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Preface 

Since the first edition of Antenna Theory and Design was published in 1981, there 
have been major expansions of application areas for antennas, mainly in wireless 
communications. In addition, in recent years new areas important to antennas have 
emerged into prominence. This second edition has been expanded to include new 
areas in antennas. Coverage of microstrip antennas (Sec. 5.8) as well as the use of 
antennas in systems and measurements (Chapter 9) have been added. In addition, 
the treatments of array antennas (Chapter 3), broadband antennas (Chapter 6), and 
aperture antennas (Chapter 7) have been expanded. Also, since the first edition was 
written there have been major advances in Computational Electromagnetics 
(CEM), due in part to the use of more sophisticated antennas and antenna systems. 
The second edition expands on the Method of Moments in Chapter 10, introduces 
a succinct treatment of the Finite Difference-Time Domain (FD-TD) technique for 
antennas in Chapter 11, and adds the topic of the Physical Theory of Diffraction 
(PTD) to high frequency methods in Chapter 12. The objective in the second edition 
has been to preserve the simplicity of the first edition, while adding modem topics. 

This book is a textbook and finds its widest use in the college classroom. Thus, 
the primary purpose is to emphasize the understanding of principles and the de
velopment of techniques for examining and designing antenna systems. Handbooks 
are available to supplement the fundamentals and antennas discussed here. We have 
found that the first edition is in wide use by practicing engineers as well as students. 
This is because of the applied nature of the material and the treatment of basic 
topics that are directly useable for analyzing practical antennas. This is illustrated 
by the material in Chapters 1 to 6 and 9, which do not rely heavily on mathematics 
and use calculus sparingly. 

Antenna Theory and Design covers antennas from three perspectives: antenna 
fundamentals, antenna techniques, and the design of popular antennas. The first 
four chapters stress antenna fundamentals. Since the student has probably had little 
exposure to antennas, many fundamentals are presented in Chapter 1. The emer
gence of antenna theory from Maxwell's equation!) is developed, along with a phys
ical explanation of how antennas radiate. The four types of antenna elements (elec
trically small, resonant, broadband, and aperture) are introduced. The discipline of 
antennas has its own terminology that is quite different from other areas of engi
neering, so Chapter 1 includes definitions of many antenna terms. Chapter 2 ex
amines simple radiating systems, such as dipoles, in order to solidify the principles 
of Chapter 1 and to equip the reader to move forward with analysis of antenna 
systems, such as arrays, that are treated in Chapter 3. Arrays are covered early in 
the book to introduce the relationship between the current distribution on an an
tenna and its spatial radiation characteristics using elementary mathematics. In ad
dition, arrays are widely used in practice today. The discrete approach to antennas 
(arrays) is followed in Chapter 4 with line source antennas, which introduce the 
continuous form of antennas. 

Chapters 5 to 7 give details on commonly used antenna elements. Chapter 5 
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surveys the resonant antenna elements encountered in practice, including dipoles, 
yagis, and microstrip patches. Chapter 6 covers broadband antennas such as helix, 
spiral, and log-periodic antennas. Chapter 7 treats aperture antennas. Emphasis in 
these chapters is on the operating principles using the fundamentals introduced in 
the Chapters 1 to 4 and on design guidelines. As appropriate, data are presented 
using numerical or experimental models, or computations based on theoretical for
mulations. In addition, empirical formulas are often presented for easy evaluation 
of performance parameters. 

The synthesis of arrays and continuous antennas is presented in Chapter 8 for 
shaped main-beam or low side-lobe applications. The use of antennas as devices in 
systems is covered in Chapter 9, along with antenna measurements. 

Chapters 10 to 12, as noted above, introduce CEM techniques for evaluating 
simple antenna elements as well as large complex antenna systems. Here, as ih all 
the book, actual code statements are not listed. The wide variety of computing 
environments and the availability of high-level mathematics applications packages 
makes this inappropriate and unnecessary. Instead, some key computational and 
visualization antenna software packages are made available on the World Wide 
Web (see Appendix G). 

It is important to be aware of the background that is assumed for this book. It is 
not necessary that the reader have complete mastery of the following subjects, but 
exposure to these topies is very helpful. A basic course in electromagnetics, such as 
is commonly required in engineering and physics, is assumed. Mathematics used 
often includes complex numbers, trigonometry, vector algebra, and the major co
ordinate systems (rectangular, cylindrical, and spherical). Vector calculus is used at 
various points and scalar integration is frequently used. 

This book can be readily adapted to various academic programs at both intro
ductory and advanced levels. For a first course, the text is usually used in a senior 
elective or entry level graduate course. A one-semester introductory course usually 
covers Chapter 1 to 6. For a master's degree-level course, parts of Chapters 7, 8, 
and 9 can be added. In a one-quarter senior course, material in the latter parts of 
Chapters 3, 4, or 5 can be eliminated. A second course can focus on advanced design, 
synthesis, and systems using Chapters 7, 8, and 9. Alternatively, a second course 
can specialize on computational methods using Chapters 10 to 12. 

Several features have been included to aid in learning and in preparation for 
further self study. Defined terms follow the IEEE standard definitions. Literature 
references found at the end of each chapter provide sources for further reading. In 
addition, the bibliography in Appendix H lists literature sources by technical topic. 
The appendices also include information on the radio spectrum, data on materials, 
and important mathematical relations. 

The authors are indebted to the many individuals who provided invaluable tech
nical assistance to this second edition. The reviewers of the entire manuscript (two 
of whom also reviewed the first edition) gave essential input on the organization of 
the book and on several technical issues. Many students offered critical remarks 
during classroom testing of the manuscript. In addition, special thanks are owed to 
those who gave detailed evaluations, including Keith Carver (Secs. 5.8 and 6.2), 
David Jackson (Sec. 5.8), Ahmad Safaai-Jazi (Sees. 6.2 and 8.4), Dave Olver (Chap
ter 11), Buck Walter (Secs. 4.4 and 10.12), Gerald Ricciardi (Sec. 5.8), Marco Terada 
(Sec. 7.6) and Krish Pasala (Sec. 12.15). One author (Gary Thiele) extends special 
thanks to his son, Eric T. Thiele, for many long, valuable discussions on FD~TD, 
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for reviewing Chapter 11, and for generating the numerical data used in several 
illustrations in Chapter 11. 

Finally, we recognize our wives, Claudia and Jo Ann, for enduring countless hours 
of neglect during the preparation for both editions. The same recognition goes to 
our children, Darren and Dana, and Eric, Scott, and Brad. 

