

i=1

Xi

Hence :
7∑

i=1

Xi =
7D2NJ

1− 2DNJ − 5D2NJ

Substituting the result into the last equation we obtain :

X ′
0

X0
= T (D,N, J) =

7D4NJ2

1− 2DNJ − 5D2NJ
=

7D4NJ2

1−DNJ(2 + 5D)

which agrees with the result (8-2-37) in the book.
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Problem 8.36 :

g1 = [110], g2 = [011], states : (a) = [00], (b) = [01], (c) = [10], (d) = [11]

The state diagram is given in the following figure :

00

01

11

10

11

11

10

10

01

00

00

01

We note that this is a catastrophic code, since there is a zero-distance path from a non-zero
state back to itself, and this path corresponds to input 1.
A simple example of an K = 4, rate 1/2 encoder that exhibits error propagation is the following
:

Input

Output

The state diagram for this code has a self-loop in the state 111 with input 1, and output 00.
A more subtle example of a catastrophic code is the following :
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Input

Output

In this case there is a zero-distance path generated by the sequence 0110110110..., which en-
compasses the states 011,101, and 110. that is, if the encoder is in state 011 and the input is
1, the output is 00 and the new state is 101. If the next bit is 1, the output is again 00 and
the new state is 110. Then if the next bit is a zero, the output is again 00 and the new state
is 011, which is the same state that we started with. Hence, we have a closed path in the state
diagram which yields an output that is identical to the output of the all-zero path, but which
results from the input sequence 110110110...
For an alternative method for identifying rate 1/n catastrophic codes based on observation of
the code generators, please refer to the paper by Massey and Sain (1968).

Problem 8.37 :

There are 4 subsets corresponding to the four possible outputs from the rate 1/2 convolutional
encoder. Each subset has eight signal points, one for each of the 3-tuples from the uncoded bits.
If we denote the sets as A,B,C,D, the set partitioning is as follows :
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� �
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���
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C D C D

B A B A B A

D C D C D C

ABABAB

D C D C D C

BABA

The minimum distance between adjacent points in the same subset is doubled.

Problem 8.38 :

(a) Let the decoding rule be that the first codeword is decoded when yi is received if

p(yi|x1) > p(yi|x2)

The set of yi that decode into x1 is

Y1 = {yi : p(yi|x1) > p(yi|x2)}
The characteristic function of this set χ1(yi) is by definition equal to 0 if yi �∈ Y1 and equal to
1 if yi ∈ Y1. The characteristic function can be bounded as

1− χ1(yi) ≤
(
p(yi|x2)

p(yi|x1)

) 1
2

This inequality is true if χ(yi) = 1 because the right side is nonnegative. It is also true if
χ(yi) = 0 because in this case p(yi|x2) > p(yi|x1) and therefore,

1 ≤ p(yi|x2)

p(yi|x1)
=⇒ 1 ≤

(
p(yi|x2)

p(yi|x1)

) 1
2
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Given that the first codeword is sent, then the probability of error is

P (error|x1) =
∑

yi∈Y−Y1

p(yi|x1) =
∑
yi∈Y

p(yi|x1)[1− χ1(yi)]

≤ ∑
yi∈Y

p(yi|x1)

(
p(yi|x2)

p(yi|x1)

) 1
2

=
∑
yi∈Y

√
p(yi|x1)p(yi|x2)

=
2n∑
i=1

√
p(yi|x1)p(yi|x2)

where Y denotes the set of all possible sequences yi. Since, each element of the vector yi can
take two values, the cardinality of the set Y is 2n.

(b) Using the results of the previous part we have

P (error) ≤
2n∑
i=1

√
p(yi|x1)p(yi|x2) =

2n∑
i=1

p(yi)

√√√√p(yi|x1)

p(yi)

√√√√p(yi|x2)

p(yi)

=
2n∑
i=1

p(yi)

√√√√p(x1|yi)

p(x1)

√√√√p(x2|yi)

p(x2)
=

2n∑
i=1

2p(yi)
√
p(x1|yi)p(x2|yi)

However, given the vector yi, the probability of error depends only on those values that x1 and
x2 are different. In other words, if x1,k = x2,k, then no matter what value is the kth element of
yi, it will not produce an error. Thus, if by d we denote the Hamming distance between x1 and
x2, then

p(x1|yi)p(x2|yi) = pd(1− p)d

and since p(yi) =
1
2n , we obtain

P (error) = P (d) = 2p
d
2 (1− p)

d
2 = [4p(1− p)]

d
2

Problem 8.39 :

Over P frames, the number of information bits that are being encoded is

kP = P
J∑

j=1

NJ

The number of bits that are being transmitted is determined as follows: For a particular group
of bits j, j = 1, ..., J , we may delete, with the corresponding puncturing matrix, xj out of nP
bits, on the average, where x may take the values x = 0, 1, ...(n− 1)P − 1. Remembering that
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each frame contains Nj bits of the particular group, we arrive at the total average number of
bits for each group

n(j) = Nj(nP − xj)⇒ n(j) = Nj(P +Mj), Mj = 1, 2, ..., (n− 1)P

In the last group j = J we should also add the K − 1 overhead information bits, that will add
up another (K − 1)(P + MJ) transmitted bits to the total average number of bits for the J th

group.
Hence, the total number of bits transmitted over P frames be

nP = (K − 1)(P +MJ) +
∑
j=1

JNj(P +Mj)

and the average effective rate of this scheme will be

Rav =
kP
nP

=

∑J
j=1 NJP∑

j=1 JNj(P +Mj) + (K − 1)(P +MJ)

Problem 8.39 :

Over P frames, the number of information bits that are being encoded is

kP = P
J∑

j=1

NJ

The number of bits that are being transmitted is determined as follows: For a particular group
of bits j, j = 1, ..., J , we may delete, with the corresponding puncturing matrix, xj out of nP
bits, on the average, where x may take the values x = 0, 1, ...(n− 1)P − 1. Remembering that
each frame contains Nj bits of the particular group, we arrive at the total average number of
bits for each group

n(j) = Nj(nP − xj)⇒ n(j) = Nj(P +Mj), Mj = 1, 2, ..., (n− 1)P

In the last group j = J we should also add the K − 1 overhead information bits, that will add
up another (K − 1)(P + MJ) transmitted bits to the total average number of bits for the J th

group.
Hence, the total number of bits transmitted over P frames be

nP = (K − 1)(P +MJ) +
∑
j=1

JNj(P +Mj)

and the average effective rate of this scheme will be

Rav =
kP
nP

=

∑J
j=1 NJP∑

j=1 JNj(P +Mj) + (K − 1)(P +MJ)
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CHAPTER 9

Problem 9.1 :

We want y(t) = Kx(t− t0). Then :

X(f) =
∫∞
−∞ x(t)e

−j2πftdt
Y (f) =

∫∞
−∞ y(t)e

−j2πftdt = K exp(−j2πft0)X(f)

Therefore :

A(f)e−jθ(f) = Ke−j2πft0 ⇒
{

A(f) = K, for all f
θ(f) = 2πft0 ± nπ, n = 0, 1, 2, ...

}

Note that nπ, n odd, results in a sign inversion of the signal.

Problem 9.2 :

(a) Since cos(a + π/2) = − sin(a), we can write :

X(f) =

{
T, 0 ≤ |f | ≤ 1−β

2T
T
2

[
1− sin πT

β

(
f − 1

2T

)]
, 1−β

2T
≤ |f | ≤ 1+β

2T

}

Then, taking the first two derivatives with respect to f :

X ′(f) =

{ −T 2π
2β

cos πT
β

(
f − 1

2T

)
, 1−β

2T
≤ |f | ≤ 1+β

2T

0, otherwise

}

and :

X ′′(f) =

{
T 3π2

2β2 sin πT
β

(
f − 1

2T

)
, 1−β

2T
≤ |f | ≤ 1+β

2T

0, otherwise

}

Therefore the second derivative can be expressed as :

X ′′(f) = −π
2T 2

β2

[
X(f)− T

2
rect

(
1− β
2T

f

)
− T

2
rect

(
1 + β

2T
f

)]

where :

rect(af) =

{
1, |f | ≤ a
0, o.w

}

Since the Fourier transform of dx/dt is j2πfX(f), we exploit the duality between (f, t), take
the inverse Fourier transform of X ′′(f) and obtain :

−4π2t2x(t) = −π
2T 2

β2

[
x(t)− T

2

1

πt
sin

1− β
2T

2πt−−T
2

1

πt
sin

1 + β

2T
2πt

]
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Solving for x(t) we obtain :

x(t) = 1
1−4β2t2/T

[
1

2πt/T

(
sin 1−β

2T
2πt+ sin 1+β

2T
2πt

)]

= 1
1−4β2t2/T

[
1

πt/T

(
sin πt

T
cos πβt

T

)]

(b) When β = 1, X(f) is non-zero in |f | ≤ 1/T, and :

X(f) =
T

2
(1 + cosπTf)

The Hilbert transform is :

X̂(f) =

{ −j T
2
(1 + cosπTf) , 0 ≤ f ≤ 1/T

j T
2
(1 + cosπTf) , −1/T ≤ f ≤ 0

}

Then :
x̂(t) =

∫∞
−∞ X̂(f) exp(j2πft)dt

=
∫ 0
−1/T X̂(f) exp(j2πft)dt+

∫ 1/T
0 X̂(f) exp(j2πft)dt

Direct substitution for X̂(f) yields the result :

x̂(t) =
T

πt

[
sin 2πt/T − 4t2/T 2

1− 4t2/T 2

]

Note that x̂(t) is an odd function of t.

(c) No, since x̂(0) = 0 and x̂(nT ) �= 0, for n �= 0. Also
∑∞
n=−∞ X̂(f + n/2T ) �= constant for

|f | ≤ 1/2T.

(d) The single-sideband signal is :

x(t) cos 2πfct± x̂(t) sin 2πfct = Re
[
(x(t)± jx̂(t)) ej2πfct

]

The envelope is a(t) =
√
x2(t) + x̂2(t). For β= 1 :

a(t) =
1

πt/T

1

1− 4t2/T 2

√
(1− 8t2/T 2) sin 2 (πt/T ) + 16t4/T 4

Problem 9.3 :

(a)
∑
k h(t− kT ) = u(t) is a periodic signal with period T. Hence, u(t) can be expanded in the

Fourier series :

u(t) =
∞∑

n=−∞
une

j2πnt/T
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where :
un = 1

T

∫ T/2
−T/2 u(t) exp(−j2πnt/T )dt

= 1
T

∫ T/2
−T/2

∑∞
k=−∞ h(t− kT ) exp(−j2πnt/T )dt

=
∑∞
k=−∞

1
T

∫ T/2
−T/2 h(t− kT ) exp(−j2πnt/T )dt

= 1
T

∫∞
−∞ h(t) exp(−j2πnt/T )dt = 1

T
H

(
n
T

)
Then : u(t) = 1

T

∑∞
n=−∞H

(
n
T

)
ej2πnt/T ⇒ U(f) = 1

T

∑∞
n=−∞H

(
n
T

)
δ
(
f − n

T

)
. Since x(t) =

u(t)g(t), it follows that X(f) = U(t) ∗G(f). Hence :

X(f) =
1

T

∞∑
n=−∞

H
(
n

T

)
G

(
f − n

T

)

(b)
(i)

∞∑
k=−∞

h(kT ) = u(0) =
1

T

∞∑
n=−∞

H
(
n

T

)

(ii)
∞∑

k=−∞
h(t− kT ) = u(t) =

1

T

∞∑
n=−∞

H
(
n

T

)
ej2πnt/T

(iii) Let

v(t) = h(t)
∞∑

k=−∞
δ(t− kT ) =

∞∑
k=−∞

h(kT )δ(t− kT )

Hence :

V (f) =
∞∑

k=−∞
h(kT )e−j2πfkT

But
V (f) = H(f) ∗ Fourier transform of

∑∞
k=−∞ δ(t− kT )

= H(f) ∗ 1
T

∑∞
n=−∞ δ(f − n

T
) = 1

T

∑∞
n=−∞H(f − n

T
)

(c) The criterion for no intersymbol interference is {h(kT ) = 0, k �= 0 and h(0) = 1} . If the
above condition holds, then from (iii) above we have :

1

T

∞∑
n=−∞

H(f − n
T
) =

∞∑
k=−∞

h(kT )e−j2πfkT = 1

Conversely, if 1
T

∑∞
n=−∞H(f − n

T
) = 1, ∀f ⇒ ∑∞

k=−∞ h(kT )e
−j2πfkT = 1, ∀f. This is possible

only if the left-hand side has no dependence on f, which means h(kT ) = 0, for k �= 0. Then∑∞
k=−∞ h(kT )e

−j2πfkT = h(0) = 1.
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Problem 9.4 :

x(t) = e−πa
2t2 ⇒ X(f) =

1

a
e−πf

2/a2

Hence :

X(0) =
1

a
, X(W ) =

1

a
e−πW

2/a2

We have :
X(W )

X(0)
= 0.01⇒ e−πW 2/a2 = 0.01⇒ W 2 = −a

2

π
ln(0.01)

But due to the condition for the reduced ISI :

x(T ) = e−πa
2T 2

= 0.01⇒ T 2 = − 1

πa2
ln(0.01)

Hence WT = −1
π

ln(0.01) = 1.466 or :

W =
1.466

T

For the raised cosine spectral characteristic (with roll-off factor 1)W = 1/T. Hence, the Gaussian
shaped pulse requires more bandwidth than the pulse having the raised cosine spectrum.

Problem 9.5 :

The impulse response of a square-root raised cosine filter is given by

xST (t) =
∫ 1+β

2T

− 1+β
2T

√
Xrc(f)e

j2πftdf

where Xrc(f) is given by (9.2-26). Splitting the integral in three parts we obtain

xST (t) =
∫ − 1−β

2T

− 1+β
2T

√
T/2

√√√√1 + cos

(
πT

β
(−f − 1− β

2T
)

)
ej2πftdf (1)

+
∫ 1−β

2T

− 1−β
2T

√
Tej2πftdf (2)

+
∫ 1+β

2T

1−β
2T

√
T/2

√√√√1 + cos

(
πT

β
(f − 1− β

2T
)

)
ej2πftdf (3)

The second term (2) gives immediately

(2) =

√
T

πt
sin(π(1− β)t/T )
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The third term can be solved with the transformation λ = f − 1−β
2T

. Then

(3) =
∫ β

T

0

√
T/2

√√√√1 + cos

(
πTλ

β

)
ej2πt(λ+

1+β
2T

)dλ

Using the relationship 1 + cos 2A = 2 cos2A ⇒ √1 + cos 2A =
√
2| cosA| = √2 cosA, we can

rewrite the above expression as

(3) =
∫ β

T

0

√
T cos

(
πTλ

2β

)
ej2πt(λ+

1+β
2T

)dλ

Since cosA = ejA+e−jA

2
, the above integral simplifies to the sum of two simple exponential

argument intregrals.
Similarly to (3), the first term (1) can be solved with the transformation λ = f + 1−β

2T
(notice

that cos(πT
β
(−f − 1−β

2T
)) = cos(πT

β
(f + 1−β

2T
))). Then again, the integral simplifies to the sum of

two simple exponential argument integrals. Proceeding with adding (1),(2),(3) we arrive at the
desired result.

Problem 9.6 :

(a)(b) In order to calculate the frequency response based on the impulse response, we need the
values of the impulse response at t = 0,±T/2, which are not given directly by the expression of
Problem 9.5. Using L’Hospital’s rule it is straightforward to show that:

x(0) =
1

2
+

2

π
, x(±T/2) =

√
2

2

(2 + π)

2π

Then, the frequency response of the filters with N = 10, 15, 20 compared to the frequency
response of the ideal square-root raised cosine filter are depicted in the following figure.
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As we see, there is no significant difference in the passband area of the filters, but the realizable,
truncated filters do have spectral sidelobes outside their (1 + β)/T nominal bandwidth. Still,
depending on how much residual ISI an application can tolerate, even the N = 10 filter appears
an acceptable approximation of the ideal (non-realizable) square-root raised cosine filter.

Problem 9.7 :

(a),(b) Given a mathematical package like MATLAB, the implementation in software of the
digital modulator of Fig P9.7 is relatively straightforward. One comment is that the interpolating
filters should have a nominal passband of [−π/3, π/3], since the interpolation factor applied to
the samples at the output of the shaping filter is 3. We chose our interpolation filters (designed
with the MATLAB fir1 function) to have a cutoff frequency (-3 dB frequency) of π/5. This
corresponds to the highest frequency with significant signal content, since with the spectrum of
the baseband signal should be (approximately, due to truncation effects) limited to (1+0.25)/2T ,
so samled at 6T it should be limited to a discrete frequency of (2∗π∗(1+0.25)/2T )/6 ≈ 0.21∗π.
The plot with the power spectrum of the digital signal sequence is given in the following figure.
We have also plotted the power spectrum of the baseband in-phase (I component) of the signal.
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We notice the rather significant sidelobe that is due to the non-completely eliminated image of
the spectrum that was generated by the interpolating process. We could mitigate it by choosing
an interpolation filter with lower cut-off frequency, but then, we would lose a larger portion of
the useful signal as well. The best solution would be to use a longer interpolation filter.

(c)
By repeating the experiment for a total of 6 runs we get the following figure

0 1000 2000 3000 4000 5000 6000 7000
−80

−70

−60

−50

−40

−30

−20

−10

0
Spectrum modulated bandpass signal over 6 runs

Frequency (Hz)

We notice the smoother shape of the PSD, and we can verify that indeed the spectrum is centered
around 1800 Hz.
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Problem 9.8 :

(a) The alternative expression for s(t) can be rewritten as

s(t) ? = 

{∑

n I
′
nQ(t− nT )

}
= 


{∑
n Ine

j2πfcnTg(t− nT )[cos 2πfc(t− nT ) + j sin(2πfc(t− nT )]
}

= 
{∑n Ing(t− nT )[cos 2πfcnT + j sin 2πfcnT ][cos 2πfc(t− nT ) + j sin(2πfc(t− nT )]}
= 
{∑n Ing(t− nT )[cos 2πfcnT cos 2πfc(t− nT )− sin 2πfcnT sin 2πfc(t− nT )

+j sin 2πfcnT cos 2πfc(t− nT ) + j cos 2πfcnT sin 2πfc(t− nT )]}
= 
{∑n Ing(t− nT )[cos 2πfct+ j sin 2πfct]}
= 


{∑
n Ing(t− nT )e2πfct

}
= s(t)

So, indeed the alternative expression for s(t) is a valid one.

(b)

Inr

Ini

e
j2pfnT

I’nr

I’ni -

q(t)

q(t)
^

Modulator
(with phase rotator)

e
-j2pfnT

q(t)

q(t)
^

Demodulator
(with phase derotator)

To 
Detector

Problem 9.9 :

(a) From the impulse response of the pulse having a square-root raised cosine characteristic,
which is given in problem 9.5, we can see immediately that xSQ(t) = xSQ(−t), i.e. the pulse
g(t) is an even function. We know that the product of an even function times and even function
has even symmetry, while the product of even times odd has odd symmetry. Hence q(t) is even,
while q̂(t) is odd. Hence, the product q(t)q̂(t) has odd symmetry. We know that the (symettric
around 0) integral of an odd function is zero, or

∫ ∞

−∞
q(t)q̂(t)dt =

∫ (1+β)/2T

−(1+β)/2T
q(t)q̂(t)dt = 0
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(b) We notice that when fc = k/T , where k is an integer, then the rotator/derotaror of a
carrierless QAM system (described in Problem 9.8) gives a trivial rotation of an integer number
of full circles (2πkn), and the carrierless QAM/PSK is equivalent to CAP.

Problem 9.10 :

(a)
(i) x0 = 2, x1 = 1, x2 = −1, otherwise xn = 0. Then :

x(t) = 2
sin(2πWt)

2πWt
+

sin(2πW (t− 1/2W ))

2πW (t− 1/2W )
− sin(2πW (t− 1/W ))

2πW (t− 1/W )

and :
X(f) = 1

2W

[
2 + e−jπf/W − e−j2πf/W

]
, |f | ≤W ⇒

|X(f)| = 1
2W

[
6 + 2 cos πf

W
− 4 cos 2πf

W

]1/2
, |f | ≤W

The plot of |X(f)| is given in the following figure :
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

fW

W
|X

(f
)|

(ii) x−1 = −1, x0 = 2, x1 = −1, otherwise xn = 0. Then :

x(t) = 2
sin(2πWt)

2πWt
− sin(2πW (t+ 1/2W ))

2πW (t+ 1/2W )
− sin(2πW (t− 1/2W ))

2πW (t− 1/2W )

and :

X(f) =
1

2W

[
2− e−jπf/W − e+jπf/W

]
=

1

2W

[
2− 2 cos

πf

W

]
=

1

W

[
1− cos

πf

W

]
, |f | ≤W

The plot of |X(f)| is given in the following figure :
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(b) Based on the results obtained in part (a) :
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(i)
: x

(t
)
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(ii
):

 x
(t

)
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(c) The possible received levels at the receiver are given by :
(i)

Bn = 2In + In−1 − In−2

where Im = ±1. Hence :
P (Bn = 0) = 1/4
P (Bn = −2) = 1/4
P (Bn = 2) = 1/4
P (Bn = −4) = 1/8
P (Bn = 4) = 1/8

(ii)
Bn = 2In − In−1 − In+1

where Im = ±1. Hence :
P (Bn = 0) = 1/4
P (Bn = −2) = 1/4
P (Bn = 2) = 1/4
P (Bn = −4) = 1/8
P (Bn = 4) = 1/8

Problem 9.11 :

The bandwidth of the bandpass channel is W = 4 KHz. Hence, the rate of transmission should
be less or equal to 4000 symbols/sec. If a 8-QAM constellation is employed, then the required
symbol rate is R = 9600/3 = 3200. If a signal pulse with raised cosine spectrum is used for
shaping, the maximum allowable roll-off factor is determined by :

1600(1 + β) = 2000

which yields β = 0.25. Since β is less than 50%, we consider a larger constellation. With a
16-QAM constellation we obtain :

R =
9600

4
= 2400

and :
1200(1 + β) = 2000

or β = 2/3, which satisfies the required conditions. The probability of error for an M-QAM
constellation is given by :

PM = 1− (1− P√M)2

where :

P√M = 2

(
1− 1√

M

)
Q

[√
3Eav

(M − 1)N0

]
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With PM = 10−6 we obtain P√M = 5× 10−7 and therefore using the last equation and the table
of values for the Q(·) function, we find that the average transmitted energy is :

Eav = 24.70× 10−9

Note that if the desired spectral characteristic Xrc(f) is split evenly between the transmitting
and receiving filter, then the energy of the transmitting pulse is :∫ ∞

−∞
g2T (t)dt =

∫ ∞

−∞
|GT (f)|2df =

∫ ∞

−∞
Xrc(f)df = 1

Hence, the energy Eav = PavT depends only on the amplitude of the transmitted points and the
symbol interval T . Since T = 1

2400
, the average transmitted power is :

Pav =
Eav
T

= 24.70× 10−9 × 2400 = 592.8× 10−7

If the points of the 16-QAM constellation are evenly spaced with minimum distance between
them equal to d, then there are four points with coordinates (±d

2
,±d

2
), four points with coordi-

nates (±3d
2
,±3d

2
), and eight points with coordinates (±3d

2
,±d

2
), or (±d

2
,±3d

2
). Thus, the average

transmitted power is :

Pav =
1

2× 16

16∑
i=1

(A2
mc + A

2
ms) =

1

32

[
4× d

2

2
+ 4× 9d2

2
+ 8× 10d2

4

]
=

5

4
d2

Since Pav = 592.8× 10−7, we obtain

d =

√
4
Pav
5

= 0.0069

Problem 9.12 :

The channel (bandpass) bandwidth is W = 4000 Hz. Hence, the lowpass equivalent bandwidth
will extend from -2 to 2 KHz.
(a) Binary PAM with a pulse shape that has β = 1

2
. Hence :

1

2T
(1 + β) = 2000

so 1
T

= 2667, and since k = 1 bit/symbols is transmitted, the bit rate is 2667 bps.
(b) Four-phase PSK with a pulse shape that has β = 1

2
. From (a) the symbol rate is 1

T
= 2667

and the bit rate is 5334 bps.
(c) M = 8 QAM with a pulse shape that has β = 1

2
. From (a), the symbol rate is 1

T
= 2667 and

hence the bit rate 3
T

= 8001 bps.
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(d) Binary FSK with noncoherent detection. Assuming that the frequency separation between
the two frequencies is ∆f = 1

T
, where 1

T
is the bit rate, the two frequencies are fc +

1
2T

and
fc − 1

2T
. Since W = 4000 Hz, we may select 1

2T
= 1000, or, equivalently, 1

T
= 2000. Hence, the

bit rate is 2000 bps, and the two FSK signals are orthogonal.
(e) Four FSK with noncoherent detection. In this case we need four frequencies with separation
of 1

T
between adjacent frequencies. We select f1 = fc − 1.5

T
, f2 = fc − 1

2T
, f3 = fc +

1
2T

, and
f4 = fc +

1.5
T
, where 1

2T
= 500 Hz. Hence, the symbol rate is 1

T
= 1000 symbols per second and

since each symbol carries two bits of information, the bit rate is 2000 bps.
(f) M = 8 FSK with noncoherent detection. In this case we require eight frequencies with
frequency separation of 1

T
= 500 Hz for orthogonality. Since each symbol carries 3 bits of

information, the bit rate is 1500 bps.