Warren L. Stutzman 
Gary A. Thiele 
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Chapter 1 

Antenna Fundamentals 
and Definitions 

1.1 INTRODUCTION 

Communication between humans was first by sound through voice. With the desire 
for long distance communication came devices such as drums. Then, visual methods 
such as signal flags and smoke signals were used. These optical communication 
devices, of course, utilized the light portion of the electromagnetic spectrum. It has 
been only very recent in human history that the electromagnetic spectrum, outside 
the visible region, has been employed for communication, through the use of radio. 

The radio antenna is an essential component in any radio system. An antenna is 
a device that provides a means for radiating or receiving radio waves. In other 
words, it provides a transition from a guided wave on a transmission line to a "free
space" wave (and vice versa in the receiving case). Thus, information can be trans
ferred between different locations without any intervening structures. The possible 
frequencies of the electromagnetic waves carrying this information form the elec
tromagnetic spectrum (the radio frequency bands are given in Appendix A). One 
of humankind's greatest natural resources is the electromagnetic spectrum and the 
antenna has been instrumental in harnessing this resource. A brief history of an
tenna technology [1-4] and a discussion of the uses of antennas follow. 

Perhaps the first radiation experiment was performed in 1842 by Joseph Henry 
of Princeton University, the inventor of wire telegraphy. He "threw a spark" in a 
circuit in an upper room and observed that needles were magnetized by the current 
in a receiving circuit located in the cellar. This experiment was extended to a dis
tance of over a kilometer. Henry also detected lightning flashes with a vertical wire 
on the roof of his house. These experiments marked the beginning of wire antennas. 

Based on his observations in 1875 that telegraph key closures radiate, Thomas 
Edison patented a communication system in 1885 that employed top-loaded, vertical 
antennas. 

The theoretical foundations for antennas rest on Maxwell's equations, which 
James Clerk Maxwell (1831-1879) presented before the Royal Society in 1864, that 
unify electric and magnetic forces into a single theory of electromagnetism. Maxwell 
also predicted that light is explained by electromagnetics and that light and electro
magnetic disturbances both travel at the same speed. 

In 1887 the German physicist Heinrich Hertz (1857-1894) was able to verify 
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experimentally the claim of Maxwell that electromagnetic actions propagate 
through air. Hertz discovered that electrical disturbances could be detected with a 
single loop of the proper dimensions for resonance that contains an air gap for 
sparks to occur. The primary source of electrical disturbances studied by Hertz 
consisted of two metal plates in the same plane, each with a wire connected to an 
induction coil; this early antenna is similar to the capacitor-plate dipole antenna 
described in Section 2.1 and was called a "Hertzian dipole." Hertz also constructed 
loop antennas. Motivated by the need for more directive radiation; he also invented 
reflector antennas. In 1888 he constructed a parabolic cylinder reflector antenna 
from a sheet of zinc; see Fig. 1-la. It was fed with a dipole along the focal line and 
operated at 455 MHz. 

Guglielmo Marconi (1874-1937), an Italian inventor, also built a microwave par
abolic cylinder reflector in 1895 for his original code transmission at 1.2 GHz. But 
his subsequent work was at lower frequencies for improved communication range .. 
The transmitting antenna for the first transatlantic radio communication in 1901 
consisted of a 70-kHz spark transmitter connected between the ground and a system 
of 50 wires, forming a 48-m tall fan monopole; see Fig. 1-lb. The antenna resembles 
a variation of the discone antenna described in Sec. 6.3. The receiving antenna was 
supported by kites. 

Although Marconi is credited as the pioneer of radio, Mahlon Loomis (1826-
1886), a dentist and inventor in Washington, DC, received a U.S. patent in 1872 for 
an "Improvement in Telegraphying" in which he described the use of an "aerial" 
to radiate and recieve "pulsations." In October 1866, Loomis demonstrated his 
wireless signaling system to U.S.· senators in the Blue Ridge Mountains of Virginia 
using wire supported by kites at both the transmitting and receiving antennas about 
twenty miles apart. 

The Russian physicist Alexander Popov (1859-1905) also recognized the impor
tance of Hertz's discovery of radio waves and began working on ways of receiving 

(a) The 455-MHz cylinder reflector antenna 
invented by Hertz in 1888 

Figure 1-1 Examples of early antennas. 

(b) The monopole transmitting antenna used by 
Marconi at 70 kHz for the first transatlantic 
radio communication 
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them a year before Marconi. He is sometimes credited with using the first antenna 
in the first radio system by sending a signal over a 3-mile ship-to-shore path in 1897. 
However, it was Marconi who developed radio commercially and also pioneered 
transoceanic radio communication. Marconi may be considered to be the father of 
what was then called wireless. Since then the term "radio" has been used, but 
"wireless" has also returned to popular use. 

In 1912 the Institute of Radio Engineers was formed by the merger of the Wireless 
Institute and the Society of Radio Engineers. The importance of antennas is punc
tuated by the fact that the first article of the first issue of Proceedings of the l.R.E. 
was on antennas [5]. 

Antenna developments in the early years were limited by the availability of signal 
generators. Resonant length antennas (e.g., a half-wavelength dipole) of manage
able physical size were possible about 1920 after the De Forest triode tube was used 
to produce continuous wave signals up to 1 MHz. Just before World War II, micro
wave (about 1 GHz) klystron and magnetron signal generators were developed 
along with hollow pipe waveguides. These led to the development of hom antennas, 
although Chunder Bose (1858-1937) in India produced the first electromagnetic 
hom antenna many years earlier. The first commercial microwave radiotelephone 
system in 1934 was operated between England and France at 1.8 GHz. The need 
for radar during the war spawned many "modem" antennas, such as large reflectors, 
lenses, and waveguide slot arrays [6]. 

Let us now direct our attention to the uses of antennas. Electromagnetic energy 
can be transported using a transmission line. Alternatively, no guiding structure is 
needed if antennas are used. For a transmitter-receiver spacing of R, the power loss 
of a transmission line is proportional to (e- aR?, where a is the attenuation constant 
of the transmission line. If the antennas are used in a line of sight configuration, the 
power loss is proportional to lIR2. Many factors enter into the decision of whether 
to use transmission lines or antennas. Generally speaking, at low frequencies and 
short distances transmission lines are practical. But high frequencies are attractive 
because of the available bandwidth. As distances become large and frequency in
creases, the signal losses and the costs of using transmission lines become large, and 
thus the use of antennas is favored. A notable exception to this is the fiber optic 
transmission line, which has very low loss. Transmission lines offer the advantages 
of not being subject to interference that is often encountered in radio systems and 
added bandwidth is achieved by laying new cable. However, there are significant 
costs and construction delays associated with cable. 