Problem 9.13 :

(a) The bandwidth of the bandpass channel is :

W = 3000− 600 = 2400 Hz

Since each symbol of the QPSK constellation conveys 2 bits of information, the symbol rate of
transmission is :

R =
1

T
=

2400

2
= 1200 symbols/sec

Thus, for spectral shaping we can use a signal pulse with a raised cosine spectrum and roll-off
factor β = 1, since the spectral requirements will be 1

2T
(1 + β) = 1

T
= 1200Hz. Hence :

Xrc(f) =
T

2
[1 + cos(πT |f |)] = 1

1200
cos2

(
π|f |
2400

)

If the desired spectral characteristic is split evenly between the transmitting filter GT (f) and
the receiving filter GR(f), then

GT (f) = GR(f) =

√
1

1200
cos

(
π|f |
2400

)
, |f | < 1

T
= 1200

A block diagram of the transmitter is shown in the next figure.

❧×✲ ✲

✻

✲ to Channel

cos(2πfct)

GT (f)
QPSK
an

(b) If the bit rate is 4800 bps, then the symbol rate is

R =
4800

2
= 2400 symbols/sec
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In order to satisfy the Nyquist criterion, the the signal pulse used for spectral shaping, should
have roll-off factor β = 0 with corresponding spectrum :

X(f) = T, |f | < 1200

Thus, the frequency response of the transmitting filter is GT (f) =
√
T , |f | < 1200.

Problem 9.14 :

The bandwidth of the bandpass channel is :

W = 3300− 300 = 3000 Hz

In order to transmit 9600 bps with a symbor rate R = 1
T

= 2400 symbols per second, the number
of information bits per symbol should be :

k =
9600

2400
= 4

Hence, a 24 = 16 QAM signal constellation is needed. The carrier frequency fc is set to 1800
Hz, which is the mid-frequency of the frequency band that the bandpass channel occupies. If a
pulse with raised cosine spectrum and roll-off factor β is used for spectral shaping, then for the
bandpass signal with bandwidth W :

1

2T
(1 + β) =

W

2
= 1500⇒ β = 0.25

A sketch of the spectrum of the transmitted signal pulse is shown in the next figure.

-1800 -300-3300 300 33001800

1/2T

f900
2700

Problem 9.15 :

The SNR at the detector is :

Eb
N0

=
PbT

N0

=
Pb(1 + β)

N0W
= 30 dB
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Since it is desired to expand the bandwidth by a factor of 10
3

while maintaining the same SNR,
the received power Pb should increase by the same factor. Thus the additional power needed is

Pa = 10 log10

10

3
= 5.2288 dB

Hence, the required transmitted power is :

PS = −3 + 5.2288 = 2.2288 dBW

Problem 9.16 :

The pulse x(t) having the raised cosine spectrum given by (9-2-26/27) is :

x(t) = sinc(t/T )
cos(πβt/T )

1− 4β2t2/T 2

The function sinc(t/T ) is 1 when t = 0 and 0 when t = nT . Therefore, the Nyquist criterion
will be satisfied as long as the function g(t) is :

g(t) =
cos(πβt/T )

1− 4β2t2/T 2
=

{
1 t = 0

bounded t �= 0

The function g(t) needs to be checked only for those values of t such that 4β2t2/T 2 = 1 or
βt = T

2
. However :

lim
βt→T

2

cos(πβt/T )

1− 4β2t2/T 2
= lim
x→1

cos(π
2
x)

1− x
and by using L’Hospital’s rule :

lim
x→1

cos(π
2
x)

1− x = lim
x→1

π

2
sin(
π

2
x) =

π

2
<∞

Hence :

x(nT ) =

{
1 n = 0
0 n �= 0

meaning that the pulse x(t) satisfies the Nyquist criterion.

Problem 9.17 :

Substituting the expression of Xrc(f) given by (8.2.22) in the desired integral, we obtain :

∫ ∞

−∞
Xrc(f)df =

∫ − 1−β
2T

− 1+β
2T

T

2

[
1 + cos

πT

β
(−f − 1− β

2T
)

]
df +

∫ 1−β
2T

− 1−β
2T

Tdf
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+
∫ 1+β

2T

1−β
2T

T

2

[
1 + cos

πT

β
(f − 1− β

2T
)

]
df

=
∫ − 1−β

2T

− 1+β
2T

T

2
df + T

(
1− β
T

)
+

∫ 1+β
2T

1−β
2T

T

2
df

+
∫ − 1−β

2T

− 1+β
2T

cos
πT

β
(f +

1− β
2T

)df +
∫ 1+β

2T

1−β
2T

cos
πT

β
(f − 1− β

2T
)df

= 1 +
∫ 0

− β
T

cos
πT

β
xdx+

∫ β
T

0
cos
πT

β
xdx

= 1 +
∫ β

T

− β
T

cos
πT

β
xdx = 1 + 0 = 1

Problem 9.18 :

Let X(f) be such that

Re[X(f)] =

{
TΠ(fT ) + U(f) |f | < 1

T

0 otherwise
Im[X(f)] =

{
V (f) |f | < 1

T

0 otherwise

with U(f) even with respect to 0 and odd with respect to f = 1
2T

Since x(t) is real, V (f) is odd
with respect to 0 and by assumption it is even with respect to f = 1

2T
. Then,

x(t) = F−1[X(f)]

=
∫ 1

2T

− 1
T

X(f)ej2πftdf +
∫ 1

2T

− 1
2T

X(f)ej2πftdf +
∫ 1

T

1
2T

X(f)ej2πftdf

=
∫ 1

2T

− 1
2T

Tej2πftdf +
∫ 1

T

− 1
T

[U(f) + jV (f)]ej2πftdf

= sinc(t/T ) +
∫ 1

T

− 1
T

[U(f) + jV (f)]ej2πftdf

Consider first the integral
∫ 1

T

− 1
T

U(f)ej2πftdf . Clearly,

∫ 1
T

− 1
T

U(f)ej2πftdf =
∫ 0

− 1
T

U(f)ej2πftdf +
∫ 1

T

0
U(f)ej2πftdf

and by using the change of variables f ′ = f + 1
2T

and f ′ = f − 1
2T

for the two integrals on the
right hand side respectively, we obtain

∫ 1
T

− 1
T

U(f)ej2πftdf
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= e−j
π
T
t
∫ 1

2T

− 1
2T

U(f ′ − 1

2T
)ej2πf

′tdf ′ + ej
π
T
t
∫ 1

2T

− 1
2T

U(f ′ +
1

2T
)ej2πf

′tdf ′

a
=

(
ej

π
T
t − e−j π

T
t
) ∫ 1

2T

− 1
2T

U(f ′ +
1

2T
)ej2πf

′tdf ′

= 2j sin(
π

T
t)

∫ 1
2T

− 1
2T

U(f ′ +
1

2T
)ej2πf

′tdf ′

where for step (a) we used the odd symmetry of U(f ′) with respect to f ′ = 1
2T

, that is

U(f ′ − 1

2T
) = −U(f ′ + 1

2T
)

For the integral
∫ 1

T

− 1
T

V (f)ej2πftdf we have

∫ 1
T

− 1
T

V (f)ej2πftdf

=
∫ 0

− 1
T

V (f)ej2πftdf +
∫ 1

T

0
V (f)ej2πftdf

= e−j
π
T
t
∫ 1

2T

− 1
2T

V (f ′ − 1

2T
)ej2πf

′tdf ′ + ej
π
T
t
∫ 1

2T

− 1
2T

V (f ′ +
1

2T
)ej2πf

′tdf ′

However, V (f) is odd with respect to 0 and since V (f ′ + 1
2T

) and V (f ′ − 1
2T

) are even, the
translated spectra satisfy∫ 1

2T

− 1
2T

V (f ′ − 1

2T
)ej2πf

′tdf ′ = −
∫ 1

2T

− 1
2T

V (f ′ +
1

2T
)ej2πf

′tdf ′

Hence,

x(t) = sinc(t/T ) + 2j sin(
π

T
t)

∫ 1
2T

− 1
2T

U(f ′ +
1

2T
)ej2πf

′tdf ′

−2 sin(
π

T
t)

∫ 1
2T

− 1
2T

U(f ′ +
1

2T
)ej2πf

′tdf ′

and therefore,

x(nT ) =

{
1 n = 0
0 n �= 0

Thus, the signal x(t) satisfies the Nyquist criterion.

Problem 9.19 :

The bandwidth of the channel is :

W = 3000− 300 = 2700 Hz
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Since the minimum transmission bandwidth required for bandpass signaling is R, where R is
the rate of transmission, we conclude that the maximum value of the symbol rate for the given
channel is Rmax = 2700. If anM-ary PAM modulation is used for transmission, then in order to
achieve a bit-rate of 9600 bps, with maximum rate of Rmax, the minimum size of the constellation
is M = 2k = 16. In this case, the symbol rate is :

R =
9600

k
= 2400 symbols/sec

and the symbol interval T = 1
R

= 1
2400

sec. The roll-off factor β of the raised cosine pulse used
for transmission is is determined by noting that 1200(1 + β) = 1350, and hence, β = 0.125.
Therefore, the squared root raised cosine pulse can have a roll-off of β = 0.125.

Problem 9.20 :

Since the one-sided bandwidth of the ideal lowpass channel is W = 2400 Hz, the rate of trans-
mission is :

R = 2× 2400 = 4800 symbols/sec

(remember that PAM can be transmitted single-sideband; hence, if the lowpass channel has
bandwidth from -W to W, the passband channel will have bandwidth equal to W ; on the other
hand, a PSK or QAM system will have passband bandwidth equal to 2W ). The number of bits
per symbol is

k =
14400

4800
= 3

Hence, the number of transmitted symbols is 23 = 8. If a duobinary pulse is used for transmis-
sion, then the number of possible transmitted symbols is 2M − 1 = 15. These symbols have the
form

bn = 0,±2d,±4d, . . . ,±12d
where 2d is the minimum distance between the points of the 8-PAM constellation. The proba-
bility mass function of the received symbols is

P (b = 2md) =
8− |m|

64
, m = 0,±1, . . . ,±7

An upper bound of the probability of error is given by (see (9-3-18))

PM < 2
(
1− 1

M2

)
Q



√(
π

4

)2 6

M2 − 1

kEb,av
N0




With PM = 10−6 and M = 8 we obtain

kEb,av
N0

= 1.3193× 103 =⇒ Eb,av = 0.088
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Problem 9.21 :

(a) The spectrum of the baseband signal is (see (4-4-12))

ΦV (f) =
1

T
Φii(f)|Xrc(f)|2 =

1

T
|Xrc(f)|2

where T = 1
2400

and

Xrc(f) =



T 0 ≤ |f | ≤ 1

4T
T
2
(1 + cos(2πT (|f | − 1

4T
)) 1

4T
≤ |f | ≤ 3

4T

0 otherwise

If the carrier signal has the form c(t) = A cos(2πfct), then the spectrum of the DSB-SC modu-
lated signal, ΦU(f), is

ΦU(f) =
A

2
[ΦV (f − fc) + ΦV (f + fc)]

A sketch of ΦU(f) is shown in the next figure.

2

2AT

-fc-3/4T -fc+3/4T fcfc-3/4T fc+3/4T-fc

(b) Assuming bandpass coherent demodulation using a matched filter, the received signal r(t)
is first passed through a linear filter with impulse response

gR(t) = Axrc(T − t) cos(2πfc(T − t))

The output of the matched filter is sampled at t = T and the samples are passed to the
detector. The detector is a simple threshold device that decides if a binary 1 or 0 was transmitted
depending on the sign of the input samples. The following figure shows a block diagram of the
optimum bandpass coherent demodulator.

�✗
✂.............❘ ❅❅ ✲✲✲

device)
(Threshold

Detector
t = T

r(t)

gR(t)
matched filter
Bandpass
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Problem 9.22 :

(a) The power spectral density of X(t) is given by (see (4-4-12))

Φx(f) =
1

T
Φa(f)|GT (f)|2

The Fourier transform of g(t) is

GT (f) = F [g(t)] = AT
sin πfT

πfT
e−jπfT

Hence,
|GT (f)|2 = (AT )2sinc2(fT )

and therefore,
Φx(f) = A2TΦa(f)sinc

2(fT ) = A2T sinc2(fT )

(b) If g1(t) is used instead of g(t) and the symbol interval is T , then

Φx(f) =
1

T
Φa(f)|G2T (f)|2

=
1

T
(A2T )2sinc2(f2T ) = 4A2T sinc2(f2T )

(c) If we precode the input sequence as bn = an + αan−3, then

φb(m) =




1 + α2 m = 0
α m = ±3
0 otherwise

and therefore, the power spectral density Φb(f) is

Φb(f) = 1 + α2 + 2α cos(2πf3T )

To obtain a null at f = 1
3T

, the parameter α should be such that

1 + α2 + 2α cos(2πf3T )|
f=1

3

= 0 =⇒ α = −1

(c) The answer to this question is no. This is because Φb(f) is an analytic function and unless
it is identical to zero it can have at most a countable number of zeros. This property of the
analytic functions is also referred as the theorem of isolated zeros.
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Problem 9.23 :

The roll-off factor β is related to the bandwidth by the expression 1+β
T

= 2W , or equivalently
R(1 + β) = 2W . The following table shows the symbol rate for the various values of the excess
bandwidth and for W = 1500 Hz.

β .25 .33 .50 .67 .75 1.00
R 2400 2256 2000 1796 1714 1500

The above results were obtained with the assumption that double-sideband PAM is employed,
so the available lowpass bandwidth will be from −W = 3000

2
to W Hz. If single-sideband

transmission is used, then the spectral efficiency is doubled, and the above symbol rates R are
doubled.

Problem 9.24 :

The following table shows the precoded sequence, the transmitted amplitude levels, the re-
ceived signal levels and the decoded sequence, when the data sequence 10010110010 modulates
a duobinary transmitting filter.

Data seq. Dn: 1 0 0 1 0 1 1 0 0 1 0
Precoded seq. Pn: 0 1 1 1 0 0 1 0 0 0 1 1
Transmitted seq. In: -1 1 1 1 -1 -1 1 -1 -1 -1 1 1
Received seq. Bn: 0 2 2 0 -2 0 0 -2 -2 0 2
Decoded seq. Dn: 1 0 0 1 0 1 1 0 0 1 0

Problem 9.25 :

The following table shows the precoded sequence, the transmitted amplitude levels, the re-
ceived signal levels and the decoded sequence, when the data sequence 10010110010 modulates
a modified duobinary transmitting filter.

Data seq. Dn: 1 0 0 1 0 1 1 0 0 1 0
Precoded seq. Pn: 0 0 1 0 1 1 1 0 0 0 0 1 0
Transmitted seq. In: -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 -1
Received seq. Bn: 2 0 0 2 0 -2 -2 0 0 2 0
Decoded seq. Dn: 1 0 0 1 0 1 1 0 0 1 0
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Problem 9.26 :

Let X(z) denote the Z-transform of the sequence xn, that is

X(z) =
∑
n

xnz
−n

Then the precoding operation can be described as

P (z) =
D(z)

X(z)
mod−M

where D(z) and P (z) are the Z-transforms of the data and precoded dequences respectively.
For example, if M = 2 and X(z) = 1 + z−1 (duobinary signaling), then

P (z) =
D(z)

1 + z−1
=⇒ P (z) = D(z)− z−1P (z)

which in the time domain is written as

pn = dn − pn−1

and the subtraction is mod-2.
However, the inverse filter 1

X(z)
exists only if x0, the first coefficient of X(z) is relatively prime

with M . If this is not the case, then the precoded symbols pn cannot be determined uniquely
from the data sequence dn.
In the example given in the book, where x0 = 2 we note that whatever the value of dn (0 or 1),
the value of (2dn mod 2) will be zero, hence this precoding scheme cannot work.

Problem 9.27 :

(a) The frequency response of the RC filter is

C(f) =
1

j2πRCf

R + 1
j2πRCf

=
1

1 + j2πRCf

The amplitude and the phase spectrum of the filter are :

|C(f)| =
(

1

1 + 4π2(RC)2f 2

) 1
2

, θc(f) = arctan(−2πRCf)

The envelope delay is

τc(f) = − 1

2π

dθc(f)

df
= − 1

2π

−2πRC
1 + 4π2(RC)2f 2

=
RC

1 + 4π2(RC)2f 2
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A plot of τ(f) with RC = 10−6 is shown in the next figure :
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(b) The following figure is a plot of the amplitude characteristics of the RC filter, |C(f)|. The
values of the vertical axis indicate that |C(f)| can be considered constant for frequencies up to
2000 Hz. Since the same is true for the envelope delay, we conclude that a lowpass signal of
bandwidth ∆f = 1 KHz will not be distorted if it passes the RC filter.
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Problem 9.28 :

Let GT (f) and GR(f) be the frequency response of the transmitting and receiving filter. Then,
the condition for zero ISI implies

GT (f)C(f)GR(f) = Xrc(f) =




T, 0 ≤ |f | ≤ 1
4T

T
2
[1 + cos(2πT (|f | − 1

T
)], 1

4T
≤ |f | ≤ 3

4T

0, |f | > 3
4T

Since the additive noise is white, the optimum tansmitting and receiving filter characteristics
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are given by (see (9-2-81))

|GT (f)| = |Xrc(f)|
1
2

|C(f)| 12 , |GR(f)| = |Xrc(f)|
1
2

|C(f)| 12
Thus,

|GT (f)| = |GR(f)| =




[
T

1+0.3 cos 2πfT

] 1
2 , 0 ≤ |f | ≤ 1

4T[
T (1+cos(2πT (|f |− 1

T
)

2(1+0.3 cos 2πfT )

] 1
2

, 1
4T
≤ |f | ≤ 3

4T

0, otherwise

Problem 9.29 :

A 4-PAM modulation can accomodate k = 2 bits per transmitted symbol. Thus, the symbol
interval duration is :

T =
k

9600
=

1

4800
sec

Since, the channel’s bandwidth is W = 2400 = 1
2T

, in order to achieve the maximum rate of
transmission, Rmax = 1

2T
, the spectrum of the signal pulse should be :

X(f) = TΠ

(
f

2W

)

Then, the magnitude frequency response of the optimum transmitting and receiving filter is (see
(9-2-81))

|GT (f)| = |GR(f)| =

1 +

(
f

2400

)2



1
4

Π

(
f

2W

)
=




[
1 +

(
f

2400

)2
] 1

4

, |f | < 2400

0, otherwise

Problem 9.30 :

We already know that

σ2
v =

∫ ∞

−∞
Φnn(f)|GR(f)|2df

Pav =
d2

T

∫ W
−W
|GT (f)|2df

|GT (f)| = |Xrc(f)|
|GR(f)||C(f)| , |f | ≤W
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From these
σ2
v

d2
=

1

PavT

∫ W
−W

Φnn(f)|GR(f)|2df
∫ W
−W

|Xrc(f)|2
|GR(f)|2|C(f)|2df (4)

The optimum |GR(f)| can be found by applying the Cauchy-Schwartz inequality

∫ ∞

−∞
|U1(f)|2df

∫ ∞

−∞
|U2(f)|2df ≥

[∫ ∞

−∞
|U1(f)||U2(f)|df

]2

where |U1(f)|, |U2(f)| are defined as

|U1(f)| = |
√
Φnn(f)||GR(f)|

|U2(f)| = |Xrc(f)|
|GR(f)||C(f)|

The minimum value of (1) is obtained when |U1(f)| is proportional to |U2(f)|, i.e. |U1(f)| =
K|U2(f)| or, equivalently, when

|GR(f)| =
√
K

|Xrc(f)|1/2
[N0/2]1/4|C(f)|1/2 , |f | ≤ W

where K is an arbitrary constant. By setting it appropriately,

|GR(f)| = |Xrc(f)|
1/2

|C(f)|1/2 , |f | ≤ W

The corresponding modulation filter has a magnitude characteristic of

|GT (f)| = |Xrc(f)|
|GR(f)||C(f)| =

|Xrc(f)|1/2
|C(f)|1/2 , |f | ≤ W

Problem 9.31 :

In the case where the channel distortion is fully precompensated at the transmitter, the loss of
SNR is given by

10 logL1, with L1 =
∫ W
−W
Xrc(f)

|C(f)|2
whereas in the case of the equally split filters, the loss of SNR is given by

10 log[L2]
2, with L2 =

∫ W
−W
Xrc(f)

|C(f)|
Assuming that 1/T = W , so that we have a raised cosine characteristic with β = 0, we have
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Xrc(f) =
1

2W

[
1 + cos

π|f |
W

]

Then

L1 = 2
∫W
0

1
2W

[1+cos πf
W

]

|C(f)|2

= 2
[∫W/2

0
1

2W

[1+cos πf
W

]

1
+

∫W
W/2

1
2W

[1+cos πf
W

]

1/4

]
= 5π−6

2π

Hence, the loss for the first type of filters is 10 logL1 = 1.89 dB.
In a similar way,

L2 = 2
∫W
0

1
2W

[1+cos πf
W

]

|C(f)|
= 2

[∫W/2
0

1
2W

[1+cos πf
W

]

1
+

∫W
W/2

1
2W

[1+cos πf
W

]

1/2

]
= 3π−2

2π

Hence, the loss for the second type of filters is 10 log[L2]
2 = 1.45 dB. As expected, the second

type of filters which split the channel characteristics between the transmitter and the receiver
exhibit a smaller SNR loss.

Problem 9.32 :

The state transition matrix of the (0,1) runlength-limited code is :

D =

(
1 1
1 0

)

The eigenvalues of D are the roots of

det(D − λI) = −λ(1− λ)− 1 = λ2 − λ− 1

The roots of the characteristic equation are :

λ1,2 =
1±√5

2

Thus, the capacity of the (0,1) runlength-limited code is :

C(0, 1) = log2(
1±√5

2
) = 0.6942

The capacity of a (1,∞) code is found from Table 9-4-1 to be 0.6942. As it is observed, the two
codes have exactly the same capacity. This result is to be expected since the (0,1) runlength-
limited code and the (1,∞) code produce the same set of code sequences of length n, N(n),
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with a renaming of the bits from 0 to 1 and vise versa. For example, the (0,1) runlength-limited
code with a renaming of the bits, can be described as the code with no minimum number of 1’s
between 0’s in a sequence, and at most one 1 between two 0’s. In terms of 0’s, this is simply
the code with no restrictions on the number of adjacent 0’s and no consequtive 1’s, that is the
(1,∞) code.

Problem 9.33 :

Let S0 represent the state that the running polarity is zero, and S1 the state that there exists
some polarity (dc component). The following figure depicts the transition state diagram of the
AMI code :

✒✑
�✏

✚✙
✛✘

✚✙
✛✘

✒✑
�✏

✕ ✛

✲

❑0/0

1/− s(t)
0/0

1/s(t)

S1S0

The state transition matrix is :

D =

(
1 1
1 1

)

The eigenvalues of the matrix D can be found from

det(D − λI) = 0 =⇒ (1− λ)2 − 1 = 0 or λ(2− λ) = 0

The largest real eigenvalue is λmax = 2, so that :

C = log2 λmax = 1

Problem 9.34 :

Let {bk} be a binary sequence, taking the values 1, 0 depending on the existence of polarization
at the transmitted sequence up to the time instant k. For the AMI code, bk is expressed as

bk = ak ⊕ bk−1 = ak ⊕ ak−1 ⊕ ak−2 ⊕ . . .

where ⊕ denotes modulo two addition. Thus, the AMI code can be described as the RDS code,
with RDS (=bk) denoting the binary digital sum modulo 2 of the input bits.
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Problem 9.35 :

Defining the efficiency as :

efficiency =
k

n log2 3

we obtain :
Code Efficiency

1B1T 0.633
3B2T 0.949
4B3T 0.844
6B4T 0.949

Problem 9.36 :

(a) The characteristic polynomial of D is :

det(D − λI) = det

∣∣∣∣∣ 1− λ 1
1 −λ

∣∣∣∣∣ = λ2 − λ− 1

The eigenvalues of D are the roots of the characteristic polynomial, that is

λ1,2 =
1±√5

2

Thus, the largest eigenvalue of D is λmax = 1+
√

5
2

and therefore :

C = log2

1 +
√
5

2
= 0.6942

(b) The characteristic polynomial is det(D − λI) = (1 − λ)2 with roots λ1,2 = 1. Hence,
C = log2 1 = 0. The state diagram of this code is depicted in the next figure.

✒✑
�✏

✚✙
✛✘

✚✙
✛✘

✒✑
�✏

✕

✲

❑ 1

1

0 S1S0

(c) As it is observed the second code has zero capacity. This result is to be expected since with
the second code we can have at most n + 1 different sequences of length n, so that

C = lim
n→∞

1

n
log2N(n) = lim

n→∞
1

n
log2(n+ 1) = 0
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The n+ 1 possible sequences are

0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸
n−k

(n sequences)

and the sequence 11 . . . 1, which occurs if we start from state S1.

Problem 9.37 :

(a) The two symbols, dot and dash, can be represented as 10 and 1110 respectively, where 1
denotes line closure and 0 an open line. Hence, the constraints of the code are :

• A 0 is always followed by 1.

• Only sequences having one or three repetitions of 1, are allowed.

The next figure depicts the state diagram of the code, where the state S0 denotes the reception
of a dot or a dash, and state Si denotes the reception of i adjacent 1’s.

✚✙
✛✘
✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

❅
❅
❅❅❘
❅

❅
❅
❅❅� 	

	
		✠

✲✲

1

0
0

11

S0

S3S2S1

(b) The state transition matrix is :

D =




0 1 0 0
1 0 1 0
0 0 0 1
1 0 0 0




(c) The characteristic equation of the matrix D is :

det(D − λI) = 0 =⇒ λ4 − λ2 − 1 = 0

The roots of the characteristic equation are :

λ1,2 = ±
(
1 +
√
5

2

) 1
2

λ3,4 = ±
(
1−√5

2

) 1
2
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Thus, the capacity of the code is :

C = log2 λmax = log2 λ1 = log2

(
1 +
√
5

2

) 1
2

= 0.3471

Problem 9.38 :

The state diagram of Fig. P9-31 describes a runlength constrained code, that forbids any
sequence containing a run of more than three adjacent symbols of the same kind. The state
transition matrix is :

D =




0 0 0 1 0 0
1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1
0 0 1 0 0 0




The corresponding trellis is shown in the next figure :
















 








 







❏
❏
❏❏

❅
❅❅
❍❍❍✟✟
✟

	
		

✡
✡
✡✡❍❍❍❍❍❍

✟✟
✟

✟✟
✟
✟✟
✟✟
✟✟

❍❍❍

❍❍❍
✡
✡
✡✡

	
		✟
✟✟❍❍❍
❅
❅❅

❏
❏
❏❏

❏
❏
❏❏

❅
❅❅
❍❍❍✟✟
✟

	
		

✡
✡
✡✡❍❍❍❍❍❍

✟✟
✟

✟✟
✟

...

000
00
0
1
11
111

History

Problem 9.39 :

The state transition matrix of the (2,7) runlength-limited code is the 8× 8 matrix :

D =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0



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CHAPTER 10

Problem 10.1 :

Suppose that am = +1 is the transmitted signal. Then the probability of error will be :

Pe|1 = P (ym < 0|am = +1)

= P (1 + nm + im < 0)

=
1

4
P (1/2 + nm < 0) +

1

4
P (3/2 + nm < 0) +

1

2
P (1 + nm < 0)

=
1

4
Q
[

1

2σn

]
+

1

4
Q
[

3

2σn

]
+

1

2
Q
[
1

σn

]

Due to the symmetry of the intersymbol interference, the probability of error, when am = −1 is
transmitted, is the same. Thus, the above result is the average probability of error.

Problem 10.2 :

(a) If the transmitted signal is :

r(t) =
∞∑

n=−∞
Inh(t− nT ) + n(t)

then the output of the receiving filter is :

y(t) =
∞∑

n=−∞
Inx(t− nT ) + ν(t)

where x(t) = h(t) � h(t) and ν(t) = n(t) � h(t). If the sampling time is off by 10%, then the
samples at the output of the correlator are taken at t = (m± 1

10
)T . Assuming that t = (m− 1

10
)T

without loss of generality, then the sampled sequence is :

ym =
∞∑

n=−∞
Inx((m− 1

10
T − nT ) + ν((m− 1

10
)T )

If the signal pulse is rectangular with amplitude A and duration T , then
∑∞

n=−∞ Inx((m− 1
10
T −

nT ) is nonzero only for n = m and n = m− 1 and therefore, the sampled sequence is given by :

ym = Imx(− 1

10
T ) + Im−1x(T − 1

10
T ) + ν((m− 1

10
)T )

=
9

10
ImA

2T + Im−1
1

10
A2T + ν((m− 1

10
)T )
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The variance of the noise is :

σ2
ν =

N0

2
A2T

and therefore, the SNR is :

SNR =
(
9

10

)2 2(A2T )2

N0A2T
=

81

100

2A2T

N0

As it is observed, there is a loss of 10 log10
81
100

= −0.9151 dB due to the mistiming.

(b) Recall from part (a) that the sampled sequence is

ym =
9

10
ImA

2T + Im−1
1

10
A2T + νm

The term Im−1
A2T
10

expresses the ISI introduced to the system. If Im = 1 is transmitted, then
the probability of error is

P (e|Im = 1) =
1

2
P (e|Im = 1, Im−1 = 1) +

1

2
P (e|Im = 1, Im−1 = −1)

=
1

2
√
πN0A2T

∫ −A2T

−∞
e
− ν2

N0A2T dν +
1

2
√
πN0A2T

∫ − 8
10
A2T

−∞
e
− ν2

N0A2T dν

=
1

2
Q



√
2A2T

N0


+ 1

2
Q



√(

8

10

)2 2A2T

N0




Since the symbols of the binary PAM system are equiprobable the previous derived expression
is the probability of error when a symbol by symbol detector is employed. Comparing this with
the probability of error of a system with no ISI, we observe that there is an increase of the
probability of error by

Pdiff(e) =
1

2
Q



√(

8

10

)2 2A2T

N0


− 1

2
Q



√
2A2T

N0




Problem 10.3 :

(a) Taking the inverse Fourier transform of H(f), we obtain :

h(t) = F−1[H(f)] = δ(t) +
α

2
δ(t− t0) + α

2
δ(t+ t0)

Hence,

y(t) = s(t) � h(t) = s(t) +
α

2
s(t− t0) + α

2
s(t+ t0)
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(b) If the signal s(t) is used to modulate the sequence {In}, then the transmitted signal is :

u(t) =
∞∑

n=−∞
Ins(t− nT )

The received signal is the convolution of u(t) with h(t). Hence,

y(t) = u(t) � h(t) =

( ∞∑
n=−∞

Ins(t− nT )
)
�
(
δ(t) +

α

2
δ(t− t0) + α

2
δ(t+ t0)

)

=
∞∑

n=−∞
Ins(t− nT ) + α

2

∞∑
n=−∞

Ins(t− t0 − nT ) + α

2

∞∑
n=−∞

Ins(t+ t0 − nT )

Thus, the output of the matched filter s(−t) at the time instant t1 is :

w(t1) =
∞∑

n=−∞
In

∫ ∞

−∞
s(τ − nT )s(τ − t1)dτ

+
α

2

∞∑
n=−∞

In

∫ ∞

−∞
s(τ − t0 − nT )s(τ − t1)dτ

+
α

2

∞∑
n=−∞

In

∫ ∞

−∞
s(τ + t0 − nT )s(τ − t1)dτ

If we denote the signal s(t) � s(t) by x(t), then the output of the matched filter at t1 = kT is :

w(kT ) =
∞∑

n=−∞
Inx(kT − nT )

+
α

2

∞∑
n=−∞

Inx(kT − t0 − nT ) + α

2

∞∑
n=−∞

Inx(kT + t0 − nT )

(c) With t0 = T and k = n in the previous equation, we obtain :

wk = Ikx0 +
∑
n �=k

Inxk−n

+
α

2
Ikx−1 +

α

2

∑
n �=k

Inxk−n−1 +
α

2
Ikx1 +

α

2

∑
n �=k

Inxk−n+1

= Ik

(
x0 +

α

2
x−1 +

α

2
x1

)
+
∑
n �=k

In

[
xk−n +

α

2
xk−n−1 +

α

2
xk−n+1

]

The terms under the summation is the ISI introduced by the channel. If the signal s(t) is
designed so as to satisfy the Nyquist criterion, then :

xk = 0, k �= 0
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and the aobove expression simplifies to :

wk = Ik +
α

2
(Ik+1 + Ik−1)

Problem 10.4 :

(a) Each segment of the wire-line can be considered as a bandpass filter with bandwidth W =
1200 Hz. Thus, the highest bit rate that can be transmitted without ISI by means of binary
PAM is :

R = 2W = 2400 bps

(b) The probability of error for binary PAM trasmission is :

P2 = Q

[√
2Eb
N0

]

Hence, using mathematical tables for the function Q[·], we find that P2 = 10−7 is obtained for :√
2Eb
N0

= 5.2 =⇒ Eb
N0

= 13.52 = 11.30 dB

(c) The received power PR is related to the desired SNR per bit through the relation :

PR
N0

=
1

T

Eb
N0

= R
Eb
N0

Hence, with N0 = 4.1× 10−21 we obtain :

PR = 4.1× 10−21 × 1200× 13.52 = 6.6518× 10−17 = −161.77 dBW

Since the power loss of each segment is :

Ls = 50 Km × 1 dB/Km = 50 dB

the transmitted power at each repeater should be :

PT = PR + Ls = −161.77 + 50 = −111.77 dBW

Problem 10.5 :

xn =
∫ ∞

−∞
h(t+ nT )h∗(t)dt
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vk =
∫ ∞

−∞
z(t)h∗(t− kT )dt

Then :
1
2
E [vjv

∗
k] = 1

2
E
[∫∞

−∞
∫∞
−∞ z(a)h

∗(a− jT )z∗(b)h(b− kT )dadb
]

=
∫∞
−∞

∫∞
−∞

1
2
E [z(a)z∗(b)] h∗(a− jT )h(b− kT )dadb

= N0

∫∞
−∞ h

∗(a− jT )h(a− kT )da = N0xj−k

Problem 10.6 :

In the case of duobinary signaling, the output of the matched filter is :

x(t) = sinc(2Wt) + sinc(2Wt− 1)

and the samples xn−m are given by :

xn−m = x(nT −mT ) =



1 n−m = 0
1 n−m = 1
0 otherwise

Therefore, the metric CM(I) in the Viterbi algorithm becomes

CM(I) = 2
∑
n

Inrn −
∑
n

∑
m

InImxn−m

= 2
∑
n

Inrn −
∑
n

I2
n −

∑
n

InIn−1

=
∑
n

In(2rn − In − In−1)

Problem 10.7 :

(a) The output of the matched filter demodulator is :

y(t) =
∞∑

k=−∞
Ik

∫ ∞

−∞
gT (τ − kTb)gR(t− τ)dτ + ν(t)

=
∞∑

k=−∞
Ikx(t− kTb) + ν(t)

where,

x(t) = gT (t) � gR(t) =
sin πt

T
πt
T

cos πt
T

1− 4 t2

T 2
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Hence,

y(mTb) =
∞∑

k=−∞
Ikx(mTb − kTb) + v(mTb)

= Im +
1

π
Im−1 +

1

π
Im+1 + ν(mTb)

The term 1
π
Im−1 +

1
π
Im+1 represents the ISI introduced by doubling the symbol rate of trans-

mission.

(b) In the next figure we show one trellis stage for the ML sequence detector. Since there is
postcursor ISI, we delay the received signal, used by the ML decoder to form the metrics, by one
sample. Thus, the states of the trellis correspond to the sequence (Im−1, Im), and the transition
labels correspond to the symbol Im+1. Two branches originate from each state. The upper
branch is associated with the transmission of −1, whereas the lower branch is associated with
the transmission of 1.

✉
✉
✉
✉

✉
✉

✉
✉

✏✏
✏✏
✏✏
✏✏✏✏

✏✏
✏✏
✏✏

✑
✑
✑
✑
✑
✑
✑✑

◗
◗
◗
◗
◗
◗
◗◗

��������

��������

Im+1

1
-1

1
-1

-1

1

1

-1

1 1

1 -1

-1 1

-1 -1
(Im−1, Im)

Problem 10.8 :

(a) The output of the matched filter at the time instant mT is :

ym =
∑
k

Imxk−m + νm = Im +
1

4
Im−1 + νm

The autocorrelation function of the noise samples νm is

E[νkνj ] =
N0

2
xk−j

Thus, the variance of the noise is

σ2
ν =

N0

2
x0 =

N0

2

If a symbol by symbol detector is employed and we assume that the symbols Im = Im−1 =
√Eb

have been transmitted, then the probability of error P (e|Im = Im−1 =
√Eb) is :

P (e|Im = Im−1 =
√
Eb) = P (ym < 0|Im = Im−1 =

√
Eb)
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= P (νm < −5

4

√
Eb) = 1√

πN0

∫ − 5
4

√Eb

−∞
e
− ν2

m
N0 dνm

=
1√
2π

∫ − 5
4

√
2Eb
N0

−∞
e−

ν2

2 dν = Q

[
5

4

√
2Eb
N0

]

If however Im−1 = −√Eb, then :

P (e|Im =
√
Eb, Im−1 = −

√
Eb) = P (

3

4

√
Eb + νm < 0) = Q

[
3

4

√
2Eb
N0

]

Since the two symbols
√Eb, −

√Eb are used with equal probability, we conclude that :

P (e) = P (e|Im =
√
Eb) = P (e|Im = −

√
Eb)

=
1

2
Q

[
5

4

√
2Eb
N0

]
+

1

2
Q

[
3

4

√
2Eb
N0

]

(b) In the next figure we plot the error probability obtained in part (a) (log10(P (e))) vs. the
SNR per bit and the error probability for the case of no ISI. As it observed from the figure, the
relative difference in SNR of the error probability of 10−6 is 2 dB.

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

6 7 8 9 10 11 12 13 14

SNR/bit, dB

lo
g(

P(
e)

Problem 10.9 :

For the DFE we have that :

Îk =
0∑

j=−K1

cjuk−j +
K2∑
j=1

cjIk−j
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We want to minimize J = E
∣∣∣Ik − Îk∣∣∣2 . Taking the derivative of J, with respect to the real and

imaginary parts of cl = al + jbl, 1 ≤ l ≤ K2, we obtain :

∂J
∂al

= 0⇒ E
[
−Ik−l

(
I∗k − Î∗k

)
− I∗k−l

(
Ik − Îk

)]
= 0⇒

E
[
Re
{
I∗k−l

(
Ik − Îk

)}]
= 0

and similarly :
∂J

∂bl
= 0⇒ E

[
Im

{
I∗k−l

(
Ik − Îk

)}]
= 0

Hence,
E
[
I∗k−l

(
Ik − Îk

)]
= 0, 1 ≤ l ≤ K2 (1)

Since the information symbols are uncorrelated : E [IkI
∗
l ] = δkl. We also have :

E [Iku
∗
l ] = E

[
Ik
(∑L

m=0 f
∗
mI

∗
l−m + n∗l

)]
= f ∗

l−k

Hence, equation (1) gives :

E
[
IkI

∗
k−l
]
= E

[
ÎkI

∗
k−l
]
, 1 ≤ l ≤ K2 ⇒

0 = E
[(∑0

j=−K1
cjuk−j +

∑K2
j=1 cjIk−j

)
I∗k−l

]
⇒

0 =
(∑0

j=−K1
cjfl−j

)
+ cl ⇒

cl = −∑0
j=−K1

cjfl−j, 1 ≤ l ≤ K2

which is the desired equation for the feedback taps.

Problem 10.10 :

(a) The equivalent discrete-time impulse response of the channel is :

h(t) =
1∑

n=−1

hnδ(t− nT ) = 0.3δ(t+ T ) + 0.9δ(t) + 0.3δ(t− T )

If by {cn} we denote the coefficients of the FIR equalizer, then the equalized signal is :

qm =
1∑

n=−1

cnhm−n

which in matrix notation is written as :
 0.9 0.3 0.

0.3 0.9 0.3
0. 0.3 0.9




 c−1

c0
c1


 =


 0

1
0



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The coefficients of the zero-force equalizer can be found by solving the previous matrix equation.
Thus, 

 c−1

c0
c1


 =


 −0.47621.4286
−0.4762




(b) The values of qm for m = ±2,±3 are given by

q2 =
1∑

n=−1

cnh2−n = c1h1 = −0.1429

q−2 =
1∑

n=−1

cnh−2−n = c−1h−1 = −0.1429

q3 =
1∑

n=−1

cnh3−n = 0

q−3 =
1∑

n=−1

cnh−3−n = 0

Problem 10.11 :

(a) The output of the zero-force equalizer is :

qm =
1∑

n=−1

cnxmn

With q0 = 1 and qm = 0 for m �= 0, we obtain the system :




1.0 0.1 −0.5
−0.2 1.0 0.1
0.05 −0.2 1.0





c−1

c0
c1


 =




0
1
0




Solving the previous system in terms of the equalizer’s coefficients, we obtain :


 c−1

c0
c1


 =


 0.000

0.980
0.196



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(b) The output of the equalizer is :

qm =




0 m ≤ −4
c−1x−2 = 0 m = −3
c−1x−1 + c0x−2 = −0.49 m = −2
0 m = −1
1 m = 0
0 m = 1
c0x2 + x1c1 = 0.0098 m = 2
c1x2 = 0.0098 m = 3
0 m ≥ 4

Hence, the residual ISI sequence is

residual ISI = {. . . , 0,−0.49, 0, 0, 0, 0.0098, 0.0098, 0, . . .}
and its span is 6 symbols.

Problem 10.12 :

(a) If {cn} denote the coefficients of the zero-force equalizer and {qm} is the sequence of the
equalizer’s output samples, then :

qm =
1∑

n=−1

cnxm−n

where {xk} is the noise free response of the matched filter demodulator sampled at t = kT .
With q−1 = 0, q0 = q1 = Eb, we obtain the system :


Eb 0.9Eb 0.1Eb

0.9Eb Eb 0.9Eb
0.1Eb 0.9Eb Eb





c−1

c0
c1


 =




0
Eb
Eb




The solution to the system is :(
c−1 c0 c1

)
=
(
0.2137 −0.3846 1.3248

)

(b) The set of noise variables {νk} at the output of the sampler is a gaussian distributed sequence
with zero-mean and autocorrelation function :

Rν(k) =

{
N0

2
xk |k| ≤ 2

0 otherwise

Thus, the autocorrelation function of the noise at the output of the equalizer is :

Rn(k) = Rν(k) � c(k) � c(−k)
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where c(k) denotes the discrete time impulse response of the equalizer. Therefore, the autocor-
relation sequence of the noise at the output of the equalizer is :

Rn(k) =
N0Eb
2




0.9402 k = 0
1.3577 k = ±1
−0.0546 k = ±2
0.1956 k = ±3
0.0283 k = ±4

0 otherwise

To find an estimate of the error probability for the sequence detector, we ignore the residual
interference due to the finite length of the equalizer, and we only consider paths of length two.
Thus, if we start at state I0 = 1 and the transmitted symbols are (I1, I2) = (1, 1) an error is
made by the sequence detector if the path (−1, 1) is more probable, given the received values of
r1 and r2. The metric for the path (I1, I2) = (1, 1) is :

µ2(1, 1) = [ r1 − 2Eb r2 − 2Eb ]C−1

[
r1 − 2Eb
r2 − 2Eb

]

where :

C =
N0Eb
2

(
0.9402 1.3577
1.3577 0.9402

)

Similarly, the metric of the path (I1, I2) = (−1, 1) is

µ2(−1, 1) = [ r1 r2 ]C−1

[
r1
r2

]

Hence, the probability of error is :

P2 = P (µ2(−1, 1) < µ2(1, 1))

and upon substitution of r1 = 2Eb + n1, r2 = 2Eb + n2, we obtain :

P2 = P (n1 + n2 < −2Eb)

Since n1 and n2 are zero-mean Gaussian variables, their sum is also zero-mean Gaussian with
variance :

σ2 = (2× 0.9402 + 2× 1.3577)
N0Eb
2

= 4.5958
N0Eb
2

and therefore :

P2 = Q

[√
8Eb

4.5958N0

]

The bit error probability is P2

2
.
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Problem 10.13 :

The optimum tap coefficients of the zero-force equalizer can be found by solving the system:
 1.0 0.3 0.0

0.2 1.0 0.3
0.0 0.2 1.0




 c−1

c0
c1


 =


 0

1
0




Hence, 
 c−1

c0
c1


 =


 −0.34091.1364
−0.2273




The output of the equalizer is :

qm =




0 m ≤ −3
c−1x−1 = −0.1023 m = −2
0 m = −1
1 m = 0
0 m = 1
c1x1 = −0.0455 m = 2
0 m ≥ 3

Hence, the residual ISI sequence is :

residual ISI = {. . . , 0,−0.1023, 0, 0, 0,−0.0455, 0, . . .}

Problem 10.14 :

(a) If we assume that the signal pulse has duration T , then the ouput of the matched filter at
the time instant t = T is :

y(T ) =
∫ T

0
r(τ)s(τ)dτ

=
∫ T

0
(s(τ) + αs(τ − T ) + n(τ))s(τ)dτ

=
∫ T

0
s2(τ)dτ +

∫ T

0
n(τ)s(τ)dτ

= Es + n
where Es is the energy of the signal pulse and n is a zero-mean Gaussian random variable with
variance σ2

n = N0Es

2
. Similarly, the output of the matched filter at t = 2T is :

y(2T ) = α
∫ T

0
s2(τ)dτ +

∫ T

0
n(τ)s(τ)dτ

= αEs + n
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(b) If the transmitted sequence is :

x(t) =
∞∑

n=−∞
Ins(t− nT )

with In taking the values 1,−1 with equal probability, then the output of the demodulator at
the time instant t = kT is

yk = IkEs + αIk−1Es + nk
The term αIk−1Es expresses the ISI due to the signal reflection. If a symbol by symbol detector
is employed and the ISI is ignored, then the probability of error is :

P (e) =
1

2
P (error|In = 1, In−1 = 1) +

1

2
P (error|In = 1, In−1 = −1)

=
1

2
P ((1 + α)Es + nk < 0) +

1

2
P ((1− α)Es + nk < 0)

=
1

2
Q



√
2(1 + α)2Es

N0


+ 1

2
Q



√
2(1− α)2Es

N0




(c) To find the error rate performance of the DFE, we assume that the estimation of the
parameter α is correct and that the probability of error at each time instant is the same. Since
the transmitted symbols are equiprobable, we obtain :

P (e) = P (error at k|Ik = 1)

= P (error at k − 1)P (error at k|Ik = 1, error at k − 1)

+P (no error at k − 1)P (error at k|Ik = 1, no error at k − 1)

= P (e)P (error at k|Ik = 1, error at k − 1)

+(1− P (e))P (error at k|Ik = 1, no error at k − 1)

= P (e)p+ (1− P (e))q

where :

p = P (error at k|Ik = 1, error at k − 1)

=
1

2
P (error at k|Ik = 1, Ik−1 = 1, error at k − 1)

+
1

2
P (error at k|Ik = 1, Ik−1 = −1, error at k − 1)

=
1

2
P ((1 + 2α)Es + nk < 0) +

1

2
P ((1− 2α)Es + nk < 0)

=
1

2
Q



√
2(1 + 2α)2Es

N0


+ 1

2
Q



√
2(1− 2α)2Es

N0



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and

q = P (error at k|Ik = 1, no error at k − 1)

= P (Es + nk < 0) = Q

[√
2Es
N0

]

Solving for P (e), we obtain :

P (e) =
q

1− p+ q =
Q
[√

2Es

N0

]
1− 1

2
Q
[√

2(1+2α)2Es

N0

]
− 1

2
Q
[√

2(1−2α)2Es

N0

]
+Q

[√
2Es

N0

]

A sketch of the detector structure is shown in the next figure.
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Problem 10.15 :

A discrete time transversal filter equivalent to the cascade of the trasmitting filter gT (t), the
channel c(t), the matched filter at the receicer gR(t) and the sampler, has tap gain coefficients
{xm}, where :

xm =




0.9 m = 0
0.3 m = ±1
0 otherwise

The noise νk, at the output of the sampler, is a zero-mean Gaussian sequence with autocorrela-
tion function :

E[νkνl] = σ2xk−l, |k − l| ≤ 1

If the Z-transform of the sequence {xm}, X(z), assumes the factorization :

X(z) = F (z)F ∗(z−1)

then the filter 1/F ∗(z−1) can follow the sampler to white the noise sequence νk. In this case the
output of the whitening filter, and input to the MSE equalizer, is the sequence :

un =
∑
k

Ikfn−k + nk
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where nk is zero mean Gaussian with variance σ2. The optimum coefficients of the MSE equal-
izer, ck, satisfy :

1∑
n=−1

cnΓkn = ξk, k = 0,±1

where :

Γ(n− k) =

{
xn−k + σ2δn,k, |n− k| ≤ 1
0 otherwise

ξ(k) =

{
f−k, −1 ≤ k ≤ 0
0 otherwise

With
X(z) = 0.3z + 0.9 + 0.3z−1 = (f0 + f1z

−1)(f0 + f1z)

we obtain the parameters f0 and f1 as :

f0 =

{ ±√0.7854
±√0.1146 , f1 =

{ ±√0.1146
±√0.7854

The parameters f0 and f1 should have the same sign since f0f1 = 0.3. However, the sign itself
does not play any role if the data are differentially encoded. To have a stable inverse system
1/F ∗(z−1), we select f0 and f1 in such a way that the zero of the system F ∗(z−1) = f0 + f1z
is inside the unit circle. Thus, we choose f0 =

√
0.1146 and f1 =

√
0.7854 and therefore, the

desired system for the equalizer’s coefficients is
 0.9 + 0.1 0.3 0.0

0.3 0.9 + 0.1 0.3
0.0 0.3 0.9 + 0.1




 c−1

c0
c1


 =



√
0.7854√
0.1146
0




Solving this system, we obtain

c−1 = 0.8596, c0 = 0.0886, c1 = −0.0266

Problem 10.16 :

(a) The spectrum of the band limited equalized pulse is

X(f) =

{
1

2W

∑∞
n=−∞ x(

n
2W

)e−j
πnf
W |f | ≤W

0 otherwise

=

{
1

2W

[
2 + 2 cos πf

W

]
|f | ≤W

0 otherwise

=

{
1
W

[
1 + 1 cos πf

W

]
|f | ≤W

0 otherwise
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where W = 1
2Tb

(b) The following table lists the possible transmitted sequences of length 3 and the corresponding
output of the detector.