In several applications, antennas must be used. For example, mobile communi
cations involving aircraft, spacecraft, ships, or land vehicles require antennas. An
tennas are also popular in broadcast situations where one transmit terminal can 
serve an unlimited number of receivers, which can be mobile (e.g., car radio). Non
broadcast radio applications such as municipal radio (police, fire, rescue) and am
ateur radio also require antennas. Also, personal communication devices such as 
pagers and cellular telephones are commonplace. 

There are also many noncommunication applications for antennas. These include 
remote sensing and industrial applications. Remote sensing systems are either active 
(e.g., radar) or passive (e.g., radiometry) and receive scattered energy or inherent 
emissions from objects, respectively. The received signals are processed to infer 
information about the objects or scenes. Industrial applications include cooking and 
drying with microwaves. 

Other factors that influence the choice of the type of transmission system include 



4 Chapter 1 Antenna Fundamentals and Definitions 

historical reasons, security, and reliability. Telephone companies began intercon
necting multiple transmit-receive terminals with transmission lines before radio 
technology was available. Currently, domestic telephone companies employ micro
wave radio and fiber optic transmission lines for long distance telephone calls. Sat
ellite radio links are used heavily for international telephone calls. In addition, 
satellite-based communication systems are the primary means of distributing 
television program material to affiliate stations. Television programs distributed 
directly to consumers by satellite is increasing worldwide. Also, very small aperture 
terminals (VSAT) for satellite radio systems are widely used in private data net
works to interconnect, for example, chain retail stores. Transmission lines inherently 
offer more security than radio. However, radio links using digital communications 
can be secured with coding techniques. Also, additional security is unnecessary for 
most communication systems. Another factor to be considered is reliability. For 
example, radio signals are affected by environmental conditions such as structures 
along the signal path, the ionosphere, and weather. Furthermore, interference is 
always a threat to radio systems. On the other hand, cables are vulnerable to being 
damaged by earthquakes or being accidentally dug up. All these factors must be 
examined together with the costs associated with using transmission lines and an
tennas. Cable systems often require expensive land purchase or lease. Every year 
radio equipment decreases in cost and increases in reliability. This tends to tip the 
scale in favor of radio systems. Cable and radio communication systems will con
tinue to be used in the future with the choice depending on the specific application. 
For high reliability, both cable and radio are employed to provide diversity. 

As we shall see, antennas cannot be miniaturized and replaced by a chip as often 
happens in electronics. Although long-used types of antennas will remain in use far 
into the future, new applications will require innovative antenna systems. For ex
ample, the demand for more communications is leading to personal communications 
systems (PCS) where each person will be freed of wire connections by carrying a 
small radio that can be used anywhere on the globe. The first of the seven IEEE 
New Technology Directions Committee grand challenges for electrotechnology is, 
"To make any person anywhere in the world reachable at his or her discretion, at 
any time by communication methods independent of connecting wires and cables." 
A "wireless" society is possible only through the use of antennas. Indeed, the future 
of antennas is very bright. 

The next two sections of this first chapter provide a basic understanding of how 
antennas operate and an overview of the types of antennas encountered in practice. 
The remainder of Chap. 1 is devoted to developing the fundamental principles and 
terminology used throughout the book. 

References to specific literature works are found at the end of the chapter where 
the citation occurs. In addition, a complete bibliography is found in Appendix H. 
About 150 books are listed by their topical coverage to aid the student in locating 
further details. The IEEE definitions of antenna terms [Ref. 1 in App. H] are fol
lowed very closely in this book. 

L2 HOW ANTENNAS RADIATE 

Before we proceed with a mathematical development of antennas that is necessary 
for engineering design, it is instructive to explain the basic principles of radiation. 
Radiation is a disturbance in the electromagnetic fields that propagates away from 
the source of the disturbance so that the total power associated with the wave in a 
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lossless medium is constant with radial distance. This disturbance is created by a 
time-varying current source that has an accelerated charge distribution associated 
with it. We, therefore, begin our discussion of radiation with a single accelerated 
charge. 

Consider a single electric charge moving with constant velocity in the z-direction 
of Fig. 1-2. Prior to arrival at point A, the static electric field lines extend radially 
away from the charge to infinity and move with the charge. At point A, the charge 
begins to be accelerated (i.e., velocity is increased) until reaching point B, where it 
continues on at the acquired velocity. The static electric field (often called the Cou
lomb field) originates at the charge and is directed radially away from the charge. 
The radial field lines outside the circle of radius rAin Fig. 1-2 originated when the 
charge was at point A. The circle of radius rB is centered on point B, which is the 
charge position at the end of the acceleration period M. Interior to rB, the electric 
field lines extend radially away from point B. The distance between the circles is 
that distance light would travel in time at, or ar = rB - r A = at/c. Since the charge 
moves slowly compared to the speed of light, az « ar and the circles are nearly 
concentric; the distance az in Fig. 1-2 is shown large relative to ar for clarity. The 
electric field lines in the ar region are joined together because of the required 
continuity of electric field lines in the absence of charges. This region is obviously 
one of disturbed field structure. This disturbance was caused by acceleration of the 
charge, which ended a time rBlc earlier than the instant represented in Fig. 1-2. This 

z 

Figure 1·2 Illustration of how an accelerated charged particle radiates. Charge q moves 
with constant velocity in the + z-direction until it reaches point A (time t = 0), after which 
it accelerates to point B (time t = At) and then maintains its velocity. The electric field 
lines shown here are for a time rB/c after the charge passed pointE. 
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disturbance expands outward and has a transverse component E" which is the ra
diated field that persists as the disturbance propagates to infinity. 

This example illustrates that radiation is a disturbance. It is directly analogous to 
a transient wave created by a stone dropped into a calm lake, where the disturbance 
of the lake surface continues to propagate radially away from the impact point long 
after the stone has disappeared. If charges are accelerated back and forth (i.e., 
oscillate), a regular disturbance is created and radiation is continuous. Antennas 
are designed to support charge oscillations. 

The directional properties of radiation are evident in the accelerated charge ex
ample. The disturbance in Fig. 1-2 is maximum in a direction perpendicular to the 
charge acceleration direction, and we shall see in this chapter that maximum radi
ation occurs perpendicular to a straight wire antenna. 