-1 -1 -1 -4
-1 -1 1 -2
-1 1 -1 0
-1 1 1 2
1 -1 -1 -2
1 -1 1 0
1 1 -1 2
1 1 1 4

As it is observed there are 5 possible output levels bm, with probability P (bm = 0) = 1
4
,

P (bm = ±2) = 1
4
and P (bm = ±4) = 1

8
.

(c) The transmitting filter GT (f), the receiving filter GR(f) and the equalizer GE(f) satisfy the
condition

GT (f)GR(f)GE(f) = X(f)

The power spectral density of the noise at the output of the equalizer is :

Sν(f) = Sn(f)|GR(f)GE(f)|2 = σ2|GR(f)GE(f)|2

With

GT (f) = GR(f) = P (f) =
πT50

2
e−πT50|f |

the variance of the output noise is :

σ2
ν = σ2

∫ ∞

−∞
|GR(f)GE(f)|2df = σ2

∫ ∞

−∞

∣∣∣∣∣ X(f)

GT (f)

∣∣∣∣∣
2

df

= σ2
∫ W

−W
4

π2T 2
50W

2

|1 + cos πf
W
|2

e−2πT50|f | df

=
8σ2

π2T 2
50W

2

∫ W

0

(
1 + cos

πf

W

)2

e2πT50fdf

The value of the previous integral can be found using the formula :

∫
eax cosn bxdx

=
1

a2 + n2b2

[
(a cos bx+ nb sin bx)eax cosn−1 bx + n(n− 1)b2

∫
eax cosn−2 bxdx

]
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Thus, we obtain :

σ2
ν =

8σ2

π2T 2
50W

2
×
[(
e2πT50W − 1

)( 1

2πT50

+
2πT50 + π

1
W 2T50

4π2T 2
50 + 4 π2

W 2

)

− 4πT50

4π2T 2
50 +

π2

W 2

(
e2πT50W + 1

)]

To find the probability of error using a symbol by symbol detector, we follow the same procedure
as in Section 9.3.2. The results are the same with that obtained from a 3-point PAM constellation
(0,±2) used with a duobinary signal with output levels having the probability mass function
given in part (b). An upper bound of the symbol probability of error is :

P (e) < P (|ym| > 1|bm = 0)P (bm = 0) + 2P (|ym − 2| > 1|bm = 2)P (bm = 2)

+2P (ym + 4 > 1|bm = −4)P (bm = −4)
= P (|ym| > 1|bm = 0) [P (bm = 0) + 2P (bm = 2) + P (bm = −4)]
=

7

8
P (|ym| > 1|bm = 0)

But

P (|ym| > 1|bm = 0) =
2√
2πσν

∫ ∞

1
e−x

2/2σ2
νdx

Therefore,

P (e) <
14

8
Q
[
1

σν

]

Problem 10.17 :

Since the partial response signal has memory length equal to 2, the corresponding trellis has 4
states which we label as (In−1, In). The following figure shows three frames of the trellis. The
labels of the branches indicate the output of the partial response system. As it is observed the
free distance between merging paths is 3, whereas the Euclidean distance is equal to

dE = 22 + 42 + 22 = 24
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✲
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Problem 10.18 :

(a) X(z) = F (z)F ∗(z−1) = 1
2
z + 1 + 1

2
z−1. Then, the covariance matrix Γ is :

Γ =


 1 +N0 1/2 0

1/2 1 +N0 1/2
0 1/2 1 +N0


 and ξ =


 1/
√
2

1/
√
2

0




The optimum equalizer coefficients are given by :

Copt = Γ−1ξ

= 1
det(Γ)



(1 +N0)

2 − 1/4 −1
2
(1 +N0) 1/4

−1
2
(1 +N0) (1 +N0)

2 −1
2
(1 +N0)

1/4 −1
2
(1 +N0) (1 +N0)

2 − 1/4





1/
√
2

1/
√
2

0




= 1√
2 det(Γ)



N2

0 + 3
2
N0 +

1
4

N2
0 + 3

2
N0 +

1
2−N0

2
− 1

4




where det(Γ) = (1 +N0)
[
(1 +N0)

2 − 1
2

]

(b)

det(Γ− λI) = (1 +N0 − λ)
[
(1 +N0 − λ)2 − 1

2

]
⇒

λ1 = 1 +N0, λ2 = 1√
2
+ 1 +N0, λ3 = 1− 1√

2
+N0

and the corresponding eigenvectors are :

v1 =


 −1/

√
2

0

1/
√
2


 , v2 =




1/2

1/
√
2

1/2


 , v3 =




1/2

−1/√2
1/2




(c)

Jmin(K)|K=1 = Jmin(1) = 1− ξ′Γ−1ξ =
2N3

0 + 4N2
0 + 2N0 + 3/4

2N3
0 + 4N2

0 + 5N0 + 1

(d)

γ =
1− Jmin(1)

Jmin(1)
=

2N2
0 + 3N0 + 3/4

2N3
0 + 4N2

0 + 1/4

Note that as N0 → 0, γ → 3. For N0 = 0.1, γ = 2.18 for the 3-tap equalizer and γ =√
1 + 2

N0
− 1 = 3.58, for the infinite-tap equalizer (as in example 10-2-1). Also, note that

γ = 1
N0

= 10 for the case of no intersymbol interference.
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Problem 10.19 :

For the DFE we have that :

Îk =
0∑

j=−K1

cjuk−j +
K2∑
j=1

cjIk−j, and εk = Ik − Îk

The orthogonality principle is simply :

E
[
εku

∗
k−l
]
= 0, for −K1 ≤ l ≤ 0

E
[
εkI

∗
k−l
]
= 0, for 1 ≤ l ≤ K2


⇒



E
[
Iku

∗
k−l
]
= E

[
Îku

∗
k−l
]
, −K1 ≤ l ≤ 0

E
[
IkI

∗
k−l
]
= E

[
ÎkI

∗
k−l
]
, 1 ≤ l ≤ K2




Since the information symbols are uncorrelated : E [IkI
∗
l ] = aδkl, where a = E

[
|Ik|2

]
is a

constant whose value is not needed since it will be present in all terms and thus, cancelled out.
In order to solve the above system, we also need E [uku

∗
l ] , E [Iku

∗
l ] . We have :

E [uku
∗
l ] = E

[(∑L
n=0 fnIk−n + nk

) (∑L
m=0 f

∗
mI

∗
l−m + n∗l

)]
= a

∑L
m=0 f

∗
mfm+k−l +N0δkl

and
E [Iku

∗
l ] = E

[
Ik
(∑L

m=0 f
∗
mI

∗
l−m + n∗l

)]
= af ∗

l−k
Hence, the second equation of the orthogonality principle gives :

E
[
IkI

∗
k−l
]
= E

[
ÎkI

∗
k−l
]
, 1 ≤ l ≤ K2 ⇒

0 = E
[(∑0

j=−K1
cjuk−j +

∑K2
j=1 cjIk−j

)
I∗k−l

]
⇒

0 = a
(∑0

j=−K1
cjfl−j

)
+ acl ⇒

cl = −∑0
j=−K1

cjfl−j, 1 ≤ l ≤ K2

which is the desired equation for the feedback taps. The first equation of the orthogonality
principle will give :

E
[
Iku

∗
k−l
]
= E

[
Îku

∗
k−l
]
, −K1 ≤ l ≤ 0⇒

af ∗
−l = E

[(∑0
j=−K1

cjuk−j +
∑K2

j=1 cjIk−j
)
u∗k−l

]
⇒

af ∗
−l =

∑0
j=−K1

cj
(
a
∑L

m=0 f
∗
mfm+l−j +N0δkl

)
+ a

∑K2
j=1 cjf

∗
j−l, −K1 ≤ l ≤ 0

Substituting the expression for cj, 1 ≤ j ≤ K2, that we found above :

f ∗
−l =

∑0
j=−K1

cj
(∑L

m=0 f
∗
mfm+l−j +N0δkl

)
−∑K2

j=1

∑0
m=−K1

cmfj−mf ∗
j−l, −K1 ≤ l ≤ 0⇒

f ∗
−l =

∑0
j=−K1

cj
(∑L

m=0 f
∗
mfm+l−j +N0δkl

)
−∑0

j=−K1
cj
∑K2

m=1 fm−jf ∗
m−l, −K1 ≤ l ≤ 0⇒

∑0
j=−K1

cjψlj = f ∗
−l, −K1 ≤ l ≤ 0
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where ψlj =
∑−l

m=0 f
∗
mfm+l−j +N0δlj , which is the desired expression for the feedforward taps of

the equalizer.

Problem 10.20 :

The tap coefficients for the feedback section of the DFE are given by the equation :

ck = −∑0
j=−K1

cjfk−j, k = 1, 2, ..., K2

= − (c0fk + c−1fk+1 + ...+ c−K1fk+K1)

But fk = 0 for k < 0 and k > L. Therefore :

cL = −c0fL, cL+1 = 0, cL+2 = 0, etc

Problem 10.21 :

(a) The tap coefficients for the feedback section of the DFE are given by the equation : ck =
−∑0

j=−K1
cjfk−j, 1 ≤ k ≤ K2, and for the feedforward section as the solution to the equations :∑0

j=−K1
cjψlj = −f ∗

−l, K1 ≤ l ≤ 0. In this case, K1 = 1, and hence :
∑0

j=−K1
cjψlj = −f ∗

−l, l =
−1, 0 or :

ψ0,0c0 + ψ0,−1c−1 = f ∗
0

ψ−1,0c0 + ψ−1,−1c−1 = f ∗
1

But ψlj =
∑−l

m=0 f
∗
mfm+l−j +N0δlj, so the above system can be written :

[
1
2
+N0

1
2

1
2

1 +N0

] [
c0
c−1

]
=

[
1/
√
2

1/
√
2

]

so : [
c0
c−1

]
=

1√
2
(
N2

0 + 3
2
N0 +

1
4

)
[

1
2
+N0

N0

]
≈
[ √

2

2
√
2N0

]
, for N0 << 1

The coefficient for the feedback section is :

c1 = −c0f1 = − 1√
2
c0 ≈ −1, for N0 << 1

(b)

Jmin(1) = 1−
0∑

j=−K1

cjf−j =
2N2

0 +N0

2
(
N2

0 + 3
2
N0 +

1
4

) ≈ 2N0, for N0 << 1
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(c)

γ =
1− Jmin(1)

Jmin(1)
=

1 + 4N0

2N0 (1 + 2N0)
≈ 1

2N0
, N0 << 1

(d) For the infinite tap DFE, we have from example 10-3-1 :

Jmin = 2N0

1+N0+
√

(1+N0)2−1
≈ 2N0, N0 << 1

γ∞ = 1−Jmin

Jmin
=

1−N0

√
(1+N0)2−1

2N0

(e) For N0 = 0.1, we have :

Jmin(1) = 0.146, γ = 5.83 (7.66 dB)
Jmin = 0.128, γ∞ = 6.8 (8.32 dB)

For N0 = 0.01, we have :

Jmin(1) = 0.0193, γ = 51 (17.1 dB)
Jmin = 0.0174, γ∞ = 56.6 (17.5 dB)

The three-tap equalizer performs very wee compared to the infinite-tap equalizer. The difference
in performance is 0.6 dB for N0 = 0.1 and 0.4 dB for N0 = 0.01.

Problem 10.22 :

(a) We have that :
1

2T
= 900, 1+β

2T
= 1200⇒

1 + β = 1200/900 = 4/3⇒ β = 1/3

(b) Since 1/2T = 900, the pulse rate 1/T is 1800 pulses/sec.

(c) The largest interference is caused by the sequence : {1,−1, s, 1,−1, 1} or its opposite in
sign. This interference is constructive or destructive depending on the sign of the information
symbol s. The peak distortion is

∑3
k=−2,k �=0 fk = 1.6

(d) The probability of the worst-case interference given above is
(

1
2

)5
= 1/32, and the same is

the probability of the sequence that causes the opposite-sign interference.
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Problem 10.23 :

(a)
F (z) = 0.8− 0.6z−1 ⇒

X(z) ≡ F (z)F ∗(z−1) = (0.8− 0.6z−1) (0.8− 0.6z) = 1− 0.48z−1 − 0.48z

Thus, x0 = 1, x−1 = x1 = −0.48.

(b)

1

T

∞∑
n=−∞

∣∣∣∣H
(
ω +

2πn

T

)∣∣∣∣
2

= X
(
ejωT

)
= 1− 0.48e−jωT − 0.48ejωT = 1− 0.96 cosωT

(c) For the linear equalizer base on the mean-square-error criterion we have :

Jmin = T
2π

∫ π/T
−π/T

N0

1+N0−0.96 cosωT
dω

= 1
2π

∫ π
−π

N0

1+N0−0.96 cos θ
dθ

= 1
2π

(
N0

1+N0

) ∫ π
−π

1
1−a cos θ

dθ, a = 0.96
1+N0

But :
1

2π

∫ π

−π
1

1− a cos θdθ =
1√

1− a2
, a2 < 1

Therefore :

Jmin =
N0

1 +N0

1√
1−

(
0.96

1+N0

)2
=

N0√
(1 +N0)

2 − (0.96)2

(d) For the decision-feedback equalizer :

Jmin =
2N0

1 +N0 +
√
(1 +N0)

2 − (0.96)2

which follows from the result in example 10.3.1. Note that for N0 << 1,

Jmin ≈ 2N0

1 +
√
1− (0.96)2

≈ 1.56N0

In contrast, for the linear equalizer we have :

Jmin ≈ N0√
1− (0.96)2

≈ 3.57N0
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Problem 10.24 :

(a) Part of the tree structure is shown in the following figure :

❜❜❜❜❜❜❜❜

✧✧
✧✧
✧✧
✧✧

✥✥✥✥
✥✥✥


.

I2 = 3

I2 = −3

I2 = −1

I2 = 1

❜❜❜❜❜❜❜❜

✥✥✥✥
✥✥✥



I2 = 3

I2 = −3

I2 = −1

I2 = 1

✧✧
✧✧
✧✧
✧✧

❜❜❜❜❜❜❜❜

✧✧
✧✧
✧✧
✧✧

✥✥✥✥
✥✥✥



❜❜❜❜❜❜❜❜

✧✧
✧✧
✧✧
✧✧

✥✥✥✥
✥✥✥



❜❜❜❜❜❜❜❜

✧✧
✧✧
✧✧
✧✧

✥✥✥✥
✥✥✥



✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱✱

❝
❝
❝
❝
❝
❝
❝
❝
❝
❝
❝
❝
❝
❝
❝
❝
❝
❝
❝❝

✘✘✘
✘✘✘

✘✘✘
✘✘✘

✘✘✘
✘✘✘

✘✘

I1 = 3

I1 = 1

I1 = −1

I1 = −3

I2 = 3

I2 = −3

I2 = −1

I2 = 1

I3 = 3

I3 = −3

I3 = −1

I3 = 1

I2 = 3

I2 = −3

I2 = −1

I2 = 1

æ

(b) There are four states in the trellis (corresponding to the four possible values of the symbol
Ik−1), and for each one there are four paths starting from it (corresponding to the four possible
values of the symbol Ik). Hence, 16 probabilities must be computed at each stage of the Viterbi
algorithm.

(c) Since, there are four states, the number of surviving sequences is also four.
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(d) The metrics are

(y1 − 0.8I1)
2 , i = 1 and

∑
i

(yi − 0.8Ii + 0.6Ii−1)
2 , i ≥ 2

µ1 (I1 = 3) = [0.5− 3 ∗ 0.8]2 = 3.61

µ1 (I1 = 1) = [0.5− 1 ∗ 0.8]2 = 0.09

µ1 (I1 = −1) = [0.5 + 1 ∗ 0.8]2 = 1.69

µ1 (I1 = −3) = [0.5 + 3 ∗ 0.8]2 = 8.41

µ2 (I2 = 3, I1 = 3) = µ1(3) + [2− 2.4 + 3 ∗ 0.6]2 = 5.57

µ2 (3, 1) = µ1(1) + [2− 2.4 + 1 ∗ 0.6]2 = 0.13

µ2 (3,−1) = µ1(−1) + [2− 2.4− 1 ∗ 0.6]2 = 6.53

µ2 (3,−3) = µ1(−3) + [2− 2.4− 3 ∗ 0.6]2 = 13.25

µ2 (1, 3) = µ1(3) + [2− 0.8 + 3 ∗ 0.6]2 = 12.61

µ2 (1, 1) = µ1(1) + [2− 0.8 + 1 ∗ 0.6]2 = 3.33

µ2 (1,−1) = µ1(−1) + [2− 0.8− 1 ∗ 0.6]2 = 2.05

µ2 (1,−3) = µ1(−3) + [2− 0.8− 3 ∗ 0.6]2 = 8.77

µ2 (−1, 3) = µ1(3) + [2 + 0.8 + 3 ∗ 0.6]2 = 24.77

µ2 (−1, 1) = µ1(1) + [2 + 0.8 + 1 ∗ 0.6]2 = 11.65

µ2 (−1,−1) = µ1(−1) + [2 + 0.8− 1 ∗ 0.6]2 = 6.53

µ2 (−1,−3) = µ1(−3) + [2 + 0.8− 3 ∗ 0.6]2 = 9.41

µ2 (−3, 3) = µ1(3) + [2 + 2.4 + 3 ∗ 0.6]2 = 42.05

µ2 (−3, 1) = µ1(1) + [2 + 2.4 + 1 ∗ 0.6]2 = 25.09

µ2 (−3,−1) = µ1(−1) + [2 + 2.4− 1 ∗ 0.6]2 = 16.13

µ2 (−3,−3) = µ1(−3) + [2 + 2.4− 3 ∗ 0.6]2 = 15.17

The four surviving paths at this stage are minI1 [µ2(x, I1)] , x = 3, 1,−1,−3 or :

I2 = 3, I1 = 1 with metric µ2(3, 1) = 0.13
I2 = 1, I1 = −1 with metric µ2(1,−1) = 2.05
I2 = −1, I1 = −1 with metric µ2(−1,−1) = 6.53
I2 = −3, I1 = −3 with metric µ2(−3,−3) = 15.17

Now we compute the metrics for the next stage :

µ3 (I3 = 3, I2 = 3, I1 = 1) = µ2(3, 1) + [−1− 2.4 + 1.8]2 = 2.69

µ3 (3, 1,−1) = µ2(1,−1) + [−1− 2.4 + 0.6]2 = 9.89

µ3 (3,−1,−1) = µ2(−1,−1) + [−1− 2.4− 0.6]2 = 22.53

µ3 (3,−3,−3) = µ2(−3,−3) + [−1− 2.4− 1.8]2 = 42.21
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µ3 (1, 3, 1) = µ2(3, 1) + [−1− 0.8 + 1.8]2 = 0.13

µ3 (1, 1,−1) = µ2(1,−1) + [−1− 0.8 + 0.6]2 = 7.81

µ3 (1,−1,−1) = µ2(−1,−1) + [−1− 0.8− 0.6]2 = 12.29

µ3 (1,−3,−3) = µ2(−3,−3) + [−1− 0.8− 1.8]2 = 28.13

µ3 (−1, 3, 1) = µ2(3, 1) + [−1 + 0.8 + 1.8]2 = 2.69

µ3 (−1, 1,−1) = µ2(1,−1) + [−1 + 0.8 + 0.6]2 = 2.69

µ3 (−1,−1,−1) = µ2(−1,−1) + [−1 + 0.8− 0.6]2 = 7.17

µ3 (−1,−3,−3) = µ2(−3,−3) + [−1 + 0.8− 1.8]2 = 19.17

µ3 (−3, 3, 1) = µ2(3, 1) + [−1 + 2.4 + 1.8]2 = 10.37

µ3 (−3, 1,−1) = µ2(1,−1) + [−1 + 2.4 + 0.6]2 = 2.69

µ3 (−3,−1,−1) = µ2(−1,−1) + [−1 + 2.4− 0.6]2 = 7.17

µ3 (−3,−3,−3) = µ2(−3,−3) + [−1 + 2.4− 1.8]2 = 15.33

The four surviving sequences at this stage are minI2,I1 [µ3(x, I2, I1)] , x = 3, 1,−1,−3 or :

I3 = 3, I2 = 3, I1 = 1 with metric µ3(3, 3, 1) = 2.69
I3 = 1, I2 = 3, I1 = 1 with metric µ3(1, 3, 1) = 0.13
I3 = −1, I2 = 3, I1 = 1 with metric µ3(−1, 3, 1) = 2.69
I3 = −3, I2 = 1, I1 = −1 with metric µ3(−3, 1,−1) = 2.69

(e) For the channel, δ2
min = 1 and hence :

P4 = 8Q



√

6

15
γav




Problem 10.25 :

(a)
bk = 1

K

∑K−1
n=0 Ene

j2πnk/K

= 1
K

∑K−1
n=0

∑K−1
l=0 cle

−j2πnl/Kej2πnk/K

= 1
K

∑K−1
l=0 cl

∑K−1
n=0 e

j2πn(k−l)/K

But
K−1∑
n=0

ej2πn(k−l)/K =

{
0, k �= l
K, k = l

}

Hence, bk = ck.
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(b)
E(z) =

∑K−1
k=0 ckz

−k

=
∑K−1

k=0

[
1
K

∑K−1
n=0 Ene

j2πnk/K
]
z−k

= 1
K

∑K−1
n=0 En

[∑K−1
k=0

(
ej2πn/Kz−1

)k]

= 1
K

∑K−1
n=0 En

1−z−K

1−exp(j2πn/K)z−1

= 1−z−K

K

∑K−1
n=0

En

1−exp(j2πn/K)z−1

(c) The block diagram is as shown in the following figure :

✒✑
�✏

✒✑
�✏

✲ ✲

❄ ✻✻

y0(n)

E0
z−1

+ X
+

-

✒✑
�✏

✒✑
�✏

✲ ✲

❄ ✻✻

y1(n)

E1
z−1

+ X
+

-

ej2π/K

✒✑
�✏

✒✑
�✏

✲ ✲

❄ ✻✻

yK−1(n)

EK−1
z−1

+ X
+

-

ej2π(K−1)/K

✒✑
�✏

✒✑
�✏

✒✑
�✏✲

✲
✻✻

✲

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈

❏
❏
❏
❏❏

✂
✂
✂
✂
✂
✂
✂✂✍

✲

Comb. Filter

1/K z−K

x(n) X +
-

+

.

.

.

.

y(n)
+

Parallel Bank of Single− Pole Filters

æ

(d) The adjustable parameters in this structure are {E0, E1, ..., EK−1} , i.e. the DFT coefficients
of the equalizer taps. For more details on this equalizer structure, see the paper by Proakis (IEEE
Trans. on Audio and Electroacc., pp 195-200, June 1970).

250



CHAPTER 11

Problem 11.1 :

(a)

F (z) =
4

5
+

3

5
z−1 ⇒ X(z) = F (z)F ∗(z−1) = 1 +

12

25

(
z + z−1

)
Hence :

Γ =




1 12
25

0
12
25

1 12
25

0 12
25

1


 ξ =




3/5
4/5
0




and :

Copt =




c−1

c0

c1


 = Γ−1ξ =

1

β




1− a2 −a a2

−a 1 −a
a2 −a 1− a2






3/5
4/5
0




where a = 0.48 and β = 1− 2a2 = 0.539. Hence :

Copt =


 0.145

0.95
−0.456




(b) The eigenvalues of the matrix Γ are given by :

|Γ− λI| = 0⇒
∣∣∣∣∣∣∣

1− λ 0.48 0
0.48 1− λ 0.48

0 0.48 1− λ

∣∣∣∣∣∣∣ = 0⇒ λ = 1, 0.3232, 1.6768

The step size ∆ should range between :

0 ≤ ∆ ≤ 2/λmax = 1.19

(c) Following equations (10-3-3)-(10-3-4) we have :

ψ =

[
1 0.48

0.48 0.64

]
, ψ

[
c−1

c0

]
=

[
0.6
0.8

]
⇒

[
c−1

c0

]
=

[
0

1.25

]

and the feedback tap is :
c1 = −c0f1 = −0.75
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Problem 11.2 :

(a)

∆max =
2

λmax

=
2

1 + 1√
2

+ N0

=
2

1.707 + N0

(b) From (11-1-31) :

J∆ = ∆2Jmin

3∑
k=1

λ2
k

1− (1−∆λk)
2 ≈

1

2
∆Jmin

3∑
k=1

λk

Since J∆

Jmin
= 0.01 :

∆ ≈ 0.07

1 + N0
≈ 0.06

(c) Let C′ = VtC, ξ′ = Vtξ, where V is the matrix whose columns form the eigenvectors of
the covariance matrix Γ (note that Vt = V−1). Then :

C(n+1) = (I−∆Γ)C(n) + ∆ξ ⇒
C(n+1) =

(
I−∆VΛV−1

)
C(n) + ∆ξ ⇒

V−1C(n+1) = V−1
(
I−∆VΛV−1

)
C(n) + ∆V−1ξ ⇒

C′
(n+1) = (I−∆Λ)C′

(n) + ∆ξ′

which is a set of three de-coupled difference equations (de-coupled because Λ is a diagonal
matrix). Hence, we can write :

c′k,(n+1) = (1−∆λk) c
′
k,(n) + ∆ξ′k, k = −1, 0, 1

The steady-state solution is obtained when c′k,(n+1) = c′k, which gives :

c′k =
ξ′k
λk

, k = −1, 0, 1

or going back to matrix form :

C′ = Λ−1ξ′ ⇒
C = VC′ = VΛ−1V−1ξ ⇒
C =

(
VΛV−1

)−1
ξ = Γ−1ξ

which agrees with the result in Probl. 10.18(a).
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Problem 11.3 :

Suppose that we have a discrete-time system with frequency response H(ω); this may be equal-
ized by use of the DFT as shown below :

✲ ✲ ✲
an

A(ω)

System H(ω)
(channel)

yn

Y(ω)

Equalizer
E(ω)

output

æ

A(ω) =
N−1∑
n=0

ane
−jωn Y (ω) =

N−1∑
n=0

cne
−jωn = A(ω)H(ω)

Let :

E(ω) =
A(ω)Y ∗(ω)

|Y (ω)|2
Then by direct substitution of Y (ω) we obtain :

E(ω) =
A(ω)A∗(ω)H∗(ω)

|A(ω)|2 |H(ω)|2 =
1

H(ω)

If the sequence {an} is sufficiently padded with zeros, the N-point DFT simply represents the
values of E(gw) and H(ω) at ω = 2π

N
k = ωk, for k = 0, 1, ...N − 1 without frequency aliasing.

Therefore the use of the DFT as specified in this problem yields E (ωk) = 1
H(ω)

, independent of

the properties of the sequence {an} . Since H(ω) is the spectrum of the discrete-time system, we
know that this is equivalent to the folded spectrum of the continuous-time system (i.e the system
which was sampled). For further details for the use of a pseudo-random periodic sequence to
perform equalization we refer to the paper by Qureshi (1985).

Problem 11.4 :

The MSE performance index at the time instant k is

J(ck) = E



∣∣∣∣∣∣

N∑
n=−N

ck,nvk−n − Ik

∣∣∣∣∣∣
2



If we define the gradient vector Gk as

Gk =
ϑJ(ck)

2ϑck
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then its l − th element is

Gk,l =
ϑJ(ck)

2ϑck,l
=

1

2
E


2


 N∑
n=−N

ck,nvk−n − Ik


 v∗k−l




= E
[
−εkv

∗
k−l
]

= −E
[
εkv

∗
k−l
]

Thus, the vector Gk is

Gk =



−E[εkv

∗
k+N ]

...
−E[εkv

∗
k−N ]


 = −E[εkV

∗
k]

where Vk is the vector Vk = [vk+N · · · vk−N ]T . Since Ĝk = −εkV
∗
k, its expected value is

E[Ĝk] = E[−εkV
∗
k] = −E[εkV

∗
k] = Gk

Problem 11.5 :

The tap-leakage LMS algorithm is :

C(n + 1) = wC(n) + ∆ε(n)V∗(n) = wC(n) + ∆ (ΓC(n)− ξ) = (wI−∆Γ)C(n)−∆ξ

Following the same diagonalization procedure as in Problem 11.2 or Section (11-1-3) of the book,
we obtain :

C′(n + 1) = (wI−∆Λ)C′(n)−∆ξ′

where Λ is the diagonal matrix containing the eigenvalues of the correlation matrix Γ. The
algorithm converges if the roots of the homogeneous equation lie inside the unit circle :

|w −∆λk| < 1, k = −N, ...,−1, 0, 1, ..., N

and since ∆ > 0, the convergence criterion is :

∆ <
1 + w

λmax

Problem 11.6 :

The estimate of g can be written as : ĝ = h0x0 + ... + hM−1xM−1 = xTh, where x,h are column
vectors containing the respective coefficients. Then using the orthogonality principle we obtain
the optimum linear estimator h :

E [xε] = 0⇒ E
[
x
(
g − xTh

)]
= 0⇒ E [xg] = E

[
xxT

]
h
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or :
hopt = R−1

xxc

where the M ×M correlation matrix Rxx has elements :

R(m,n) = E [x(m)x(n)] = E
[
g2
]
u(m)u(n) + σ2

wδnm = Gu(m)u(n) + σ2
wδnm

where we have used the fact that g and w are independent, and that E [g] = 0. Also, the column
vector c =E [xg] has elements :

c(n) = E [x(n)g] = Gu(n)

Problem 11.7 :

(a) The time-update equation for the parameters {Hk} is :

H
(n+1)
k = H

(n)
k + ∆ε(n)y

(n)
k

where n is the time-index, k is the filter index, and y
(n)
k is the output of the k-th filter with

transfer function :
(
1− z−M

)
/
(
1− ej2πk/Mz−1

)
as shown in the figure below :

✒✑
�✏

✒✑
�✏

✲ ✲

❄ ✻✻

y0(n)

H0
z−1

+ X
+

-

✒✑
�✏

✒✑
�✏

✲ ✲

❄ ✻✻

y1(n)

H1
z−1

+ X
+

-

ej2π/M

✒✑
�✏

✒✑
�✏

✲ ✲

❄ ✻✻

yM−1(n)

HM−1
z−1

+ X
+

-

ej2π(M−1)/M

✒✑
�✏

✒✑
�✏

✒✑
�✏✲

✲
✻✻

✲

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈

❏
❏
❏
❏❏

✂
✂
✂
✂
✂
✂
✂✂✍

✲

Comb. Filter

1/M z−M

x(n) X +
-

+

.

.

.

.

y(n)
+

Parallel Bank of Single− Pole Filters

æ
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The error ε(n) is calculated as : ε(n) = In − y(n), and then it is fed back in the adaptive part

of the equalizer, together with the quantities y
(n)
k , to update the equalizer parameters Hk.

(b) It is straightforward to prove that the transfer function of the k-th filter in the parallel bank
has a resonant frequency at fk = 2π k

M
, and is zero at the resonant frequencies of the other filters

fm = 2π m
M

, m 
= k. Hence, if we choose as a test signal sinusoids whose frequencies coincide
with the resonant frequencies of the tuned circuits, this allows the coefficient Hk for each filter
to be adjusted independently without any interaction from the other filters.

Problem 11.8 :

(a) The gradient of the performance index J with respect to h is : dJ
dh

= 2h + 40. Hence, the
time update equation becomes :

hn+1 = hn − 1

2
∆(2hn + 40) = hn(1−∆)− 20∆

This system will converge if the homogeneous part will vanish away as n→∞, or equivalently
if : |1−∆| < 1⇐⇒ 0 < ∆ < 2.

(b) We note that J has a minimum at h = −20, with corresponding value : Jmin = −372. To
illustrate the convergence of the algorithm let’s choose : ∆ = 1/2. Then : hn+1 = hn/2 − 10,
and, using induction, we can prove that :

hn+1 =
(

1

2

)n
h0 − 10

[
n−1∑
k=0

(
1

2

)k]

where h0 is the initial value for h. Then, as n→∞, the dependence on the initial condition h0

vanishes and hn → −10 1
1−1/2

= −20, which is the desired value. The following plot shows the

expression for J as a function of n, for ∆ = 1/2 and for various initial values h0.

h0=−25

h0=−30

h0=0  

0 2 4 6 8 10 12 14 16 18 20
−400

−350

−300
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−200
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−100

−50

0

50

Iteration n

J(
n)
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Problem 11.9 :

The linear estimator for x can be written as : x̂(n) = a1x(n−1)+a2x(n−1) = [x(n− 1) x(n− 2)]

[
a1

a2

]
.

Using the orthogonality principle we obtain :

E

{[
x(n− 1)
x(n− 2)

]
ε

}
= 0⇒ E

{[
x(n− 1)
x(n− 2)

](
x(n)− [x(n− 1) x(n− 2)]

[
a1

a2

])}
= 0

or : [
γxx(−1)
γxx(−2)

]
=

[
γxx(0) γxx(1)
γxx(−1) γxx(0)

] [
a1

a2

]
⇒

[
a1

a2

]
=

[
1 b
b 1

]−1 [
b
b2

]
=

[
b
0

]

This is a well-known fact from Statistical Signal Processing theory : a first-order AR process
(which has autocorrelation function γ(m) = a|m|) has a first-order optimum (MSE) linear esti-
mator : x̂n = axn−1.

Problem 11.10 :

In Probl. 11.9 we found that the optimum (MSE) linear predictor for x(n), is x̂(n) = bx(n− 1).
Since it is a first order predictor, the corresponding lattice implementation will comprise of one
stage, too, with reflection coefficient a11. This coefficient can be found using (11-4-28) :

a11 =
γxx(1)

γxx(0)
= b

Then, we verify that the residue f1(n) is indeed the first-order prediction error : f1(n) =
x(n)− bx(n − 1) = x(n)− x̂(n) = e(n)

Problem 11.11 :

The system C(z) = 1
1−0.9z−1 has an impulse response : c(n) = (0.9)n, n ≥ 0. Then, we write the

input y(n) to the adaptive FIR filter :

y(n) =
∞∑
k=0

c(k)x(n− k) + w(n)

Since the sequence {x(n)} corresponds to the information sequence that is transmitted through
a channel, we will assume that is uncorrelated with zero mean and unit variance. Then the opti-

mum (according to the MSE criterion) estimator of x(n) will be : x̂(n) = [y(n) y(n− 1)]

[
b0

b1

]
.
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Using the orthogonality criterion we obtain the optimum coefficients {bi}:

E

{[
y(n)

y(n− 1)

]
ε

}
= 0⇒ E

{[
y(n)

y(n− 1)

](
x(n)− [y(n) y(n− 1)]

[
b0

b1

])}
= 0

⇒
[

b0

b1

]
=

{
E

[
y(n)y(n) y(n)y(n− 1)

y(n− 1)y(n) y(n− 1)y(n− 1)

]}−1 {
E

[
y(n)x(n)

y(n− 1)x(n)

]}

The various correlations are as follows :

E [y(n)x(n)] = E

[ ∞∑
k=0

c(k)x(n− k)x(n) + w(n)x(n)

]
= c(0) = 1

where we have used the fact that : E [x(n− k)x(n)] = δk, and that {w(n)} {x(n)} are indepen-
dent. Similarly :

E [y(n− 1)x(n)] = E

[ ∞∑
k=0

c(k)x(n− k − 1)x(n) + w(n)x(n)

]
= 0

E [y(n)y(n)] = E


 ∞∑
k=0

∞∑
j=0

c(k)c(j)x(n− k)x(n− j)


+ σ2

w

=
∞∑
j=0

c(j)c(j) + σ2
w =

∞∑
j=0

(0.9)2j + σ2
w =

=
1

1− 0.81
+ σ2

w =
1

0.19
+ σ2

w

and :

E [y(n)y(n− 1)] = E


 ∞∑
k=0

∞∑
j=0

c(k)c(j)x(n− k)x(n− 1− j)




=
∞∑
j=0

c(j)c(j + 1) =
∞∑
j=0

(0.9)2j+1

= 0.9
1

1− 0.81
= 0.9

1

0.19

Hence : [
b0

b1

]
=

[
1

0.19
+ 0.1 0.9 1

0.19

0.9 1
0.19

1
0.19

+ 0.1

]−1 [
1
0

]
=

[
0.85
−0.75

]

It is interesting to note that in the absence of noise (i.e when the term σ2
w = 0.1 is missing from

the diagonal of the correlation matrix), the optimum coefficients are : B(z) = b0 + b1z
−1 =

1 − 0.9z−1, i.e. the equalizer function is the inverse of the channel function (in this case the
MSE criterion coincides with the zero-forcing criterion). However, we see that, in the presence
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of noise, the MSE criterion gives a slightly different result from the inverse channel function, in
order to prevent excessive noise enhancement.

Problem 11.12 :

(a) If we denote by V the matrix whose columns are the eigenvectors {vi} :

V = [v1|v2|...|vN ]

then its conjugate transpose matrix is :

V∗t =



v∗t

1

v∗t
2

...
v∗t
N




and Γ can be written as :

Γ =
N∑
i=1

λiviv
∗t
i = VΛV∗t

where Λ is a diagonal matrix containing the eigenvalues of Γ. Then, if we name X = VΛ1/2V∗t,
we see that :

XX = VΛ1/2V∗tVΛ1/2V∗t = VΛ1/2Λ1/2V∗t = VΛV∗t = Γ

where we have used the fact that the matrix V is unitary : VV∗t = I. Hence, since XX = Γ,
this shows that the matrix X = VΛ1/2V∗t =

∑N
i=1 λ

1/2
i viv

∗t
i is indeed the square root of Γ.

(b) To compute Γ1/2, we first determine V,Λ (i.e the eigenvalues and eigenvectors of the cor-
relation matrix). Then :

Γ1/2 =
N∑
i=1

λ
1/2
i viv

∗t
i = VΛ1/2V∗t
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CHAPTER 12

Problem 12.1 :

(a)

U =
N∑
n=1

Xn

E [U ] =
N∑
n=1

E [Xn] = Nm

σ2
u = E

[
U2
]
− E2 [U ] = E

[∑
n

∑
m

XnXm

]
−N2m2

= N
(
σ2 +m2

)
+N(N − 1)σ2 −N2m2 = Nσ2

Hence :

(SNR)u =
N2m2

2Nσ2
=

N

2

m2

σ2

(b)

V =
N∑
n=1

X2
n

E [V ] =
N∑
n=1

E
[
X2
n

]
= N

(
σ2 +m2

)

For the variance of V we have :

σ2
V = E

[
V 2
]
−E2 [V ] = E

[
V 2
]
−N2

(
σ2 +m2

)
But :

E
[
V 2
]
=
∑
n

∑
m

E
(
X2
nX

2
m

)
=

N∑
n=1

X4
n+
∑
n

∑
m,n �=m

E
(
X2
n

)
E
(
X2
m

)
= NE

(
X4
)
+N(N−1)E2

(
X2
)

To compute E (X4) we can use the fact that a zero-mean Gaussian RV Y has moments :

E
[
Y k
]
=

{
0, k : odd

1 · 3 · ...(k − 1)σk k : even

}

Hence : 
 E

[
(X −m)3

]
= 0

E
[
(X −m)4

]
= 3σ4


⇒ E

[
X4
]
= m4 + 6σ2m2 + 3σ4
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Then :
E [V 2] = N (m4 + 6σ2m2 + 3σ4) +N(N − 1) (σ2 +m2)⇒

σ2
V = E [V 2]−N2 (σ2 +m2) = 2Nσ2 (σ2 + 2m2)

Note : the above result could be obtained by noting that V is a non-central chi-square RV, with
N degrees of freedom and non-centrality parameter equal to Nm2; then we could apply directly
expression (2-1-125). Having obtained σ2

V , we have :

(SNR)V =
N2 (m2 + σ2)

2

2Nσ2 (σ2 + 2m2)
=

N

4

((m2/σ2) + 1)
2

(2 (m2/σ2) + 1)

(c) The plot is given in the following figure for N=5 :
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b)

SNR(U)

SNR(V)

(d) In multichannel operation with coherent detection the decision variable is U as given in
(a). With square-law detection, the decision variable is of the form

∑N
n=1 |Xn + jYn|2 where Xn

and Yn are Gaussian. We note that V is not the exact model for square-law detection, but,
nevertheless, the effect of the non coherent combining loss is evident in the (SNR)V .

Problem 12.2 :

(a) r is a Gaussian random variable. If
√Eb is the transmitted signal point, then :

E(r) = E(r1) + E(r2) = (1 + k)
√
Eb ≡ mr

and the variance is :
σ2
r = σ2

1 + k2σ2
2

The probability density function of r is

p(r) =
1√
2πσr

e
− (r−mr)2

2σ2
r
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and the probability of error is :

P2 =
∫ 0

−∞
p(r) dr

= Q



√√√√m2

r

σ2
r




where
m2
r

σ2
r

=
(1 + k)2Eb
σ2

1 + k2σ2
2

The value of k that maximizes this ratio is obtained by differentiating this expression and solving
for the value of k that forces the derivative to zero. Thus, we obtain

k =
σ2

1

σ2
2

Note that if σ1 > σ2, then k > 1 and r2 is given greater weight than r1. On the other hand, if
σ2 > σ1, then k < 1 and r1 is given greater weight than r2. When σ1 = σ2, k = 1 (equal weight).

(b) When σ2
2 = 3σ

2
1, k =

1
3
, and

m2
r

σ2
r

=
(1 + 1

3
)2Eb

σ2
1 +

1
9
(3σ2

1)
=
4

3

(Eb
σ2

1

)

On the other hand, if k is set to unity we have

m2
r

σ2
r

=
4Eb

σ2
1 + 3σ

2
1

=
Eb
σ2

1

Therefore, the optimum weighting provides a gain of :

10 log
4

3
= 1.25 dB

This is illustrated in the following figure, where γ = Eb

σ2
1
.
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Problem 12.3 :

(a) If the sample rate 1
Ts
= Ñ ·∆f = W, does not alter with the insertion of the cyclic prefix

(which indeed is the case in most multicarrier systems), then the bandwidth requirements for
the system remain the same. However, keeping the same sample rate means that the block
length is increased by a factor of v

N
, and the effective throughput is reduced to 1

1+ v
N
= N

N+v
of

the previous one. This is usually compensated by the elimination of ISI, which allows the use
of higher order alphabets in each one of the subcarriers.

If the sample rate is increased by a factor of
(

N
N+v

)−1
, so that the block length after the insertion

of the cyclic prefix will be the same as before, then the bandwidth requirements for the system
are increased by the same factor : W ′ = W N+v

N
. However, this second case is rarely used in

practice.

(b) If the real and imaginary parts of the information sequence {Xk} have the same average
energy : E [Re(Xk)]

2 = E [Im(Xk)]
2 , then it is straightforward to prove that the time-domain

samples {xn}, that are the output of the IDFT, have the same average energy:

xn =
1√
N

N−1∑
k=0

(Re(Xk) + j · Im(Xk)) exp(j2πnk/N), n = 0, 1, ..., N − 1

and :
E
[
x2
n

]
= ε

for all n = 0, 1, ...N − 1. Hence, the energy of the cyclic-prefixed block, will be increased from
Nε to (N + v) ε. However, the power requirements will remain the same, since the duration of
the prefixed block is also increased from NTs to (N + v)Ts.
For an analysis of the case where the real and imaginary parts of the information sequence do
not have the same average energy, we refer the interested reader to the paper by Chow et al.
(1991).

Problem 12.4 :

X(k) =
N−1∑
n=0

x(n)e−j2πnk/N , k = 0, ..., N − 1

and for the padded sequence :

X ′(k) =
N+L−1∑
n=0

x′(n)e−j2πnk/(N+L) =
N−1∑
n=0

x(n)e−j2πnk/(N+L), k = 0, ..., N + L− 1
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where we have used the fact that : x′(n) = 0, n = N,N +1, ..., N +L− 1. We have also chosen
to use the traditional definition of the DFT (without a scaling factor in front of the sum). Then:

X(0) =
N−1∑
n=0

x(n) = X ′(0)

If we plot |X(k)| and |X ′(k)| in the same graph, with the x-axis being the normalized frequency
f = k

N
or f = k

N+L
, respectively, then we notice that the second graph is just an interpolated

version of the first. This can be seen if N +L is an integer multiple of N : N +L = mN. Then :

X ′(mk) =
N−1∑
n=0

x(n)e−j2πnmk/mN =
N−1∑
n=0

x(n)e−j2πnk/N = X(k), k = 0, 1, ...N − 1

This is illustrated in the following plot, for a random sequence x(n), of length N = 8, which is
padded with L = 24 zeros.
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Problem 12.5 :

The analog signal is :

x(t) =
1√
N

N−1∑
k=0

Xke
j2πkt/T , 0 ≤ t < T

The subcarrier frequencies are : Fk = k/T, k = 0, 1, ...Ñ, and, hence, the maximum frequency
in the analog signal is : Ñ/T. If we sample at the Nyquist rate : 2Ñ/T = N/T, we obtain the
discrete-time sequence :

x(n) = x(t = nT/N) =
1√
N

N−1∑
k=0

Xke
j2πk(nT/N)/T =

1√
N

N−1∑
k=0

Xke
j2πkn/N , n = 0, 1, ..., N − 1

which is simply the IDFT of the information sequence {Xk} .
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Problem 12.6 :

The reseting of the filter state every N samples, is equivalent to a filter with system function :

Hn(z) =
1− z−N

1− exp(j2πn/N)z−1

We will make use of the relationship that gives the sum of finite geometric series :
∑N−1
k=0 ak =

1−aN

1−a . Using this we can re-write each system function Hn(z) as :

Hn(z) =
1− z−N

1− exp(j2πn/N)z−1
=
1− [exp(j2πn/N)z−1]

N

1− exp(j2πn/N)z−1
=

N−1∑
k=0

(
exp(j2πn/N)z−1

)k

or :

Hn(z) =
N−1∑
k=0

exp(j2πnk/N)z−k, n = 0, 1, ...N − 1

which is exactly the transfer function of the transversal filter which calculates the n-th IDFT
point of a sequence.

Problem 12.7 :

We assume binary (M = 2) orthogonal signalling with square-law detection (DPSK signals wil
have the same combining loss). Using (12-1-24) and (12-1-14) we obtain the following graph for
P2(L), where SNR/bit =10log10γb :

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

SNR/bit (dB)

P
2(

L)

L=1 L=2

From this graph we note that the combining loss for γb = 10 is approximately 0.8 dB.
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CHAPTER 13

Problem 13.1 :

g(t) =

√
16Ec
3Tc

cos 2 π

Tc

(
t− Tc

2

)
, 0 ≤ t ≤ Tc

G(f) =
∫∞
−∞ g(t)e−j2πftdt

=
√

16Ec

3Tc

∫ Tc

0 cos 2 π
Tc

(
t− Tc

2

)
e−j2πftdt

But cos 2 π
Tc

(
t− Tc

2

)
= 1

2

[
1 + cos 2π

Tc

(
t− Tc

2

)]
. Then

G(0) =
1

2

√
16Ec
3Tc

Tc =

√
4EcTc

3
⇒ |G(0)|2 =

4EcTc

3

and

σ2
m = 4wmJav |G(0)|2 =

16

3
EcTcwmJav, Ec = RcEb

Hence,

PM ≤
M∑

m=2

Q

(√
3
RcEb
JavTc

wm

)

This is an improvement of 1.76 dB over the rectangular pulse.

Problem 13.2 :

The PN spread spectrum signal has a bandwidth W and the interference has a bandwidth W1,
where W >> W1. Upon multiplication of the received signal r(t) with the PN reference at the
receiver, we have the following (approximate) spectral characteristics
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✛ ✲

✻

✛ ✲
W

1/Tb

J0W1/W

Spectrum of

Interference

WS0
1/Tb

= WS0Tb

0

æ

After multiplication with the PN reference, the interference power in the bandwidth 1/Tb occu-
pied by the signal is (

J0W1

W

)(
1

Tb

)
=

J0W1

WTb

Prior to multiplication, the noise power is J0W. Therefore, in the bandwidth of the information-
bearing signal, there is a reduction in the interference power by a factor WTb =

Tb

Tc
= Lc, which

is just the processing gain of the PN spread spectrum signal.

Problem 13.3 :

The concatenation of a Reed-Solomon (31,3) code with the Hadamard (16,5) code results in an
equivalent binary code of black length n = n1n2 = 31×16 = 496 bits. There are 15 information
bits conveyed by each code word, i.e. k = k1k2 = 15. Hence, the overall code rate is Rc = 15/496,
which is the product of the two code rates. The minimum distances are

Reed− Solomon code : Dmin = 31− 3 + 1 = 29
Hadamard code : dmin = n2

2
= 8

Hence, the minimum distance of the overall code is dmin = 28× 8 = 232. A union bound on the
probability of error based on the minimum distance of the code is

PM ≤ (M − 1)Q

(√
2
Eb

JavTc

Rcdmin

)

where M = 215 = 32768. Also, Eb = SavTb. Thus,

PM ≤ 215Q



√
2
SavTb

JavTc

k

n
dmin



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But kTb = nTc and dmn = 232. Hence,

PM ≤ 215Q

(√
464

Jav/Sav

)

Due to the large number of codewords, this union bound is very loose. A much tighter bound is

PM ≤
M∑

m=2

Q

(√
2wm

Jav/Sav

)

but the evaluation of the bound requires the use of the weight distribution of the concatenated
code.

Problem 13.4 :

For hard-decision decoding we have

PM ≤ (M − 1) [4p(1− p)]dmin/2 = 2m+1 [4p(1− p)]2
m−2

where p = Q
(√

2W/R
Jav/Sav

Rc

)
= Q

(√
2Sav

Jav

)
. Note that in the presence of a strong jammer, the

probability p is large, i.e close to 1/2. For soft-decision decoding, the error probability bound is

PM ≤ (M − 1)Q



√√√√ 2W/R

Jav/Sav
Rcdmin




We select W
R

= n
k
= 1

Rc
and hence:

PM ≤ 2m+1Q
(√

2m

Jav/Sav

)
< 2m exp

(
− 2m−1

Jav/Sav

)

< exp
(
−Sav

Jav

[
2m−1 − Jav

Sav
m ln 2

])

For a give jamming margin, we can find an m which is sufficiently large to achieve the desired
level of performance.