We can now explain how an actual antenna operates. To do this, we begin with 
the open-circuited transmission line of Fig. 1-3, which has a standing wave pattern 
with a zero current magnitude at the wire end and nulls every half wavelength from 
the end. The currents are in opposite directions on the wires, as indicated by arrows 
in Fig. 1-3a. In transmission lines, the conductors guide the waves and the power 
resides in the region surrounding the conductors as manifested by the electric and 
magnetic fields. The fields for the open-ended transmission line are shown in Fig. 
1-3a. The electric fields originate from or terminate on charges on the wires and are 
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(a) Open-circuited transmission line showing currents, charges, and fields. 

The electric fields are indicated with lines and the magnetic fields with arrow 
heads and tails, solid (dashed) for those arising from the top (bottom) wire. 

(b) Peak currents on a half-wavelength dipole created 
by bending out the ends of the transmission line. 

Figure 1-3 Evolution of a dipole antenna from an open-circuited transmission line. 
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perpendicular to the wires. The magnetic fields encircle the wires. Note that all fields 
reinforce between the wires and cancel elsewhere. This is true for a wire spacing 
that is much smaller than a wavelength, as is usually the case. If the ends of the 
wires are bent outward as shown in Fig. 1-3b, the reinforced fields between the wires 
are exposed to space. Note that the currents on the vertical wire halves, which are 
each a quarter wavelength in this case, are no longer opposed as with the trans
mission line, but are both upwardly directed. In reality, the currents on the di
pole are approximately sinusoidal as shown, but the transmission line currents 
are not pure standing waves due to the improved impedance match presented 
by the antenna compared to the open circuit. The situation of Fig. 1-3b is for a 
peak current condition. As time proceeds and current oscillations occur, distur
bances are created that propagate away from the wire, much as the accelerated 
single charge. 

The time dynamics of the fields associated with an oscillating dipole charge dis
tribution are shown in Fig. 1-4 [7]. This is similar to the electrostatic dipole with 
equal, but opposite signed, separated charges. In this case, the charge distributions 
oscillate at frequency f. As the charge distributions at the ends oscillate, a current 
flows between them that is uniform with distance. This is the ideal dipole of Sec. 

'- 1.6. In Fig. 1-4, an oscillating current of frequency f (and period T = 11 f) was turned 
on a quarter period before t = O. The upward-flowing current creates an excess of 
charges on the upper half of the dipole and a deficit of charges on the lower half. 
Peak charge buildup occurs at t = 0 as shown in Fig. 1-4a and produces a voltage 
between the dipole halves. The positive charges on the top are attracted to the 
negative charges on the bottom half of the dipole, creating a current. The current 

(a) t = 0 

(c) t= TI2 

_/ 
..,~ 

(b) t= TI4 

Figure 1-4 Electric fields of an oscillating dipole for various instants of time. The 
oscillations are of frequency f with a period of T = lIf. 
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is maximum at t = T/4 as shown in Fig. 1-4b, at which time the charges have been 
neutralized and there are no longer charges for the termination of electric field lines, 
which form closed loops near the dipole. During the next quarter cycle, negative 
charges accumulate at the top end of the dipole as shown in Fig. 1-4c. Near the 
dipole, the fields are most intense normal to the oscillating charges on the dipole, 
just as we found with the single accelerated charge. As time progresses, the electric 
field lines detach from the dipole, forming closed loops in space. Viewed in terms 
of current, the conduction current on the antenna converts to a displacement current 
in space, consisting of the longitudinal fields near the antenna and solenoidal (loops) 
fields away from the antenna. Thus, current continuity is satisfied. This process 
continues,producing radiation via electric field components that are transverse to 
the radial direction and propagate to large distances from the antenna. We shall see 
in Sec. 1.6 that the mathematical solution of the (oscillating) dipole produces the 
property required for successful radiation: fields decrease with distance as 1fr. In 
contrast, the electric field of an electrostatic dipole decreases as 1fr3

• The time-space 
behavior of fields from an antenna is revisited in Sec. 11.8 and 11.9. 

L3 OVERVIEW OF ANTENNAS 

An antenna acts to convert guided waves on a transmission structure into free space 
waves. Figure 1-3 illustrates a parallel wire transmission line feeding a half-wave 
dipole antenna. The official IEEE definition of an antenna follows this concept: 
"That part of a transmitting or receiving system that is designed to radiate or receive 
electromagnetic waves." Most antennas are reciprocal devices and behave the same 
on transmit as on receive. Antennas are treated as transmitting or receiving as 
appropriate for the particular situation. In the receiving mode, antennas act to col
lect incoming waves and direct them to a common feed point where a transmission 
line is attached. In some cases, antennas focus radio waves just as lenses focus optical 
waves. In all cases, antennas have directional characteristics; that is, electromagnetic 
power density is radiated from a transmitting antenna with intensity that varies with 
angle around the antenna. 

In this section, we introduce the parameters used to evaluate antennas and then 
discuss the four types of antennas. The parameters are defined and developed in 
more detail in the remainder of this chapter after the brief overview given here. 

Antenna performance parameters are listed in Table 1-1. The radiation pattern 
(or simply, pattern) gives the angular variation of radiation at a fixed distance from 
an antenna when the antenna is transmitting. Radiation is quantified by noting the 
value of power density S at a fixed distance r from the antenna. When receiving, 
the antenna responds to an incoming wave from a given direction according to the 
pattern value in that direction. The typical pattern in Fig. 1-5 shows the pattern 
main beam and side lobes. This directive antenna, with a single narrow main beam, 
is used in point-to-point communications. In some applications, the shape of the 
main beam is important. On the other hand, an omnidirectional antenna with con
stant radiation in one plane is used in broadcast situations. 

An antenna is essentially a spatial amplifier and directivity expresses how much 
greater the peak radiated power density is for an antenna than it would be if all the 
radiated power were distributed uniformly around the antenna. Fig. 1-5 shows the 
radiation pattern of a real antenna compared to an isotropic spatial distribution; 
also see Fig. 1-20. The spatial enhancement that can be achieved by an antenna is 
evident. Gain G is directivity reduced by the losses on the antenna. 
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Table 1·1 Antenna Performance Parameters 

• Radiation Pattern F(O, tfJ): Angular variation of radiation around the antenna, including: 
Directive, single or multiple narrow beams 
Omnidirectional (uniform radiation in one plane) 
Shaped main beam 

• Directivity D: Ratio of power density in the direction of the pattern maximum to the 
average power density at the same distance from the antenna. 

• Gain G: Directivity reduced by the losses on the antenna. 
• Polarization: The figure traced out with time by the instantaneous electric field vector 

associated with the radiation from an antenna when transmitting. Antenna polarizations: 
Linear, Circular, Elliptical 

• Impedance ZA: Input impedance at the antenna terminals. 
• Bandwidth: Range of frequencies over which important performance parameters are 

acceptable. 
• Scanning: Movement of the radiation pattern in space. Scanning is accomplished by 

mechanical movement or by electronic means such as adjustment of antenna current 
phase. 

• System Considerations: Size, weight, power handling, radar cross section, environmental 
operating conditions, etc. 

The third parameter, polarization, describes the vector nature of electric fields 
radiated by an antenna and is discussed in detail in Sec. 1.10. The figure traced out 
with time by the tip of the instantaneous electric field vector determines the polar
ization of the wave. A straight wire antenna radiates a wave with linear polarization 
parallel to the wire. Another popular polarization is circular. In general, polarization 
is elliptical. Dual polarized antennas enable the doubling of communication capacity 
by carrying separate information on orthogonal polarizations over the same physical 
link at the same frequency. 

The input impedance of an antenna is the ratio of the voltage to current at the 
antenna terminals. The usual goal is to match antenna input impedance to the char
acteristic impedance of the connecting transmission line. Bandwidth is the range of 
frequencies with acceptable antenna performance as measured by one or more of 
the performance parameters; see Chap. 6 for commonly used definitions of band
width. Finally, it is often desired to scan the main beam of an antenna over a region 
of space. This can be accomplished by moving an antenna, by electronic scanning 
or by a combination of mechanical and electronic scanning. 
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Figure 1·5 Illustration of radiation 
pattern F(8, ¢) and directivity D. 
The power densities at the same 
distance are Sand Sj for the real 
and isotropic antennas, respectively. 
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• Electrically small antennas: The extent of the antenna structure is much less than a 
wavelength A. 

Properties: 
Very low directivity 
Low input resistance 
High input reactance 
Low radiation efficiency 

Examples: 

Short dipole 

o 
Small loop 

• Resonant antennas: The antenna operates well at a single or selected narrow frequency 
bands. 

Properties: 
Low to moderate gain 
Real input impedance 
Narrow bandwidth 

Examples: 

i I 

~-~-
--~~ 

i J _b 
2 

1 ~ 
Half-wave dipole Microstrip patch Yagi 

I I 

• Broadband antennas: The pattern, gain, and impedance remain acceptable and are 
nearly constant over a wide frequency range, and are characterized by an active region 
with a circumference of one wavelength or an extent of a half-wavelength, which 
relocates on the antenna as frequency changes. 

Properties: 
Low to moderate gain 
Constant gain 
Real input impedance 
Wide bandwidth 

Examples: 

Spiral 

Figure 1·6 Types of antennas. 

Log periodic dipole array 
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• Aperture antennas: Has a physical aperture (opening) through which waves flow. 
Properties: 

High gain 
Gain increases with frequency 
Moderate bandwidth 

Examples: 

Hom 
Figure 1-6 (continued). 

Reflector 

There are trade-offs between parameter values. Usually, performance cannot be 
improved significantly for one parameter without sacrificing one or more of the 
other parameter levels. This is the antenna design challenge. 

Antennas can be divided into four basic types by their performance as a function 
of frequency. These are introduced so that the common features can be grasped 
early in the study of antennas. When you encounter a new antenna, try to determine 
which type it is. The antenna types in Fig. 1-6 are listed in the order that they are 
commonly used across the radio spectrum; see Appendix A for lists of frequency 
bands. This discussion serves as an overview and should be referred to from time 
to time as your knowledge of antennas builds. Electrically small antennas are used 
at VHF frequencies and below. Resonant antennas are mainly used from HF to low 
GHz frequencies. Broadband antennas are mainly used from VHF to middle GHz 
frequencies. Aperture antennas are mainly used at UHF and above. 

Electrically small (or simply, small) antennas are much less than a wavelength in 
extent. Recall from electromagnetics that wavelength ..\. is related to frequency f 
through the speed of light c as A = clf. Electrically small antennas are simple in 
structure and their properties are not sensitive to construction details. The vertical 
monopole used for AM reception on cars is a good example. It is about 0.003..\. long 
and has a pattern that is nearly omnidirectional in the horizontal plane. This is often 
a desirable property, but its low input resistance and high input reactance are serious 
disadvantages. Also, small antennas are inefficient because of ohmic losses on the 
structure. . 

Resonant antennas are popular when a simple structure with good input imped
ance over a narrow band of frequencies is needed. It has a broad main beam and 
low or moderate (a few dB) gain. The half-wavelength long dipole is a prominent 
example. I 

Many applications require an antenna that operates over a wide frequency range. 
A broadband antenna has acceptable performance as measured with one or more 
parameters (pattern, gain, and/or impedance) over a 2: 1 bandwidth ratio of upper 
to lower operating frequency. A broadband antenna is characterized by an active 
region. Propagating (or, traveling) waves originate at the feed point and travel with
out radiation to the active region where most of the power is radiated. A broadband 
antenna with circular geometry has an active region where the circumference is one 
wavelength and produces circular polarization. An example is the spiral antenna 
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illustrated in Fig. 1-6 that can have a 20: 1 bandwidth. A broadband antenna made 
up of linear elements or straight edges has an active region where these elements 
are about a half-wavelength in extent and produces linearly polarized radiation 
parallel to the linear elements. Since only a portion of a broadband antenna is 
responsible for radiation at a given frequency, the gain is low. But it may be an 
advantage to have gain that is nearly constant with frequency, although low. Also, 
the traveling wave nature of a broadband antenna means that it has a real-valued 
input impedance. 

Aperture antennas have an opening through which propagating electromagnetic 
waves flow. A horn antenna is a good example; it acts as a "funnel," directing the 
waves into the connecting waveguide. The aperture is usually several wavelengths 
long in one or more dimensions. The pattern usually has a narrow main beam, 
leading to high gain. The pattern main beam narrows with increasing frequency for 
a fixed physical aperture size. Bandwidth is moderate (as much as 2:1). 