Problem 13.5 :

(a) The coding gain is

Rcdmin =
1

2
× 10 = 5 (7dB)
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(b) The processing gain is W/R, where W = 107Hz and R = 2000bps. Hence,

W

R
=

107

2× 103
= 5× 103 (37dB)

(c) The jamming margin is

(
Jav

Pav

)
=

(W
R )·(Rcdmin)(

Eb
J0

) ⇒
(

Jav

Pav

)
dB

=
(
W
R

)
dB

+ (CG)dB −
( Eb

J0

)
dB

= 37 + 7− 10 = 34dB

Problem 13.6 :

We assume that the interference is characterized as a zero-mean AWGN process with power
spectral density J0. To achieve an error probability of 10−5, the required Eb/J0 = 10 . Then, by
using the relation in (13-2-58) and (13-2-38), we have

W/R
Jav/Pav

= W/R
Nu−1

= Eb

J0

W/R =
( Eb

J0

)
(Nu − 1)

W = R
( Eb

J0

)
(Nu − 1)

where R = 104 bps, Nu = 30 and Eb/J0 = 10. Therefore,

W = 2.9× 106 Hz

The minimum chip rate is 1/Tc = W = 2.9× 106 chips/sec.

Problem 13.7 :

To achieve an error probability of 10−6, we require(Eb
J0

)
dB

= 10.5dB

Then, the number of users of the CDMA system is

Nu = W/R
Eb/J0

+ 1

= 1000
11.3

+ 1 = 89 users
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If the processing gain is reduced to W/R = 500, then

Nu =
500

11.3
+ 1 = 45users

Problem 13.8 :

(a) We are given a system where (Jav/Pav)dB = 20 dB,R = 1000 bps and (Eb/J0)dB = 10 dB.
Hence, using the relation in (13-2-38) we obtain

(
W
R

)
dB

=
(
Jav

Pav

)
dB

+
( Eb

J0

)
dB

= 30 dB

W
R

= 1000

W = 1000R = 106Hz

(b) The duty cycle of a pulse jammer for worst-case jamming is

α∗ =
0.71

Eb/J0
=

0.7

10
= 0.07

The corresponding probability of error for this worst-case jamming is

P2 =
0.083

Eb/J0
=

0.083

10
= 8.3× 10−3

Problem 13.9 :

(a) We have Nu = 15 users transmitting at a rate of 10, 000 bps each, in a bandwidth of
W = 1 MHz. The Eb/J0 is

Eb

J0
= W/R

Nu−1
= 106/104

14
= 100

14

= 7.14 (8.54 dB)

(b) The processing gain is 100.

(c) With Nu = 30 and Eb/J0 = 7.14, the processing gain should be increased to

W/R = (7.14) (29) = 207
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Hence, the bandwidth must be increased to W = 2.07MHz.

Problem 13.10 :

The processing gain is given as
W

R
= 500 (27 dB)

The (Eb/J0) required to obtain an error probability of 10−5 for binary PSK is 9.5 dB. Hence,
the jamming margin is (

Jav

Pav

)
dB

=
(
W
R

)
dB
−
( Eb

J0

)
dB

= 27− 9.5

= 17.5 dB

Problem 13.11 :

If the jammer is a pulse jammer with a duty cycle α = 0.01, the probability of error for binary
PSK is given as

P2 = αQ



√√√√ 2W/R

Jav/Pav




For P2 = 10−5, and α = 0.01, we have

Q



√√√√ 2W/R

Jav/Pav


 = 10−3

Then,
W/Rb

Jav/Pav
=

500

Jav/Pav
= 5

and
Jav

Pav
= 100 (20 dB)

Problem 13.12 :

c (t) =
∞∑

n=−∞
cnp (t− nTc)
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The power spectral density of c (t) is given by (8.1.25) as

Φc (f) =
1

Tc
Φc (f) |P (f)|2

where
|P (f)|2 = (ATc)

2 sin c2 (fTc) , Tc = 1µ sec

and Φc (f) is the power spectral density of the sequence {cn} . Since the autocorrelation of the
sequence {cn} is periodic with period N and is given as

φc (m) =




N, m = 0,±N,±2N, . . .

−1, otherwise

then, φc (m) can be represented in a discrete Fourier series as

φc (m) =
1

N

N−1∑
k=0

rC (k) ej2πmk/N , m = 0, 1, . . . , N − 1

where {rc (k)} are the Fourier series coefficients, which are given as

rc (k) =
N−1∑
m=0

φc (m) e−j2πkm/N , k = 0, 1, . . . , N − 1

and rc (k + nN) = rc (k) for n = 0,±1,±2, . . . . The latter can be evaluated to yield

rc (k) = N + 1−∑N−1
m=0 e

−j2πkm/N

=

{
1, k = 0,±N,±2N, . . .
N + 1, otherwise

The power spectral density of the sequence {cn}may be expressed in terms of {rc (k)} . These co-
efficients represent the power in the spectral components at the frequencies f = k/N. Therefore,
we have

Φc (f) =
1

N

∞∑
k=−∞

rc (k) δ

(
f − k

NTc

)

Finally, we have

Φc (f) =
1

NTc

∞∑
k=−∞

rc (k)

∣∣∣∣∣P
(

k

NTc

)∣∣∣∣∣
2

δ

(
f − k

NTc

)

Problem 13.13 :

Without loss of generality, let us assume that N1 < N2. Then, the period of the sequence
obtained by forming the modulo-2 sum of the two periodic sequences is

N3 = kN2

272



where k is the smallest integer multiple of N2 such that kN2/N1 is an integer. For example,
suppose that N1 = 15 and N2 = 63. Then, we find the smallest multiple of 63 which is divisible
by N1 = 15, without a remainder. Clearly, if we take k = 5 periods of N2, which yields a
sequence of N3 = 315, and divide N3 by N1, the result is 21. Hence, if we take 21N1 and 5N2,
and modulo-2 add the resulting sequences, we obtain a single period of length N3 = 21N1 = 5N2

of the new sequence.

Problem 13.14 :

(a) The period of the maximum length shift register sequence is

N = 210 − 1 = 1023

Since Tb = NTc, then the processing gain is

N
Tb

Tc
= 1023 (30dB)

(b) According to (132-38 jamming margin is

(
Jav

Pav

)
dB

=
(

W
Rb

)
dB
−
( Eb

J0

)
dB

= 30− 10

= 20dB

where Jav = J0W ≈ J0/Tc = J0 × 106

Problem 13.15 :

(a) The length of the shift-register sequence is

L = 2m − 1 = 215 − 1
= 32767 bits

For binary FSK modulation, the minimum frequency separation is 2/T, where 1/T is the symbol
(bit) rate. The hop rate is 100 hops/ sec . Since the shift register has L = 32767 states and each
state utilizes a bandwidth of 2/T = 200 Hz, then the total bandwidth for the FH signal is
6.5534 MHz.
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(b) The processing gain is W/R. We have,

W

R
=

6.5534× 106

100
= 6.5534× 104 bps

(c) If the noise is AWG with power spectral density N0, the probability of error expression is

P2 = Q

(√ Eb
N0

)
= Q



√√√√ W/R

PN/Pav




Problem 13.16 :

(a) If the hopping rate is 2 hops/bit and the bit rate is 100 bits/sec, then, the hop rate is
200 hops/sec. The minimum frequency separation for orthogonality 2/T = 400Hz. Since there
are N = 32767 states of the shift register and for each state we select one of two frequencies
separated by 400 Hz, the hopping bandwidth is 13.1068 MHz.

(b) The processing gain is W/R, where W = 13.1068 MHz and R = 100bps. Hence

W

R
= 0.131068MHz

(c) The probability of error in the presence of AWGN is given by (13-3-2) with L = 2 chips per
hop.

Problem 13.17 :

(a) The total SNR for three hops is 20 ∼ 13 dB.Therefore the SNR per hop is 20/3. The
probability of a chip error with noncoherent detection is

p =
1

2
e
− Ec

2N0

where Ec/N0 = 20/3. The probability of a bit error is

Pb = 1− (1− p)2

= 1− (1− 2p+ p2)

= 2p− p2

= e
− Ec

2N0 − 1

2
e
− Ec

N0

= 0.0013
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b) In the case of one hop per bit, the SNR per bit is 20, Hence,

Pb =
1

2
e
− Ec

2N0

=
1

2
e−10

= 2.27× 10−5

THerefore there is a loss in performance of a factor 57 AWGN due to splitting the total signal
energy into three chips and, then, using hard decision decoding.

Problem 13.18 :

(a) We are given a hopping bandwidth of 2 GHz and a bit rate of 10 kbs. Hence,

W

R
=

2× 109

104
= 2× 105 (53dB)

(b) The bandwidth of the worst partial-band jammer is α∗W, where

α∗ = 2/ (Eb/J0) = 0.2

Hence
α∗W = 0.4GHz

(c) The probability of error with worst-case partial-band jamming is

P2 = e−1

(Eb/J0)
= e−1

10

= 3.68× 10−2

Problem 13.19 :

The error probability for the binary convolutional code is upper-bounded as :

Pb ≤
∞∑

d=dfree

βdP2(d)
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where P2(d) is the probability of error in a pairwise comparison of two paths that are separated
in Hamming distance by d. For square-law detected and combined binary FSK in AWGN, P2(d)
is

P2(d) =
1

22d−1
exp (−γbRcd/2)

d−1∑
n=0

[
1

n!

(
γbRcd

2

)n d−1−n∑
r=0

(
2d− 1

r

)]

Problem 13.20 :

For hard-decision Viterbi decoding of the convolutional code, the error probability is

Pb ≤
∞∑

d=dfree

βdP2(d)

where P2(d) is given by (8.2.28) when d is odd and by (8.2.29) when d is even. Alternatively,

we may use the Chernoff bound for P2(d), which is : P2(d) ≤ [4p(1− p)]d/2 . In both cases,
p = 1

2
exp(−γbRc/2).

Problem 13.21 :

For fast frequency hopping at a rate of L hopes/bit and for soft-decision decoding, the perfor-
mance of the binary convolutional code is upper bounded as

Pb ≤
∞∑

d=dfree

βdP2(Ld)

where

P2(Ld) =
1

22Ld−1
exp (−γbRcd/2)

Ld−1∑
n=0

[
1

n!

(
γbRcd

2

)n Ld−1−n∑
r=0

(
2Ld− 1

r

)]

Note that the use of L hops/coded bit represents a repetition of each coded bit by a factor of
L. Hence, the convolutional code is in cascade with the repetition code. The overall code rate
of Rc/L and the distance properties of the convolutional code are multiplied by the factor L, so
that the binary event error probabilities are evaluated at distances of Ld, where dfree ≤ d ≤ ∞.

Problem 13.22 :

For fast frequency hopping at a rate of L hopes/bit and for hard-decision Viterbi decoding, the
performance of the binary convolutional code is upper bounded as

Pb ≤
∞∑

d=dfree

βdP2(Ld)
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where
P2(d) ≤ [4p(1− p)]d/2

and

p =
1

22L−1
e−γbRc/2

L−1∑
n=0

[(
γbRc

2

)n 1

n!

L−1−n∑
r=0

(
2L− 1

r

)]

On the other hand, if each of the L chips is detected independently, then :

Pb ≤
∞∑

d=dfree

βdP2(Ld)

where P2 (Ld) ≤ [4p(1− p)]Ld/2 and p=1
2
exp (γbRc/2) .

Problem 13.23 :

There are 64 decision variables corresponding to the 64 possible codewords in the (7,2) Reed-
Solomon code. With dmin = 6, we know that the performance of the code is no worse than the
performance of an M = 64 orthogonal waveform set, where the SNR per bit is degraded by the
factor 6/7. Thus, an upper bound on the code word error probability is

P64 ≤ (M − 1)P2 = 63P2

where

P2 ≤ 1

22L−1
exp

(
−γb

6

7
k/2

) L−1∑
n=0

cn

(
3

7
kγb

)n

With L = 6 and k = 6, P2 becomes

P2 ≤ 1

211
exp (−18γb/7)

5∑
n=0

cn

(
18

7
γb

)n

where

cn =
1

n!

5−n∑
r=0

(
11

r

)

Problem 13.24 :

In the worst-case partial-band interference channel, the (7,2) Reed-Solomon code provides an
effective order of diversity L = 6. Hence

P64 ≤ 63P2(6) = 63
(

1.47
6
7
γb

)6

≤ 1.6×103

γ6
b

, for γb

L
= γb

6
≥ 3
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Problem 13.25 :

P2(a) = aQ

(√
2aEb
J0

)
= a

1√
2π

∫ +∞√
2aEb
J0

e−t2/2dt

Hence, the maximum occurs when

dP2(a)

da
=

1√
2π

∫ +∞√
2aEb
J0

e−t2/2dt− 1

2

√
aEb
πJ0

e
− aEb

J0 = 0⇒

1√
2π

∫ +∞√
2aEb
J0

e−t2/2dt =
1

2

√
aEb
πJ0

e
− aEb

J0

The value of a that satisfies the above equation can be found numerically (or graphically) and
is equal to a = 0.71

Eb/J0
. Substitution of this result into P2(a) yields (for Eb/J0 ≥ 0.71)

P2 =
0.71

Eb/J0
Q
(√

2 · 0.71
)
=

0.083

Eb/J0

Problem 13.26 :

The problem is to determine

E

[
exp

(
−v

L∑
k=1

βk |2Ec +N1k|2 − v
L∑

k=1

βk |N2k|2
)]

where thee {βk} are fixed and the {N1k} , {N2k} are complex-valued Gaussian random variables
with zero-mean and variances equal to σ2

k. We note that βk = 1/σ2
k and, hence,

1
2
E |N1k|2 = 1

2
E |N2k|2 = σ2

k

1
2
βkE |N1k|2 = 1

2
βkE |N2k|2 = 1

Since the {N1k} , and {N2k} are all statistically independent

E

[
exp

(
−v

L∑
k=1

βk |2Ec +N1k|2
)]

=
L∏

k=1

E
[
exp

(
−vβk |2Ec +N1k|2

)]

and similarly for E
[
exp

(
−v∑L

k=1 βk |N2k|2
)]

. Now, we use the characteristic function for the

sum of the squares of two Gaussian random variables which is given by (2.1.114) of the text (the
two Gaussian random variables are the real and imaginary parts of 2Ec +N1k). That is

ψY (ju) = E
(
ejuY

)
=

1

1− juσ2
exp

(
ju
∑m

i=1 m
2
i

1− juσ2

)
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where Y = X2
1 +X2

2 , mi is the mean of Xi and σ2 is the variance of Xi. Hence,

E

[
exp

(
−v

∣∣∣∣
√
βk2Ec +

√
βkN1k

∣∣∣∣2
)]

=
1

1 + 2v
exp

(−4βkvE2
c

1 + 2v

)

and

E

[
exp

(
−v

∣∣∣∣
√
βkN2k

∣∣∣∣2
)]

=
1

1− 2v

Consequently

P2(β) =
L∏

k=1

1

1− 4v2
exp

(−4βkvE2
c

1 + 2v

)

Problem 13.27 :

The function

f(v, a) =

[
a

1− 4v2
exp

( −2avE2
c

J0(1 + 2v)

)]L

is to be minimized with respect to v and maximized with respect to a. Thus,

∂

∂v
f(v, a) = 0⇒ 8v(1 + 2v)− 2aEc

J0
(1− 2v) = 0

and
∂

∂a
f(v, a) = 0⇒ 1− 2avEc

J0(1 + 2v)
= 0

The simultaneous solution of these two equations yields the result v = 1/4 and a = 3J0

Ec
≤ 1. For

these values, the function f(v, a) becomes

f
(
1

4
,
3J0

Ec
)
=

(
4

eγc

)L

=

(
1.47

γc

)L

for γc =
Ec
J0
≥ 3

Problem 13.28 :

The Gold code sequences of length n = 7 may be generated by the use of two feedback shift
registers of length 4 as shown below
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✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✻

❄
✲

❄
✛

✲

✻

✛

✲

Gold code
sequence

æ

These sequences have the following cross-correlation values

Values of correlation Frequency of this value
-5 1
3 3
-1 3

Problem 13.29 :

The method of Omura and Levitt (1982) based on the cut-off rate R0, which is described in
Section 13.2.3, can be used to evaluate the error rate of the coded system with interleaving in
pulse interference. This computational method yields results that are reasonably close to the
results given by Martin and McAdam (1980) and which are illustrated in Fig. 13.2.12 for the
rate 1/2 convolutional coder with soft-decision decoding.

Problem 13.30 :

(a) For the coded and interleaved DS binary PSK modulation with pulse jamming and soft-
decision decoding, the cutoff rate is

R0 = 1− log 2

[
1 + ae−aEc/N0

]
Hence,

log 2

[
1 + ae−aEc/N0

]
= 1−R0 ⇒[

1 + ae−aEc/N0

]
= 21−R0 ⇒

Ec

N0
= 1

a
ln a

21−R0−1
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and since Ec = EbR Eb
N0

=
1

aR
ln

a

21−R0 − 1

(b)
d

da

( Eb
N0

)
= − 1

a2R
ln

a

21−R0 − 1
+

1

a2R
= 0

Hence, the worst-case a is
a∗ =

(
21−R0 − 1

)
e

provided that
(
21−R0 − 1

)
e < 1, or equivalently : R0 > 1− log 2(1 + e−1) = 0.548.

If R0 ≤ 0.548, then a = 1 maximizes Eb

N0
and. hence :

Eb
N0

=
1

R
ln

1

21−R0 − 1
, a = 1

which is the result for the AWGN channel. For R0 > 0.548 and a = a∗ we have

Eb
N0

=
e−1

R (21−R0 − 1)
, R0 > 0.548

(c) The plot of 10 log
( Eb

rN0

)
versus R0, is given in the following figure:
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Worst−case
pulse
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Clearly, there is no penalty in SNR due to worst case pulse jamming for rates below 0.548. Even
for R0 = 0.8 the SNR loss is relatively small. As R0 → 1, the relative difference between pulse
jamming and AWGN becomes large.
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Problem 13.31 :

(a)
R0 = log 2q − log 2 [1 + (q − 1)a exp(−aEc/2N0)]⇒

1 + (q − 1)a exp(−aEc/2N0) = q2−R0

and since Ec = REb Eb
N0

=
2

aR
ln

(q − 1)a

q2−R0 − 1

(b)
d

da

( Eb
N0

)
= − 2

a2R
ln

(q − 1)a

q2−R0 − 1
+

2

a2R
= 0⇒

a∗ =

(
q2−R0 − 1

)
e

q − 1

provided that
(q2−R0−1)e

q−1
< 1 or, equivalently, R0 > log 2

q
(q−1)/e+1

. For a = a∗, the SNR/bit
becomes Eb

N0
=

2(q − 1)

R [q2−R0 − 1] e
, for R0 > log 2

q

(q − 1)/e+ 1

(c) The plots are given in the following figure
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For low rates, the loss due to partial band jamming is negligible if coding is used. Increasing q
reduces the SNR/bit at low rates. At very high rates, a large q implies a large SNR loss. For
q = 2, there is a 3dB loss relative to binary PSK. As q → ∞, the orthogonal FSK approaches
-1.6dB as R0 → 0.
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CHAPTER 14

Problem 14.1 :

Based on the info about the scattering function we know that the multipath spread is Tm = 1 ms,
and the Doppler spread is Bd = 0.2 Hz.

(a) (i) Tm = 10−3 sec
(ii) Bd = 0.2 Hz
(iii) (∆t)c ≈ 1

Bd
= 5 sec

(iv) (∆f)c ≈ 1
Tm

= 1000 Hz

(v) TmBd = 2 · 10−4

(b) (i) Frequency non-selective channel : This means that the signal transmitted over the
channel has a bandwidth less that 1000 Hz.
(ii) Slowly fading channel : the signaling interval T is T << (∆t)c .
(iii) The channel is frequency selective : the signal transmitted over the channel has a bandwidth
greater than 1000 Hz.

(c) The signal design problem does not have a unique solution. We should use orthogonal M=4
FSK with a symbol rate of 50 symbols/sec. Hence T = 1/50 sec. For signal orthogonality,
we select the frequencies with relative separation ∆f = 1/T = 50 Hz. With this separation
we obtain 10000/50=200 frequencies. Since four frequencies are requires to transmit 2 bits, we
have up to 50th−order diversity available. We may use simple repetition-type diversity or a
more efficient block or convolutional code of rate ≥ 1/50. The demodulator may use square-law
combining.

Problem 14.2 :

(a)
P2h = p3 + 3p2(1− p)

where p = 1
2+γ̄c

, and γ̄c is the received SNR/cell.

(b) For γ̄c = 100, P2h ≈ 10−6 + 3 · 10−4 ≈ 3 · 10−4

For γ̄c = 1000, P2h ≈ 10−9 + 3 · 10−6 ≈ 3 · 10−6

(c) Since γ̄c >> 1, we may use the approximation : P2s ≈
(

2L−1
L

) (
1
γ̄c

)L
, where L is the order of
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diversity. For L=3, we have :

P2s ≈ 10

γ̄3
c

⇒
{
P2s ≈ 10−5, γ̄c = 100
P2s ≈ 10−8, γ̄c = 1000

}

(d) For hard-decision decoding :

P2h =
L∑

k= L+1
2

(
L

k

)
pk(1− p)L−k ≤ [4p(1− p)]L/2

where the latter is the Chernoff bound, L is odd, and p = 1
2+γ̄c

. For soft-decision decoding :

P2s ≈
(
2L− 1

L

)(
1

γ̄c

)L

Problem 14.3 :

(a) For a fixed channel, the probability of error is : Pe(a) = Q
(√

a22E
N0

)
. We now average this

conditional error probability over the possible values of α, which are a=0, with probability 0.1,
and a=2 with probability 0.9. Thus :

Pe = 0.1Q (0) + 0.9Q

(√
8E
N0

)
= 0.05 + 0.9Q

(√
8E
N0

)

(b) As E
N0
→∞, Pe → 0.05

(c) When the channel gains a1, a2 are fixed, the probability of error is :

Pe(a1, a2) = Q



√
(a2

1 + a
2
2) 2E

N0




Averaging over the probability density function p(a1, a2) = p(a1) · p(a2), we obtain the average
probability of error :

Pe = (0.1)2Q(0) + 2 · 0.9 · 0.1 ·Q
(√

8E
N0

)
+ (0.9)2Q

(√
16E
N0

)
= 0.005 + 0.18Q

(√
8E
N0

)
+ 0.81Q

(√
16E
N0

)

(d) As E
N0
→∞, Pe → 0.005
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Problem 14.4 :

(a)
Tm = 1 sec⇒ (∆f)c ≈ 1

Tm
= 1 Hz

Bd = 0.01 Hz ⇒ (∆t)c ≈ 1
Bd

= 100 sec

(b) Since W = 5 Hz and (∆f)c ≈ 1 Hz, the channel is frequency selective.

(c) Since T=10 sec < (∆t)c , the channel is slowly fading.

(d) The desired data rate is not specified in this problem, and must be assumed. Note that with
a pulse duration of T = 10 sec, the binary PSK signals can be spaced at 1/T = 0.1 Hz apart.
With a bandwidth of W=5 Hz, we can form 50 subchannels or carrier frequencies. On the other
hand, the amount of diversity available in the channel is W/ (∆f)c = 5. Suppose the desired
data rate is 1 bit/sec. Then, ten adjacent carriers can be used to transmit the data in parallel
and the information is repeated five times using the total number of 50 subcarriers to achieve
5-th order diversity. A subcarrier separation of 1 Hz is maintained to achieve independent fading
of subcarriers carrying the same information.

(e) We use the approximation :

P2 ≈
(
2L− 1

L

)(
1

4γ̄c

)L

where L=5. For P3 = 10−6, the SNR required is :

(126)

(
1

4γ̄c

)5

= 10−6 ⇒ γ̄c = 10.4 (10.1 dB)

(f) The tap spacing between adjacent taps is 1/5=0.2 seconds. the total multipath spread is
Tm = 1 sec . Hence, we employ a RAKE receiver with at least 5 taps.

(g) Since the fading is slow relative to the pulse duration, in principle we can employ a coherent
receiver with pre-detection combining.

(h) For an error rate of 10−6, we have :

P2 ≈
(
2L− 1

L

)(
1

γ̄c

)5

= 10−6 ⇒ γ̄c = 41.6 (16.1 dB)
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Problem 14.5 :

(a)

p (n1, n2) =
1

2πσ2 e
−(n2

1+n2
2)/2σ2

U1 = 2E +N1, U2 = N1 +N2 ⇒ N1 = U1 − 2E , N2 = U2 − U1 + 2E
where we assume that s(t) was transmitted. Then, the Jacobian of the transformation is :

J =

∣∣∣∣∣ 1 −10 1

∣∣∣∣∣ = 1

and :
p(u1, u2) = 1

2πσ2 e
− 1

2σ2 [(U1−2E)2+(U2−(U1−2E))2]

= 1
2πσ2 e

− 1
2σ2 [(U1−2E)2+U2

2+(U1−2E)2−2U2(U1−2E)]

= 1
2πσ2 e

− 1
σ2 [(U1−2E)2+ 1

2
U2

2−U2(U1−2E)]

The derivation is exactly the same for the case when −s(t) is transmitted, with the sole difference
that U1 = −2E +N1.