L4 ELECTROMAGNETIC FUNDAMENTALS 

This and the next section present a brief review of electromagnetic field principles 
and the solution of Maxwell's equations for radiation problems. Any basic electro
magnetic fields textbook can be consulted for the details on these topics. 

The fundamental electromagnetic equations are! 

a~ 
(1-1) Vx~=--at 

a 
(1-2) v x ~ = -~ + 1T at 

v· ~ = PT(t) (1-3) 

v·~ = 0 (1-4) 
a 

(1-5) v ·1T = -- PT(t) at 
The first four of these differential equations are frequently referred to as Maxwell's 
equations and the last as the continuity equation. The curl equations together with 
the continuity equation are equivalent to the curl and divergence equations. In time
varying field problems, the curl equations with the continuity equation is the most 
convenient formulation. Each of these differential equations has an integral coun
terpart. 

If the sources PT(t) and 'T(t) vary sinusoidally with time at radian frequency w, 
the fields will also vary sinusoidally and are frequently called time-harmonic fields. 
The fundamental electromagnetic equations and their solutions are considerably 
simplified if phasor fields are introduced as follows:2 

~ = Re(Eejw
'), ~ = Re(Hejwt

), etc. (1-6) 

where phasor quantities E, H, D, B, Pro and JT are complex-valued functions of 
spatial coordinates only (Le., time dependence is not shown). Using the phasor 

ITime-varying quantities will be denoted with script quantities, for example, ~ = ~(x, y, z, t). 
z.rhe student is cautioned that some authors use e-jw

" which leads to sign differences in subsequent 
developments. 
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definitions of the electromagnetic quantities from (1-6) in (1-1) to (1-5) and elimi
nating the ejwt factors that appear on both sides of the equations yields 

v x E = -jwB (1-7) 

V x H= jwD + JT (1-8) 

V.D=PT (1-9) 

V· B = 0 (1-10) 

V· JT = -jWPT (1-11) 

The time derivatives in (1-1) to (1-5) have been replaced by a jw factor in (1-7) to 
(1-11) and time-varying electromagnetic quantities have been replaced by their pha
sor counterpart. This process is similar to the solution of network equations where 
the time-dependent differential equations are Laplace-transformed and the time 
derivatives are thus replaced by jw (or s). Equations (1-7) to (1-10) are often referred 
to 'as the time-harmonic form of Maxwell's equations because they apply to sinu
soidally varying (i.e., time-harmonic) fields. 

H more than one frequency is present, the time-varying forms of the electromag
netic quantities can be found by inverse transforms after (1-7) to (1-11) have been 
solved for the phasor quantities as a function of radian frequency w. This is again 
analogous to the procedure used to solve network problems. Fortunately, this is not 
usually necessary in antenna problems since the bandwidth of the signals is usually 
very small. In the typical case, a carrier frequency is accompanied by some form of 
modulation giving a spread of frequencies around the carrier. For analysis purposes, 
we use a single frequency equal to the carrier frequency. Thus, all subsequent ma
terial in this book (except in Chap. 11) will assume time-harmonic fields. 

The total current density JT is composed of an impressed, or source, current J 
and a conduction current density term uE, which occurs in response to the im
pressed current: 

J T = uE + J (1-12) 

The role played by the impressed current density is that of a known quantity. It is 
quite frequently an assumed current density on an antenna, but as far as the field 
equations are concerned, it is a known function. The current density uE is a current 
densityilowing on a nearby conductor due to the fields created by source J and can 
be ~mputed after the field equations are solved for E. In addition to conductivity 
u, a material is further characterized by permittivity e and permeability JL, where3 

D = eE (1-13) 

and 

B = JLH 

We now rewrite the field equations in preparation for their solution. Substituting 
(1-12) and (1-13) into (1-8) gives " , 

V x H = jW( e + j:)E + J = jwe'E + J (1-15) 

3In general, Band IL can be complex, but in most antenna problems they can be approximated as real . 
constants. 
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where we have defined 8' = 8 - j(ulw). For antenna problems, we are usually 
solving for the fields in air surrounding an antenna where u = 0 and 8' = 8. We 
therefore use 8 instead of 8' in subsequent developments. However, if the conduc
tivity is nonzero, 8 can be replaced by 8' = 8 - j( ulw). Note also that E and Hare 
the fields of primary interest in antennas. They are properly referred to as electric 
and magnetic field intensities and have units of Vim and Nm, respectively. For 
conciseness, it is common to refer to them simply as electric and magnetic fields. 

Let p be the source charge corresponding to the source current density J. Then 
using (1-12) to (1-14) in (1-7) and (1-9) to (1-11), and repeating (1-15), we have [see 
Prob. 1.4-2 (for 1-18)] 

v x E = -jwJLH (1-16) 

V x H = jW8E + J (1-17) 

P (1-18) V· E =-
8 

V·H = 0 (1-19) 

V· J = -jwp (1-20) 

These are the time-harmonic electromagnetic field equations with source current 
density J and source charge density p shown explicitly. Sometimes, it is convenient 
to introduce a fictitious magnetic current density M. Then (1-16) becomes 

V x E = -jwJLH - M (1-21) 

Magnetic currents are useful as equivalent sources that replace complicated electric 
fields. 

The solution of the fundamental electromagnetic equations is not complete until 
the boundary conditions are satisfied. A sufficient set of boundary conditions in the 
time-harmonic form is 

fi X (H2 - HI) = Js 

(E2 -E1)xfi=Ms 

(1-22) 

(1-23) 

where the electric and magnetic surface currents Js and Ms flow on the boundary 
between two homogeneous media with constitutive parameters 810 JL10 U10 and 82, 

JL2, U2· Ms is zero unless an equivalent magnetic current sheet is used. The unit 
normal to the boundary surface fi is directed from medium 1 into medium 2. The 
cross products with the unit normal form the tangential components to the bound
ary, and these equations can be written as 

H tan2 = Htan 1 + Is 
Etan2 = Etan1 + Ms 

(1-24) 

(1-25) 

These boundary conditions are derived from the integral form of (1-17) and (1-21). 
If one side is a perfect electrical conductor, the boundary conditions become 

(1-26) 

(1-27) 

The tangential boundary conditions on the magnetic field intensity are illustrated 
in Fig. 1-7 for the general case and for the case where medium 1 is a perfect con-
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Medium 2 

(a) General case. (b) One medium a perfect conductor. 

Figure 1·7 Magnetic field intensity boundary condition. 

ductor. It is important to note that all field quantities in the boundary condition 
equations are evaluated at the boundary and the equations apply to each point along 
the boundary. 

Also derivable from Maxwell's curl equations is a conservation of power equation, 
or Poynting's theorem. Consider a volume v bounded by a closed surface s. The 
complex power Ps delivered by the sources in v equals the sum of the power Pf 
flowing out of s, the time-average power Pdav dissipated in v, plus the time-average 
stored power in v: 

Ps = Pf + Pd + J'2w(W m - We ) 
BV BV BV 

The complex power flowing out through closed surface s is found from 

Pf = ! Jr E x H* • ds 2:tr. 

(1-28) 

(1-29) 

where ds = dso and 0 is the unit normal to the surface directed out from the surface. 
Note that E and H are peak phasors, not rms, leading to 112 in power expressions. 
The integrand inside this integral is defined as the Poynting vector: 

s =!E x H* (1-30) 

which is a power density with units of W/m2
• The time-average dissipated power in 

volume v bounded by closed surface s is 

(1-31) 

The time-average stored magnetic energy is 

W mav = ~ f f f ~ 1L1~2 dv (1-32) 
IJ 

The time-average stored electric energy is 

(1-33) 
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If the source power is not known explicitly, it can be calculated from the volume 
current density as follows: 

(1-34) 

If magnetic current density is used, the term H* • M is added to the integrand in the 
preceding equation. 

From (1-29), we see that the integral of the complex Poynting vector ~E X H* 
over a closed surface s gives the total complex power flowing out through the surface 
s. It is assumed that the complex Poynting vector represents the complex power 
density in watts per square meter at a point. Then the complex power through any 
surface s (not necessarily closed) can be found by integrating the complex Poynting 
vector over that surface. We are particularly interested in real power (the real com
ponent of the complex power that represents the electric and magnetic field inten
sities being in-phase). The real power flowing through surface s is 

p = Re(~f S· dS) = ~ Re(~f E x H* • dS) (1-35) 

The reference direction for this average power flow is that of the specified unit 
normal II contained in ds = dSll. 

1.5 SOLUTION OF MAXWELL'S EQUATIONS 
FOR RADIATION PROBLEMS 

This section develops procedures for finding fields radiated by an antenna based on 
Maxwell's equations. Subsequent antenna analysis in this book begins with these 
basic relations and it is not necessary to return to Maxwell's equations. 

The antenna problem consists of solving for the fields that are created by an 
impressed current distribution J. In the simplest approach, this current distribution 
is obtained during the solution process. How to obtain the current distribution will 
be discussed at various points in the book, but for the moment suppose we have 
the current distribution and wish to determine the fields E and H. As mentioned in 
the previous section, we need only work with the two curl equations of Maxwell's 
equations as given by (1-16) and (1-17). These are two coupled, linear, first-order 
differential equations. They are coupled because the unknown functions E and H 
appear in both equations. Thus, these equations must be solved simultaneously. In 
order to simplify the solution for E and H with a given J, we introduce the scalar 
and vector potential functions <I> and A. 

The vector potential is introduced by noting from (1-19) that the divergence of 
H is zero: 

V·H = 0 (1-36) 

Therefore, the vector field H has only circulation; for this reason, it is often called 
a solenoidal field. Because it possesses only a circulation, it can be represented by 
the curl of some other vector function as follows: 

1 
H=-V·A 

JL 
(1-37) 
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where A is the (magnetic) vector potential. To be more precise, (1-37) is possible 
because it satisfies (1-36) identically; that is, from (C-9) V • V x A == 0 for any A. 
The curl of A is defined by (1-37), but its divergence is yet to be specified for a 
complete definition of A. 

The scalar potential is introduced by substituting (1-37) into (1-16), which gives 

V x (E + jwA) = 0 (1-38) 

The expression in parentheses is an electric field, and since its curl is zero, it is a 
conservative field and behaves as a static electric field. The (electric) scalar potential 
eI> is defined from 

E + jwA = -Vel> (1-39) 

because this definition satisfies (1-38) identically, that is, from (C-I0) V x Vel> == 0 
for any eI>. Solving (1-39) for the toW electric field gives 

E = -jwA - Vel> (1-40) 

which may be a familiar result. 
The fields E and H are now expressed in terms of potential functions by (1-37) 

and (1-40). If we knew the potential functions, then the fields could be obtained. 
We now discuss the solution for the potential functions. Substituting (1-37) into 
(1-17) gives 

V x H = .!. V x V x A = jwsE + J 
JL 

Using the following vector identity, from (C-17), 

V x V x A == V(V. A) - VZA 

and (1-40) in (1-41) yields 

V(V. A) - VZA = jWJLs(-jwA - Vel» + JLJ 

or 

(1-41) 

(1-42) 

(1-43) 

(1-44) 

As we mentioned previously, the div~rge~ce of A is yet to be specified. A convenient 
choice would be one that eliminates: the third term of (1-44). It is the Lorentz con
dition (perhaps more properly attributed to L.! Lorenz rather than H. Lorentz [8]): 

V· A ,=. -jwJ.tsel>. (1-45) 

Then (1-44) reduces to 

(1-46) 

The choice of (1-45) leads to a de~oupling of variables: that is, (1-46) involves A 
and not eI>.' This is the vector wave equation. It IS a differential equation that can be 
solved for A after the impressed current J is ~pecified. The fields are easily found 
then from (1-37) and I .,. 

I 
E . A . V(V • A) I = -JW - ] 

WJLS 
(1-47) 
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where this equation was obtained from (1-40) and (1-45). Notice that only a knowl
edge of A is required. A more cumbersome approach would be to solve the scalar 
wave equation 

(1-48) 

in addition to the vector wave equation. It is left as a problem to derive (1-48). If 
this approach is used, E is found from (1-40). Note that pin (1-48) is related to J 
in (1-46) by the continuity equation of (1-20). 

The vector wave equation (1-46) is solved by forming three scalar equations. This 
begins by decomposing A into rectangular components using (C-18): 

(1-49) 

Rectangular components are used·because the unit vectors in rectangular compo
nents can be factored out of the Laplacian since they are not themselves functions 
of coordinates. This feature is unique to the rectangular coordinate system. Al
though A is always decomposed into rectangular components, the Laplacian of each 
component of A is expressed in a coordinate system appropriate to the geometry 
of the problem. The solution proceeds by substituting (1-49) into (1-46) and equat
ing rectangular components: 

V2AX + {3 2Ax = -pJx 

V2A + {32A = - .. 1 Y Y tM'y 

where {32 = alp-s. The real-valued constant 

(3 = wV/ii: 
is recognized as the phase constant for a plane wave. 