(b) The likelihood ratio is :

Λ =
p(u1, u2|+ s(t))
p(u1, u2| − s(t)) = exp

[
− 1

σ2
(−8EU1 + 4EU2)

]
>+s(t) 1

or :

ln Λ =
8E
σ2

(
U1 − 1

2
U2

)
>+s(t) 0⇒ U1 − 1

2
U2 >

+s(t) 0

Hence β = −1/2.

(c)
U = U1 − 1

2
U2 = 2E + 1

2
(N1 −N2)

E [U ] = 2E , σ2
U = 1

4
(σ2

n1 + σ
2
n2) = EN0

Hence:

p(u) =
1√

2πEN0

e−(u−2E)2/2EN0

(d)
Pe = P (U < 0)

=
∫ 0
−∞

1√
2πEN0

e−(u−2E)2/2EN0du

= Q
(

2E√EN0

)
= Q

(√
4E
N0

)

(e) If only U1 is used in reaching a decision, then we have the usual binary PSK probability of

error : Pe = Q
(√

2E
N0

)
, hence a loss of 3 dB, relative to the optimum combiner.
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Problem 14.6:

(a)

U = Re

[
L∑

k=1

βkUk

]
>1 0

where Uk = 2Eake
−jφk + vk and where vk is zero-mean Gaussian with variance 2EN0k. Hence,

U is Gaussian with :

E [U ] = Re
[∑L

k=1 βkE (Uk)
]

= 2E · Re
[∑L

k=1 akβke
−jφk

]
= 2E∑L

k=1 ak |βk| cos (θk − φk) ≡ mu

where βk = |βk| ejθk . Also :

σ2
u = 2E

L∑
k=1

|βk|2N0k

Hence :

p(u) =
1√
2πσu

e−(u−mu)2/2σ2
u

(b) The probability of error is :

P2 =
∫ 0

−∞
p(u)du = Q

(√
2γ
)

where :

γ =
E
[∑L

k=1 ak |βk| cos (θk − φk)
]2

∑L
k=1 |βk|2N0k

(c) To maximize P2, we maximize γ. It is clear that γ is maximized with respect to {θk} by
selecting θk = φk for k = 1, 2, ..., L. Then we have :

γ =
E
[∑L

k=1 ak |βk|
]2

∑L
k=1 |βk|2N0k

Now :
dγ

d |βl| = 0⇒
(

L∑
k=1

|βk|2N0k

)
al −

(
L∑

k=1

ak |βk|
)
|βl|Nol = 0

Consequently :

|βl| = al
N0l
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and :

γ =
E
[∑L

k=1
a2

k

Nok

]2

∑L
k=1

a2
k

N2
ok
N0k

= E
L∑

k=1

a2
k

Nok

The above represents maximal ratio combining.

Problem 14.7 :

(a)

p (u1) =
1

(2σ2
1)

L
(L− 1)!

uL−1
1 e−u1/2σ2

1 , σ2
1 = 2EN0 (1 + γ̄c)

p (u2) =
1

(2σ2
2)

L
(L− 1)!

uL−1
2 e−u2/2σ2

2 , σ2
2 = 2EN0

P2 = P (U2 > U1) =
∫ ∞

0
P (U2 > U1|U1)p(U1)dU1

But :

P (U2 > U1|U1) =
∫∞
u1
p(u2)du2 =

∫∞
u1

1

(2σ2
2)

L
(L−1)!

uL−1
2 e−u2/2σ2

2du2

=

[
1

(2σ2
2)

L
(L−1)!

uL−1
2 e−u2/2σ2

2 (−2σ2
2)

]∞
u1

− ∫∞
u1

(−2σ2
2)(L−1)

(2σ2
2)

L
(L−1)!

uL−2
2 e−u2/2σ2

2du2

= 1

(2σ2
2)

L−1
(L−1)!

uL−1
1 e−u1/2σ2

2 +
∫∞
u1

1

(2σ2
2)

L−1
(L−2)!

uL−2
2 e−u2/2σ2

2du2

Continuing, in the same way, the integration by parts, we obtain :

P (U2 > U1|U1) = e−u1/2σ2
2

L−1∑
k=0

(u1/2σ
2
2)

k

k!

Then :

P2 =
∫∞
0

[
e−u1/2σ2

2
∑L−1

k=0
(u1/2σ2

2)
k

k!

]
1

(2σ2
1)

L
(L−1)!

uL−1
1 e−u1/2σ2

1du1

=
∑L−1

k=0
1

k!(2σ2
2)

k
(2σ2

1)
L
(L−1)!

∫∞
0 uL−1+k

1 e−u1(1/σ2
1+1/σ2

2)/2du1

The integral that exists inside the summation is equal to :∫∞
0 uL−1+ke−uadu =

[
uL−1+ke−ua

(−a)

]∞
0
− L−1+k

(−a)

∫∞
0 uL−2+ke−uadu =

L−1+k
a

∫∞
0 uL−2+ke−uadu
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where a = (1/σ2
1 + 1/σ2

2)/2 =
σ2
1+σ2

2

2σ2
1σ

2
2
. Continuing the integration by parts, we obtain :

∫ ∞

0
uL−1+ke−uadu =

1

aL+k
(L− 1 + k)! =

(
2σ2

1σ
2
2

σ2
1 + σ

2
2

)L+k

(L− 1 + k)!

Hence :

P2 =
∑L−1

k=0
1

k!(2σ2
2)

k
(2σ2

1)
L
(L−1)!

∫∞
0 uL−1+k

1 e−u1(1/σ2
1+1/σ2

2)/2du1

=
∑L−1

k=0
1

k!(2σ2
2)

k
(2σ2

1)
L
(L−1)!

(
2σ2

1σ
2
2

σ2
1+σ2

2

)L+k
(L− 1 + k)!

=
∑L−1

k=0

(
L−1+k

k

)
σ2k
1 σ2L

2

(σ2
1+σ2

2)
L+k =

∑L−1
k=0

(
L−1+k

k

)
(2EN0(1+γ̄c))

k(2EN0)
L

(2EN0(1+γ̄c)+2EN0)L+k

=
∑L−1

k=0

(
L−1+k

k

)
(2EN0(1+γ̄c))

k(2EN0)L

(2EN0(2+γ̄c))
L+k =

(
1

2+γ̄c

)L∑L−1
k=0

(
L−1+k

k

) (
1+γ̄c

2+γ̄c

)k
which is the desired expression (14-4-15) with µ = γ̄c

2+γ̄c
.

Problem 14.8 :

T (D,N, J = 1) =
J3ND6

1− JND2(1 + J)
|J=1 =

ND6

1− 2ND2

dT (D,N)

dN
|N=1 =

(1− 2ND2)D6 −ND6 (−2D2)

(1− 2ND2)2
|N=1 =

D6

(1− 2D2)2

(a) For hard-decision decoding :

Pb ≤
∞∑

d=dfree

βdP2(d) =
dT (D,N)

dN
|
N=1,D=

√
4p(1−p)

where p = 1
2

[
1−

√
γ̄c

1+γ̄c

]
for coherent PSK (14-3-7). Thus :

Pb ≤ [4p(1− p)]3
[1− 8p(1− p)]2

(b) For soft-decision decoding, the error probability is upper bounded as

Pb ≤
∞∑

d=dfree

βdP2(d)
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where dfree = 6, {βd} are the coefficients in the expansion of the derivative of T(D,N) evaluated
at N=1, and :

P2(d) =
(
1− µ
2

)d d−1∑
k=0

(
d− 1 + k

k

)(
1 + µ

2

)k

where µ =
√

γ̄c

1+γ̄c
, as obtained from (14-4-15).

These probabilities Pb are plotted on the following graph, with SNR = γ̄c.
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Problem 14.9 :

U =
L∑

k=1

Uk

(a) Uk = 2Eak + vk, where vk is Gaussian with E [vk] = 0 and σ2
v = 2EN0. Hence, for fixed

{ak} , U is also Gaussian with : E [U ] =
∑L

k=1E (Uk) = 2E
∑L

k=1 ak and σ2
u = Lσ2

v = 2LEN0.
Since U is Gaussian, the probability of error, conditioned on a fixed number of gains {ak} is

Pb (a1, a2, ..., aL) = Q

(
2E

∑L
k=1 ak√

2LEN0

)
= Q



√√√√√2E

(∑L
k=1 ak

)2

LN0




(b) The average probability of error for the fading channel is the conditional error probability
averaged over the {ak} . Hence :

Pd =
∫ ∞

0
da1

∫ ∞

0
da2...

∫ ∞

0
daLPb (a1, a2, ..., aL) p(a1)p(a2)...p(aL)
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where p(ak) =
ak

σ2 exp(−a2
k/2σ

2), where σ2 is the variance of the Gaussian RV’s associated with
the Rayleigh distribution of the {ak} (not to be confused with the variance of the noise terms).
Since Pb (a1, a2, ..., aL) depends on the {ak} through their sum, we may let : X =

∑L
k=1 ak and,

thus, we have the conditional error probability Pb(X) = Q
(√

2EX/ (LN0)
)
. The average error

probability is :

Pb =
∫ ∞

0
Pb(X)p(X)dX

The problem is to determine p(X). Unfortunately, there is no closed form expression for the pdf
of a sum of Rayleigh distributed RV’s. Therefore, we cannot proceed any further.

Problem 14.10 :

(a) The plot of g(γ̄c) as a function of γ̄c is given below :
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0.15
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0.19

0.2

0.21

0.22

gamma_c

g(
ga

m
m
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The maximum value of g(γ̄c) is approximately 0.215 and occurs when γ̄c ≈ 3.

(b) γ̄c = γ̄b/L. Hence, for a given γ̄b the optimum diversity is L = γ̄b/γ̄c = γ̄b/3.

(c) For the optimum diversity we have :

P2(Lopt) < 2−0.215γ̄b = e− ln 2·0.215γ̄b = e−0.15γ̄b =
1

2
e−0.15γ̄b+ln2

For the non-fading channel :P2 =
1
2
e−0.5γb . Hence, for large SNR (γ̄b >> 1), the penalty in SNR

is:

10 log 10
0.5

0.15
= 5.3 dB

291



Problem 14.11 :

The radio signal propagates at the speed of light, c = 3×108m/ sec .The difference in propagation
delay for a distance of 300 meters is

Td =
300

3× 108
= 1µ sec

The minimum bandwidth of a DS spread spectrum signal required to resolve the propagation
paths is W = 1MHz. Hence, the minimum chip rate is 106 chips per second.

Problem 14.12 :

(a) The dimensionality of the signal space is two. An orthonormal basis set for the signal space
is formed by the signals

f1(t) =

{ √
2
T
, 0 ≤ t < T

2

0, otherwise
f2(t) =

{ √
2
T
, T

2
≤ t < T

0, otherwise

(b) The optimal receiver is shown in the next figure

�✎✂❘

�✎✂❘
❅❅

❅❅

✲

✲

✲

✲

✲

largest

the

Select

t = T

t = T
2

r2

r1

f2(T − t)

f1(
T
2
− t)

r(t)

(c) Assuming that the signal s1(t) is transmitted, the received vector at the output of the
samplers is

r = [

√
A2T

2
+ n1, n2]

where n1, n2 are zero mean Gaussian random variables with variance N0

2
. The probability of

error P (e|s1) is

P (e|s1) = P (n2 − n1 >

√
A2T

2
)

=
1√
2πN0

∫ ∞
A2T

2

e
− x2

2N0 dx = Q



√
A2T

2N0



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where we have used the fact the n = n2 − n1 is a zero-mean Gaussian random variable with
variance N0. Similarly we find that P (e|s1) = Q

[√
A2T
2N0

]
, so that

P (e) =
1

2
P (e|s1) + 1

2
P (e|s2) = Q



√
A2T

2N0




(d) The signal waveform f1(
T
2
−t) matched to f1(t) is exactly the same with the signal waveform

f2(T − t) matched to f2(t). That is,

f1(
T

2
− t) = f2(T − t) = f1(t) =

{ √
2
T
, 0 ≤ t < T

2

0, otherwise

Thus, the optimal receiver can be implemented by using just one filter followed by a sampler
which samples the output of the matched filter at t = T

2
and t = T to produce the random

variables r1 and r2 respectively.

(e) If the signal s1(t) is transmitted, then the received signal r(t) is

r(t) = s1(t) +
1

2
s1(t− T

2
) + n(t)

The output of the sampler at t = T
2
and t = T is given by

r1 = A

√
2

T

T

4
+

3A

2

√
2

T

T

4
+ n1 =

5

2

√
A2T

8
+ n1

r2 =
A

2

√
2

T

T

4
+ n2 =

1

2

√
A2T

8
+ n2

If the optimal receiver uses a threshold V to base its decisions, that is

r1 − r2
s1
>
<
s2

V

then the probability of error P (e|s1) is

P (e|s1) = P (n2 − n1 > 2

√
A2T

8
− V ) = Q


2
√
A2T

8N0
− V√

N0




If s2(t) is transmitted, then

r(t) = s2(t) +
1

2
s2(t− T

2
) + n(t)
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The output of the sampler at t = T
2
and t = T is given by

r1 = n1

r2 = A

√
2

T

T

4
+

3A

2

√
2

T

T

4
+ n2

=
5

2

√
A2T

8
+ n2

The probability of error P (e|s2) is

P (e|s2) = P (n1 − n2 >
5

2

√
A2T

8
+ V ) = Q


5
2

√
A2T

8N0
+

V√
N0




Thus, the average probability of error is given by

P (e) =
1

2
P (e|s1) + 1

2
P (e|s2)

=
1

2
Q


2
√
A2T

8N0
− V√

N0


+ 1

2
Q


5
2

√
A2T

8N0
+

V√
N0




The optimal value of V can be found by setting ϑP (e)
ϑV

equal to zero. Using Leibnitz rule to
differentiate definite integrals, we obtain

ϑP (e)

ϑV
= 0 =


2

√
A2T

8N0
− V√

N0




2

−

5

2

√
A2T

8N0
+

V√
N0




2

or by solving in terms of V

V = −1
8

√
A2T

2

(f) Let a be fixed to some value between 0 and 1. Then, if we argue as in part (e) we obtain

P (e|s1, a) = P (n2 − n1 > 2

√
A2T

8
− V (a))

P (e|s2, a) = P (n1 − n2 > (a+ 2)

√
A2T

8
+ V (a))

and the probability of error is

P (e|a) = 1

2
P (e|s1, a) + 1

2
P (e|s2, a)
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For a given a, the optimal value of V (a) is found by setting ϑP (e|a)
ϑV (a)

equal to zero. By doing so
we find that

V (a) = −a
4

√
A2T

2

The mean square estimation of V (a) is

V =
∫ 1

0
V (a)f(a)da = −1

4

√
A2T

2

∫ 1

0
ada = −1

8

√
A2T

2

Problem 14.13 :

(a)

✲ M.F. 2 �� ( )2

✲ M.F. 2 �� ( )2❧×✲

❧×✲

✻

❄

❤+
❄

✻

cos 2πf2t

sin 2πf2t

✲ M.F. 1 �� ( )2

✲ M.F. 1 �� ( )2❧×✲

❧×✲

✻

❄

❤+
❄

✻

cos 2πf1t

sin 2πf1t

✲ M.F. 2 �� ( )2

✲ M.F. 2 �� ( )2❧×✲

❧×✲

✻

❄

❤+
❄

✻

cos 2πf2t

sin 2πf2t

✲ M.F. 1 �� ( )2

✲ M.F. 1 �� ( )2❧×✲

❧×✲

✻

❄

❤+
❄

✻

cos 2πf1t

sin 2πf1t

✲

✲r1(t)

r2(t)

sample at t = kT
✻

❄

❧+
❄

✻

❧+
✻

❄

✲

✲

Detector
select

the larger

✲output
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(b) The probability of error for binary FSK with square-law combining for L = 2 is given in
Figure 14-4-7. The probability of error for L = 1 is also given in Figure 14-4-7. Note that an
increase in SNR by a factor of 10 reduces the error probability by a factor of 10 when L = 1
and by a factor of 100 when D = 2.

Problem 14.14 :

(a) The noise-free received waveforms {ri(t)} are given by : ri(t) = h(t) ∗ si(t), i = 1, 2, and
they are shown in the following figure :

✲

✲

4A

-4A

2A

t

t

r1(t)

r2(t)

4A

-2A

2T

2TTT/4

æ

(b) The optimum receiver employs two matched filters gi(t) = ri(2T−t), and after each matched
filter there is a sampler working at a rate of 1/2T. The equivalent lowpass responses gi(t) of the
two matched filters are given in the following figure :
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✲

✲

t

t
T 2T

g1(t)

g2(t)

-4A

4A

-2A

4A

T 2T

æ

Problem 14.15 :

Since a follows the Nakagami-m distribution :

pa(a) =
2

Γ(m)

(
m

Ω

)m

a2m−1 exp
(
−ma2/Ω

)
, a ≥ 0

where : Ω = E (a2) . The pdf of the random variable γ = a2Eb/N0 is specified using the usual
method for a function of a random variable :

a =

√
γ
N0

Eb ,
dγ

da
= 2aEb/N0 = 2

√
γEb/N0

Hence :
pγ (γ) =

(
dγ
da

)−1
pa
(√
γN0

Eb

)

= 1

2
√

γEb/N0

2
Γ(m)

(
m
Ω

)m (√
γN0

Eb

)2m−1
exp

(
−mγN0

Eb
/Ω

)

= mm

Γ(m)
γm−1

Ωm(Eb/N0)m exp (−mγ/ (EbΩ/N0))

= mm

Γ(m)
γm−1

γ̄m exp (−mγ/γ̄)
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where γ̄ = E (a2) Eb/N0.

Problem 14.16 :

(a) By taking the conjugate of r2 = h1s
∗
2 − h2s

∗
1 + n2[

r1
r∗2

]
=

[
h1 h2

−h∗2 h∗1

] [
s1
s2

]
+

[
n1

n∗2

]

Hence, the soft-decision estimates of the transmitted symbols (s1, s2) will be[
ŝ1
ŝ2

]
=

[
h1 h2

−h∗2 h∗1

]−1 [
r1
r∗2

]

= 1
h2
1+h2

2

[
h∗1r1 − h2r

∗
2

h∗2r1 + h1r
∗
2

]

which corresponds to dual-diversity reception for si.

(b) The bit error probability for dual diversity reception of binary PSK is given by Equation

(14.4-15), with L = 2 and µ =
√

γ̄c

1+γ̄c
(where the average SNR per channel is γ̄c =

E
N0
E[h2] = E

N0
)

Then (14.4-15) becomes

P2 =
[

1
2
(1− µ)

]2 {
1
(

1
0

)
+ [1

2
(1 + µ)]

(
2
1

)}
=

[
1
2
(1− µ)

]2
[2 + µ]

When γ̄c >> 1, then 1
2
(1−µ) ≈ 1/4γ̄c and µ ≈ 1. Hence, for large SNR the bit error probability

for binary PSK can be approximated as

P2 ≈ 3

(
1

4γ̄c

)2

(c) The bit error probability for dual diversity reception of binary PSK is given by Equation
(14.4-41), with L = 2 and µ as above. Replacing we get

P2 =
1

2

[
1− µ√

2− µ2

(
1 +

1− µ2

2− µ2

)]

Problem 14.17 :

(a) Noting that µ < 1, the expression (14.6-35) for the binary event error probability can be
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upperbounded by

P2(wm) <
(

1−µ
2

)wm ∑wm−1
k=0

((
wm−1+k

k

))
=

(
1−µ

2

)wm
(

2wm−1
wm

)
Hence, the union bound for the probability for a code word error would be:

PM < (M − 1)P2(dmin)

< 2k
(

2dmin−1
dmin

) (
1−µ

2

)dmin

Now, taking the expression for µ for each of the three modulation schemes, we obtain the desired
expression.

Non-coherent FSK :

µ =
γ̄c

2 + γ̄c
⇒ 1− µ

2
=

1

2 + γ̄c
<

1

γ̄c
=

1

RC γ̄b

DPSK :

µ =
γ̄c

1 + γ̄c
⇒ 1− µ

2
=

1

2(1 + γ̄c)
<

1

2γ̄c
=

1

2RC γ̄b

BPSK : µ =
√

γ̄c

1+γ̄c
=

√
1− 1

1+γ̄c
. Using Taylor’s expansion, we can approximate for large γ̄c

(1− x)1/2 ≈ 1− x/2. Hence
1− µ
2
≈ 1

4(1 + γ̄c)
<

1

4γ̄c
=

1

4RC γ̄b

(b) Noting that

exp (−dminRcγ̄bf(γ̄c)) = exp (−dminRcγ̄b ln(βγ̄c)/γ̄c)
= exp (−dmin ln(βγ̄c))

=
(

1
βγ̄c

)dmin

=
(

1
βRcγ̄b

)dmin

we show the equivalence between the expressions of (a) and (b).
The maximum is obtained with

d

dγ̄c
f(γ) = 0⇒ β

βγ̄cγ̄c
− ln(βγ̄c)

γ2
= 0⇒ ln(βγ̄c) = 1⇒ γ̄c =

e

β

By checking the second derivative, we verify that this extreme point is indeed a maximum.

(c) For the value of γ̄c found in (b), we have fmax(γ̄c) = β/e. Then

exp (−k(βdminγ̄b/ne− ln 2)) = exp (k ln 2) exp (−Rcβdminγ̄b/e)
= exp (k ln 2) exp (−Rcdminγ̄bfmax(γ̄b))
= 2k exp (−dminRcγ̄bfmax(γ̄b))
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which shows the equivalence between the upper bounds given in (b) and (c).
In order for the bound to go to zero, as k is increased to infinity we need the rest of the argument
of the exponent to be negative, or

(βdminγ̄b/ne− ln 2) > 0⇒ γ̄b >
ne

dminβ
ln 2⇒ γ̄bmin =

2e

β
ln 2

Replacing for the values of β found in part (a) we get:

γ̄bmin,PSK = −0.96 dB
γ̄bmin,DPSK = 2.75 dB
γ̄bmin,non−coh.FSK = 5.76 dB

As expected, among the three, binary PSK has the least stringent SNR requirement for asymp-
totic performance.
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CHAPTER 15

Problem 15.1 :

gk(t) = ejθk

L−1∑
n=0

ak(n)p(t− nTc)

The unit energy constraint is : ∫ T

0
gk(t)g

∗
k(t)dt = 1

We also define as cross-correlation :

ρij(τ) =
∫ T

0
gi(t)g

∗
j (t− τ)dt

(a) For synchronous transmission, the received lowpass-equivalent signal r(t) is again given by
(15-3-9), while the log-likelihood ratio is :

Λ(b) =
∫ T
0

∣∣∣r(t)−∑K
k=1

√
Ekbkgk(t)

∣∣∣2 dt
=
∫ T
0 |r(t)|2 dt+

∑
k

∑
j

√
Ek

√
Ejbjb

∗
k

∫ T
0 gj(t)g

∗
k(t)dt

−2Re
[∑K

k=1

√
Ekbk

∫ T
0 r(t)g∗k(t)

]

=
∫ T
0 |r(t)|2 dt+

∑
k

∑
j

√
Ek

√
Ejbjbkρjk(0)

−2Re
[∑K

k=1

√
Ekbkrk

]

where rk =
∫ T
0 r(t)g∗k(t)dt, and we assume that the information sequence {bk} is real. Hence,

the correlation metrics can be expressed in a similar form to (15-3-15) :

C(rk,bk) = 2bt
KRe (rK)− bt

KRsbK

The only difference from the real-valued case of the text is that the correlation matrix Rs uses
the complex-valued cross-correlations given above :

Rs[ij] =

{
ρ∗ij(0), i ≤ j
ρij(0), i > j

}

and that the matched filters producing {rk} employ the complex-conjugate of the signature
waveforms {gk(t)} .
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(b) Following the same procedure as in pages 852-853 of the text, we see that the correlator
outputs are :

rk(i) =
∫ (i+1)T+τk

iT+τk

r(t)g∗k(t− iT − τk)dt

and that these can be expressed in matrix form as :

r = RNb+ n

where r,b,n are given by (15-3-20)-(15-3-22) and :

RN =




Ra(0) Ra(−1) 0 · · · · · ·
Ra(1) Ra(0) Ra(−1) 0 · · ·

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 Ra(1) Ra(0)



⇒

RN =




Ra(0) Ra
H(1) 0 · · · · · ·

Ra(1) Ra(0) Ra
H(1) 0 · · ·

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 Ra(1) Ra(0)




where Ra(m) is a K ×K matrix with elements :

Rkl(m) =
∫ ∞

−∞
g∗k(t− τk)gl(t+mT − τl)dt

and we have exploited the fact (which holds in the real-valued case, too) that :

Ra(m) = R∗t
a (−m) = RH

a (−m)

Finally, we note that Ra(0) = Rs, the correlation matrix of the real-valued case.

Problem 15.2 :

The capacity per user CK is :

CK =
1

K
W log 2

(
1 +

P

WN0

)
, lim

K→∞
CK = 0

and the total capacity :

KCK =W log 2

(
1 +

P

WN0

)
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which is independent ofK. By using the fact that : P = CKEb we can rewrite the above equations
as :

CK = 1
K
W log 2

(
1 + CKEb

WN0

)
⇒

K CK

W
= log 2

(
1 + CKEb

WN0

)
⇒

Eb

N0
=

(2K)
CK
W −1

CK
W

which is the relationship between the SNR and the normalized capacity per user. The relation-
ship between the normalized total capacity Cn = K CK

W
and the SNR is :

Eb
N0

= K
2Cn − 1

Cn

The corresponding plots for these last two relationships are given in the following figures :
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As we observe the normalized capacity per user CK/W decreases to 0 as the number of user
increases. On the other hand, we saw that the total normalized capacity Cn is constant, in-
dependent of the number of users K. The second graph is explained by the fact that as the
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number of users increases, the capacity per user CK , decreases and hence, the SNR/bit=P/CK

increases, for the same user power P . That’s why the curves are shifted to the right, as K →∞.

Problem 15.3 :

(a)

C1 = aW log 2

(
1 +

P1

aWN0

)

C2 = (1− a)W log 2

(
1 +

P2

(1− a)WN0

)

C = C1 + C2 =W

[
a log 2

(
1 +

P1

aWN0

)
+ (1− a) log 2

(
1 +

P2

(1− a)WN0

)]

As a varies between 0 and 1, the graph of the points (C1, C2) is given in the following figure:

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

R_1

R
_2

W=1, P1/N0=3, P2/N0=1

(b) Substituting P1/a = P2/(1− a) = P1 + P2, in the expression for C = C1 + C2, we obtain :

C = C1 + C2 =W
[
a log 2

(
1 + P1+P2

WN0

)
+ (1− a) log 2

(
1 + P1+P2

WN0

)]
= W log 2

(
1 + P1+P2

WN0

)
which is the maximum rate that can be satisfied, based on the inequalities that the rates R1, R2

must satisfy. Hence, the distribution of the bandwidth according to the SNR of each user,
produces the maximum achievable rate.

Problem 15.4 :

(a) Since the transmitters are peak-power-limited, the constraint on the available power holds
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for the allocated time frame when each user transmits. This is more restrictive that an average-
power limited TDMA system, where the power is averaged over all the time frames, so each user
can transmit in his allocated frame with power Pi/ai, where ai is the fraction of the time that
the user transmits.
Hence, in the peak-power limited system :

C1 = aW log 2

(
1 +

P1

WN0

)

C2 = (1− a)W log 2

(
1 +

P2

WN0

)

C = C1 + C2 = W
[
a log 2

(
1 +

P1

WN0

)
+ (1− a) log 2

(
1 +

P2

WN0

)]

(b) As a varies between 0 and 1, the graph of the points (C1, C2) is given in the following figure
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We note that the peak-power-limited TDMA system has a more restricted achievable region
(R1, R2). compared to the FDMA system of problem 15.3.

Problem 15.5 :

(a) Since the system is average-power limited, the i-th user can transmit in his allocated time-
frame with peak-power Pi/ai, where ai is the fraction of the time that the user transmits.
Hence, in the average-power limited system :

C1 = aW log 2

(
1 +

P1/a

WN0

)

C2 = (1− a)W log 2

(
1 +

P2/(1− a)

WN0

)
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C = C1 + C2 =W

[
a log 2

(
1 +

P1

aWN0

)
+ (1− a) log 2

(
1 +

P2

(1− a)WN0

)]

(b) As a varies between 0 and 1, the graph of the points (C1, C2) is given in the following figure
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(c) We note that the expression for the total capacity is the same as that of the FDMA in
Problem 15.2. Hence, if the time that each user transmits is proportional to the transmitter’s
power : P1/a = P2/(1− a) = P1 + P2, we have :

C = C1 + C2 =W
[
a log 2

(
1 + P1+P2

WN0

)
+ (1− a) log 2

(
1 + P1+P2

WN0

)]
= W log 2

(
1 + P1+P2

WN0

)

which is the maximum rate that can be satisfied, based on the inequalities that the rates R1, R2

must satisfy. Hence, the distribution of the time that each user transmits according to the
respective SNR produces the maximum achievable rate.

Problem 15.6 :

(a) We have

r1 =
∫ T

0
r(t)g1(t)dt

Since
∫ T
0 g1(t)g1(t) = 1, and

∫ T
0 g1(t)g2(t) = ρ

r1 =
√
E1b1 +

√
E2b2ρ+ n1
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where n1 =
∫ T
0 n(t)g1(t)dt. Similarly

r2 =
√
E1b1ρ+

√
E2b2 + n2

where n2 =
∫ T
0 n(t)g2(t)dt

(b) We have E[n1] (= m1) = E[n2] (= m2) = 0. Hence

σ2
1 = E[n2

1] = E
[∫ T

0

∫ T
0 g1(a)g1(b)n(a)n(b)dadb

]
= N0

2

∫ T
0 g1(a)g1(a)da

= N0

2

In the same way, σ2
1 = E[n2

1] =
N0

2
. The covariance is equal to

µ12 = E[n1n2]− E[n1]E[n2] = E[n1n2]

= E
[∫ T

0

∫ T
0 g1(a)g2(b)n(a)n(b)dadb

]
= N0

2

∫ T
0 g1(a)g2(a)da

= N0

2
ρ

(c) Given b1 and b2, then (r1,r2) follow the pdf of (n1,n2) which are jointly Gaussian with a pdf
given by (2-1-150) or (2-1-156). Using the results from (b)

p(r1, r2|b1, b2) = p(n1, n2)

= 1

2π
N0
2

√
1−ρ2

exp
[
−x2

1−2ρx1x2+x2
2

2(1−ρ2)

]

where x1 = r1 −
√E1b1 −

√E2b2ρ and x2 = r2 −
√E2b2 −

√E1b1ρ

Problem 15.7 :

We use the result for r1, r2 from Problem 5.6 (a) (or the equivalent expression (15.3-40)). Then,
assuming b1 = 1 was transmitted, the probability of error for b1 is

P1 = P (error1|b2 = 1)P (b2 = 1) + P (error1|b2 = −1)P (b2 = −1)
= Q

(√
2 (

√E1+ρ
√E2)2

N0

)
1
2
+Q

(√
2 (

√E1−ρ
√E2)2

N0

)
1
2

The same expression is obtained when b1 = −1 is transmitted. Hence

P1 =
1

2
Q



√√√√2(
√E1 + ρ

√E2)2
N0


+

1

2
Q



√√√√2(
√E1 − ρ

√E2)2
N0



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Similarly

P2 =
1

2
Q



√√√√2(
√E2 + ρ

√E1)2
N0


+

1

2
Q



√√√√2(
√E2 − ρ

√E1)2
N0




Problem 15.8 :

(a)

P (b1, b2|r(t), 0 ≤ t ≤ T ) =
p(r(t), 0 ≤ t ≤ T |b1, b2)P (b1, b2)

p(r(t), 0 ≤ t ≤ T )

But P (b1, b2) = P (b1)P (b2) = 1/4 for any pair of (b1, b2) and p(r(t), 0 ≤ t ≤ T ) is independent
of (b1, b2). Hence

argmax
b1,b2

P (b1, b2|r(t), 0 ≤ t ≤ T ) = argmax
b1,b2

p(r(t), 0 ≤ t ≤ T |b1, b2)
which shows the equivalence between the MAP and ML criteria, when b1, b2 are equiprobable.

(b) Sufficient statistics for r(t), 0 ≤ t ≤ T are the correlator outputs r1, r2 at t = T . From
Problem 15.6 the joint pdf of r1, r2 given b1, b2 is

p(r1, r2|b1, b2) = 1

2πN0

2

√
1− ρ2

exp

{
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

}

where x1 = r1 −
√E1b1 −

√E2b2ρ and x2 = r2 −
√E2b2 −

√E1b1ρ
The ML detector searches for the arguments b1, b2 that maximize p(r1, r2|b1, b2). We see that
the term outside the exponent and the demoninator of the exponent do not depend on b1, b2.
Hence :

(b1, b2) = argmax exp [−(x2
1 − 2ρx1x2 + x2

2)]
= argmax [−(x2

1 − 2ρx1x2 + x2
2)]

Expanding x1, x2 and remembering that additive terms which are constant independent of b1, b2
(e.g. r2

i , or b
2
i (= 1)) do not affect the argument of the maximum, we arrive at

(b1, b2) = argmax
(
2(1− ρ2)

√E1b1r1 + 2(1− ρ2)
√E2b2r2 − 2(1− ρ2)

√E1E2b1b2ρ
)

= argmax
(√E1b1r1 +

√E2b2r2 −
√E1E2b1b2ρ

)

Problem 15.9 :

(a)
P (b1|r(t), 0 ≤ t ≤ T ) = P (b1|r1, r2)

= P (b1, b2 = 1|r1, r2) + P (b1, b2 = −1|r1, r2)
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But

P (b1, b2 = x|r1, r2) =
p(r1, r2|b1, b2 = x)

p(r1, r2)
P (b1, b2 = x)

and p(r1, r2) and P (b1, b2 = x) do not depend on the value of b1. Hence

argmax
b1

P (b1|r(t), 0 ≤ t ≤ T ) = argmax
b1

(p(r1, r2|b1, b2 = 1) + p(r1, r2|b1, b2 = −1))

From Problem 15.6 the joint pdf of r1, r2 given b1, b2 is

p(r1, r2|b1, b2) = 1

2πN0

2

√
1− ρ2

exp

{
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

}

where x1 = r1 −
√E1b1 −

√E2b2ρ and x2 = r2 −
√E2b2 −

√E1b1ρ . Expanding x1, x2 and
remembering that additive terms which are constant independent of b1, b2 (e.g. r

2
i , or b

2
i (= 1))

do not affect the argument of the maximum, we arrive at

argmaxb1 P (b1|r(t), 0 ≤ t ≤ T ) = argmax
[
exp
(√E1b1r1+

√E2r2−
√E1E2b1ρ

N0

)
+ exp

(√E1b1r1−
√E2r2+

√E1E2b1ρ
N0

)]
= argmax

[
exp(

√E1b1r1
N0

)

×
(
exp(

√E2r2−
√E1E2b1ρ
N0

) + exp(−
√E2r2+

√E1E2b1ρ
N0

)
)]

= argmax
[
exp(

√E1b1r1
N0

) · 2 cosh(
√E2r2−

√E1E2b1ρ
N0

)
]

= argmax
[√E1b1r1

N0
+ ln cosh(

√E2r2−
√E1E2b1ρ
N0

)
]

(b) From part(a)

b1 = 1 ⇔
√E1r1
N0

+ ln cosh(
√E2r2−

√E1E2ρ
N0

) >
−√E1r1

N0
+ ln cosh(

√E2r2+
√E1E2ρ

N0
)

⇔ 2
√E1r1
N0

+ ln

(
cosh(

√E2r2−
√E1E2ρ

N0
)

cosh(

√E2r2+
√E1E2ρ

N0
)

)
> 0

Hence

b1 = sgn


r1 − N0

2
√E1 ln


cosh(

√E2r2+
√E1E2ρ

N0
)

cosh(
√E2r2−

√E1E2ρ
N0

)






Problem 15.10 :

As N0 → 0, the probability in expression (15.3-62) will be dominated by the term which has
the smallest argument in the Q function. Hence

effective SNR = min
bj

[√Ek +∑j �=k

√
Ejbjρjk

]2
N0
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The minimum over bj is achieved when all terms add destructively to the
√Ek term (or, it is 0,

if the term inside the square is negative). Therefore

ηk =


max


0, 1−

∑
j �=k

√
Ej
Ek |ρjk|






2

Problem 15.11 :

The probability that the ML detector makes an error for the first user is :

P1 =
∑

b1,b2 P (b̂1 �= b1|b1, b2)(P (b1, b2)
= 1

4
(P [++→ −+] + P [++→ −−])

+ 1
4
(P [−+→ ++] + P [−+→ +−])

+ 1
4
(P [+−→ −−] + P [−+→ −+])

+ 1
4
(P [−− → +−] + P [−+→ ++])

where P [b1b2 → b̂1b̂2] denotes the probability that the detector chooses (b̂1b̂2) conditioned on
(b1, b2) having being transmitted. Due to the symmetry of the decision statistic, the above
relationship simplifies to

P1 =
1

2
(P [−− → +−] + P [−− → ++])

+
1

2
(P [−+→ ++] + P [−+→ +−]) (1)

From Problem 15.8 we know that the decision of this detector is based on

(b̂1, b̂2) = argmax
(
S(b1, b2) =

√
E1b1r1 +

√
E2b2r2 −

√
E1E2b1b2ρ

)

Hence, P [−− → +−] can be upper bounded as

P [−− → +−] ≤ P [S(−−) < S(+−)|(−−) transmitted]
This is a bound and not an equality since the if S(−−) < S(+−) then (−−) is not chosen, but
not necessarily in favor of (+−); it may have been in favor of (++) or (−+).
The last bound is easy to calculate :

P [S(−−) < S(+−)|(−−)transmitted]
= P [−√E1r1 −

√E2r2 −
√E1E2ρ <

√E1r1 −
√E2r2 +

√E1E2ρ
|r1 = −

√E1 −
√E2ρ+ n1; r1 = −

√E1 −
√E2ρ+ n1]

= P [n1 >
√E1] = Q

(√
2E1

N0

)
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Similarly, for the other three terms of (1) we obtain :

P [−− → ++] ≤ P [S(−−) < S(++)|(−−) transmitted]
= P [

√E1n1 +
√E2n2 > E1 + E2 + 2

√E1E1ρ]
= Q

(√
2E1+E2+2

√E1E2ρ
N0

)

P [−+→ +−] ≤ P [S(−+) < S(+−)|(−+) transmitted]
= P [

√E1n1 −
√E2n2 > E1 + E2 − 2

√E1E1ρ]
= Q

(√
2E1+E2−2

√E1E2ρ
N0

)

P [−+→ ++] ≤ P [S(−+) < S(++)|(−+) transmitted]
= P [n1 >

√E1]
= Q

(√
2E1

N0

)
By adding the four terms we obtain

P1 ≤ Q
(√

2E1

N0

)
+ 1

2
Q
(√

2E1+E2−2
√E1E2ρ

N0

)

+1
2
Q
(√

2E1+E2+2
√E1E2ρ

N0

)

But we note that if ρ ≥ 0, the last term is negligible, while if ρ ≤ 0, then the second term is
negiligible. Hence, the bound can be written as

P1 ≤ Q

(√
2E1
N0

)
+
1

2
Q



√√√√2E1 + E2 − 2

√E1E2|ρ|
N0




Problem 15.12 :

(a) We have seen in Prob. 15.11 that the probability of error for user 1 can be upper bounded
by

P1 ≤ Q

(√
2E1
N0

)
+
1

2
Q



√√√√2E1 + E2 − 2

√E1E2|ρ|
N0




As N0 → 0 the probability of error will be dominated by the Q function with the smallest
argument. Hence

η1 = min
{
(2E1

N0
)/(2E1

N0
), 2E1+E2−2

√E1E2|ρ|
N0

/(2E1

N0
)
}

= min
{
1, 1 + E2

E1
− 2
√E2

E1
|ρ|
}

(b) The plot of the asymptotic efficiencies is given in the following figure
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We notice the much better performance of the optimal detector especially when the interfearer
(user 2) is much stronger than the signal. We also notice that the performance of the conventional
detector decreases as |ρ| (i.e interference) increases, which agrees with the first observation.

Problem 15.13 :

The decision rule for the decorrelating detector is b̂2 = sgn(b0
2), where b0

2 is the output of the
decorrelating operation as given by equation (15.3-41). The signal component for the first term
in the equation is

√E1. The noise component is

n =
n1 − ρn2

1− ρ2

with variance
σ2

1 = E[n2] = E[n1−ρn2]2

(1−ρ2)2

=
E[n2

1]+ρ2E[n2
2]−2ρE[n1n2]

(1−ρ2)2

= N0

2
1+ρ2

(1−ρ2)2

= N0

2
1

(1−ρ2)

Hence

P1 = Q

(√
2E1
N0

(1− ρ2)

)

Similarly, for the second user

P2 = Q

(√
2E2
N0

(1− ρ2)

)
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Problem 15.14 :

(a) The matrix Rs is

Rs =

[
1 ρ
ρ 1

]

Hence the linear transformation A0 for the two users will be

A0 =
(
Rs +

N0

2
I
)−1

=

[
1 + N0

2
ρ

ρ 1 + N0

2

]−1

=
1(

1 + N0

2

)2 − ρ2

[
1 + N0

2
−ρ

−ρ 1 + N0

2

]

(b) The limiting form of A0, as N0 → 0 is obviously

A0 → 1

1− ρ2

[
1 −ρ
−ρ 1

]

which is the same as the transformation for the decorrelating detector, as given by expression
(15.3-37).

(c) The limiting form of A0, as N0 →∞ is

A0 ≈ 1(
N0

2

)2
[

N0

2
−ρ

−ρ 1 + N0

2

]
→ 1(

N0

2

)
[
1 0
0 1

]

which is simply a (scaled) form of the conventional single-user detector, since the decision for
each user is based solely on the output of the particular user’s correlator.

Problem 15.15 :

(a) The performance of the receivers, when no post-processing is used, is the performance of
the conventional multiuser detection.

(b) Since : y1(l) = b1(l)w1 + b2(l)ρ
(1)
12 + b2(l− 1)ρ

(1)
21 + n, the decision variable z1(l), for the first

user after post-processing, is equal to :

z1(l) = b1(l)w1 + n + ρ
(1)
21 e2(l − 1) + ρ

(1)
12 e2(l)

where n is Gaussian with zero mean and variance σ2w1 and, by definition : e2(l) ≡ b2(l) −
sgn [y2(l)] . We note that e2(l) is not orthogonal to e2(l − 1), in general; however these two
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quantities are orthogonal when conditioned on b1(l). The distribution of e2(l − 1), conditioned
on b1(l) is :

P [e2(l − 1) = +2|b1(l)] = 1
4
Q
[
w2+ρ

(2)
12 +ρ

(2)
21 b1(l)

σ
√
w2

]
+ 1

4
Q
[
w2−ρ

(2)
12 +ρ

(2)
21 b1(l)

σ
√
w2

]

P [e2(l − 1) = −2|b1(l)] = 1
4
Q
[
w2−ρ

(2)
12 −ρ

(2)
21 b1(l)

σ
√
w2

]
+ 1

4
Q
[
w2+ρ

(2)
12 −ρ

(2)
21 b1(l)

σ
√
w2

]

P [e2(l − 1) = 0|b1(l)] = 1− P [e2(l − 1) = 2|b1(l)]− P [e2(l − 1) = −2|b1(l)]

The distribution of e2(l), given b1(l), is similar, just exchange ρ
(2)
12 with ρ

(2)
21 . Then, the probability

of error for user 1 is :

P
[
b̂1(l) �= b1(l)

]
=
∑

a ∈ {−2, 0, 2}
b ∈ {−1,+1}
c ∈ {−2, 0, 2}

1
2
P [e2(l − 1) = a|b1(l) = b]P [e2(l) = c|b1(l) = b]×

×Q

w1+

(
ρ
(1)
12 c+ρ

(1)
21 a

)
b1(l)

σ
√
w1




The distribution of e2(l − 1), conditioned on b1(l), when σ → 0 is :

P [e2(l − 1) = a|b1(l)] ≈ 1
4
Q


w2−

∣∣∣ρ(2)
12

∣∣∣+aρ
(2)
21 b1(l)/2

σ
√
w2


 , a = ±2

P [e2(l − 1) = 0|b1(l)] = 1− P [e2(l − 1) = 2|b1(l)]− P [e2(l − 1) = −2|b1(l)]
This distribution may be concisely written as :

P [e2(l − 1) = a|b1(l)] ≈ 1

4
Q


 |a|
2

w2 −
∣∣∣ρ(2)

12

∣∣∣+ a
2
ρ

(2)
21 b1(l)

σ
√
w2




which is exponentially tight. The limiting form of the probability of error is (dropping constants)

P
[
b̂1(l) �= b1(l)

]
≈ ∑

a ∈ {−2, 0, 2}
b ∈ {−1,+1}
c ∈ {−2, 0, 2}

Q


 |a|

2

w2−
∣∣∣ρ(2)

12

∣∣∣+ a
2
ρ
(2)
21 b

σ
√
w2


×

×Q

 |c|

2

w2−
∣∣∣ρ(2)

21

∣∣∣+ c
2
ρ
(2)
12 b

σ
√
w2


×Q


w1+

(
ρ
(1)
12 c+ρ

(1)
21 a

)
b

σ
√
w1




(c) Consider the special case :

sgn
(
ρ

(1)
12

)
= sgn

(
ρ

(2)
12

)
sgn
(
ρ

(1)
21

)
= sgn

(
ρ

(2)
21

)
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as would occur for far-field transmission (this case is the most prevalent in practice ; other cases
follow similarly). Then, the slowest decaying term corresponds to either :

sgn
(
bρ

(1)
21 a
)
= sgn

(
bρ

(1)
12 c
)
= −1

for which the resulting term is :

Q


√w1

σ2

√
2



√
w2

w1

−
∣∣∣ρ(2)

12

∣∣∣+ ∣∣∣ρ(2)
21

∣∣∣
√
w1
√
w2




 ·Q


√w1

σ2


1− 2

∣∣∣ρ(1)
12

∣∣∣+ ∣∣∣ρ(1)
21

∣∣∣
w1






or the case when either ma or c = 0. In this case the term is :

Q


√w1

σ2



√
w2

w1
−
∣∣∣ρ(2)

12

∣∣∣+ ∣∣∣ρ(2)
21

∣∣∣
√
w1
√
w2




 ·Q


√w1

σ2


1− 2

max
(∣∣∣ρ(1)

12

∣∣∣ , ∣∣∣ρ(1)
21

∣∣∣)
w1






or the case when a = c = 0 for which the term is :

Q
[√

w1

σ2

]

Therefore, the asymptotic efficiency of this detector is :

η1 = min



1,max2


0,
√

w2

w1
−
∣∣∣ρ(2)

12

∣∣∣+∣∣∣ρ(2)
21

∣∣∣
√
w1

√
w2


+max2


0, 1− 2

max

(∣∣∣ρ(1)
12

∣∣∣,∣∣∣ρ(1)
21

∣∣∣)
w1


 ,

2max2


0,
√

w2

w1
−
∣∣∣ρ(2)

12

∣∣∣+∣∣∣ρ(2)
21

∣∣∣
√
w1

√
w2


+max2


0, 1− 2

max

(∣∣∣ρ(1)
12

∣∣∣,∣∣∣ρ(1)
21

∣∣∣)
w1







Problem 15.16:

(a) The normalized offered traffic per user is : Guser = λ · Tp =
(

1
60

pack/ sec
)
·
(

100
2400

sec
)
=

1/1440. The maximum channel throughput Smax occurs when Gmax = 1/2; hence, the number
of users that will produce the maximum throughput for the system is : Gmax/Guser = 720.

(b) For slotted Aloha, the maximum channel throughput occurs when Gmax = 1; hence, the
number of users that will produce the maximum throughput for the system is : Gmax/Guser =
1440.

Problem 15.17 :

A, the average normalized rate for retransmissions, is the total rate of transmissions (G) times
the probability that a packet will overlap. This last probability is equal to the probability
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that another packet will begin from Tp seconds before until Tp seconds after the start time of
the original packet. Since the start times are Poisson-distributed, the probability that the two
packets will overlap is 1− exp(−2λTp). Hence,

A = G(1− e−2G)⇒ G = S +G(1− e−2G)⇒ S = Ge−2G

Problem 15.18 :

(a) Since the number of arrivals in the interval T, follows a Poisson distribution with parameter
λT, the average number of arrivals in the interval T, is E [k] = λT.

(b) Again, from the well-known properties of the Poisson distribution : σ2 = (λT )2 .

(c)
P (k ≥ 1) = 1− P (k = 0) = 1− e−λT

(d)
P (k = 1) = λTe−λT

Problem 15.19 :

(a) Since the average number of arrivals in 1 sec is E [k] = λT = 10, the average time between
arrivals is 1/10 sec.

(b)
P (at least one arrival within 1 sec) = 1− e−10 ≈ 1

P (at least one arrival within 0.1 sec) = 1− e−1 = 0.63

Problem 15.20 :

(a) The throughput S and the normalized offered traffic G are related as S = Ge−G = 0.1.
Solving numerically for G, we find G = 0.112.

(b) The average number of attempted transmissions to send a packet, is : G/S = 1.12.
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Problem 15.21 :

(a)

τd = (2 km) ·
(
5
µs

km

)
= 10 µs

(b)

Tp =
1000 bits

107 bits/ sec
= 10−4 s

(c)

a =
τd
Tp

=
1

10

Hence, a carrier-sensing protocol yields a satisfactory performance.

(d) For non-persistent CDMA :

S =
Ge−aG

G(1 + 2a) + e−aG

The maximum bus utilization occurs when :

dS

dG
= 0

Differentiating the above expression with respect to G, we obtain :

e−aG − aG2(1 + 2a) = 0

which, when solved numerically, gives : Gmax = 2.54. Then , the maximum throughput will be :

Smax =
Ge−aG

G(1 + 2a) + e−aG
= 0.515

and the maximum bit rate :

Smax · 107 bits/ sec = 5.15 Mbits/ sec
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