(1-50) 

(1-51) 

The three equations in (1-50) are identical in form. After solving one of these 
equations, the other two are easily solved. We first find the solution for a point 
source. This unit impulse response solution can then be used to form a general 
solution by viewing an arbitrary source as a collection of point sources. The differ
ential equation for a point source is 

(1-52) 

where '" is the response to a point source at the origin, and B( ) is the unit impulse 
function, or Dirac delta function (see Appendix F.l). In spite of the fact that the 
point source is of infinitesimal extent, its associated current has a direction. This is 
because in solving practical problems, the point source represents a small subdivi
sion of current that does have a direction. If the point source current is taken as 
z-directed, then 

(1-53) 

Since the point source is zero everywhere except at the origin, (1-52) becomes 

(1-54) 

away from the origin. 



1.5 Solution of Maxwell's Equations for Radiation Problems 19 

This is the complex scalar wave equation or Helmholtz equation. Because of spher
ical symmetry, the Laplacian is written in spherical coordinates and I/J has only radial 
dependence. The two solutions to (1-54) are e-j {3r/r and e+

j
{3r/r. These correspond to 

waves propagating radially outward and inward, respectively. The physically mean
ingful solution is the one for waves traveling away from the point source. Evaluating 
the constant of proportionality (see Prob. 1.5-2), we have for the point source so
lution: 

(1-55) 

. This is the solution to (1-52) and is the magnitude and phase variation with distance 
r away from a point source located at the origin. If the source were positioned at 
an arbitrary location, we must compute the distance R between the source location 
and observation point P (see Fig. 1-8). Then 

(1-56) 

The point source solution is actually that of an ideal dipole and will be discussed 
more fully in the next section. 

For an arbitrary z-directed current density, the vector potential is also z-directed. 
If we consider the source to be a collection of point sources weighted by the distri
bution lz, the response A z is a sum of the point source responses of (1-56). This is 
expressed by the integral over the source volume v': 

III 
-j{3R 

A z = JLlz ~ R dv' 
IJ' 7T. 

(1-57) 

Similar equations hold for the x- and y-components. The total solution is then the 
sum of all components, which is 

III 
-jfJR 

A = . JLI ~7TR dv' 
- i V 

(1-58) 

This is the solution to the vector wave equation (1-46). The geometry is shown in 
Fig. 1-8. The coordinate system shown is used to describe both the source point and 
field point. r' is the vector from the coordinate origin to the source point, and rp is 
the vector from the coordinate origin to the field point P. The vector R is the vector 

Figure 1-8 Vectors used to 
solve radiation problems. 
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from the source point to the field point and is given by rp - r'. This geometry is 
standard and will be used here. 

We can summarize rather simply the procedure for finding the fields generated 
by a current distribution J. First, A is found from (1-58). The H field is found from 
(1-37). The E field can be found from (1-47), but frequently it is simpler to find E 
from (1-17) as 

in the source region, or from 

1 
E=-. (VXH-J) 

,we 
(1-59) 

1 
E = - V X H (1-60) 

jwe 

if the field point is removed in distance from the source; that is, if J = 0 at point P. 

1.6 THE IDEAL DIPOLE 
The principles presented in the previous section are used in this section to find the 
fields of an infinitesimal element of current. We shall use the term ideal dipole for 
a uniform amplitude current that is electrically small with az « A. It is ideal in the 
sense that the current is uniform in both magnitUde and phase over the radiating 
element extent. Such a discontinuous current is difficult to realize in practice; prac
tical realizations that approximate the ideal dipole are presented in Sec. 2.1. The 
term current element is often used for the ideal dipole to describe its application as 
a section of a larger current associated with an actual antenna. Thus, any practical 
antenna can first be decomposed into filaments of continuous current that are then 
subdivided into ideal dipoles. The fields from the antenna are then found by sum
ming contributions from the ideal dipoles. Other terms used for the ideal dipole are 
Hertzian electric dipole, electric dipole, infinitesimal dipole, and doublet. An electri
cally small, center-fed wire antenna has a current distribution that tapers to zero 
from the center to the ends of the wire. This short dipole antenna has the same 
pattern as an ideal dipole and is discussed further in Secs. 1.9 and 2.1. 

Consider an element of current of length az along the z-axis centered on the 
coordinate origin. It is of constant amplitude l. In this case, the volume integral of 
(1-58) for vector potential reduces to the one-dimensional integral4 

f
11Z'2 -jfJR 

A = ipJ _e_ dz' 
-l1zl2 47TR 

(1-61) 

The length az is very small compared to a wavelength and to the distance R; see 
Fig. 1-9. Since az is very small, the distance R from points on the current element 

+rile result in (1-61) could also be obtained by representing the current density on the dipole as 

.:1z , .:1z 
J = I 8(x') 8(y')i for -"2 < z <"2 

Substituting this into (1-58) yields 

f~ f~ f4.%/2 -j/3R 
A = ipl 8(x') dx' 8(y') dy' _e - dz' . -~ -~ -4.%12 4'7TR 

from which (1-61) follows. 
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Figure 1-9 The ideal dipole. The 
current I is uniform, Az « A, 
andR = r. 

to the field point approximately equals the distance r from the origin to the field 
point. Substituting r for R in (1-61) and integrating gives 

.. T -j{3r 
tJlde A A 

A=--~zz 
47Tr 

(1-62) 

This is exactly true for a point current element and is approximately true for a small 
(tlz « A and tlz « R) but finite uniform current element. The vector potential 
A z for a point source was also derived in the previous section; see (1-55) in which 
I tlz = 1. For many current sources, we can readily make the substitution of r for 
R in the denominator of the integrand in (1-61), but usually cannot make the same 
substitution in the exponent. However, in the case of a very small source, we can 
use r for R in both the denominator and exponent. 

We are now ready to calculate the electromagnetic fields created by the ideal 
dipole. The magnetic field is found from (1-37) as 

H = 1:. V x A = 1:. V x (Azz) (1-63) 
J.L J.L 

If we apply the vector identity (C-16), the preceding equation becomes 

(1-64) 

The second term is zero because the curl of a constant vector is zero. Substituting 
(1-62) into (1-64), we have 

(
I tlze-jf3r) A 

H=V 4 Xz 7Tr 

Applying the gradient in spherical coordinates from (C-33) gives 

H=--- --- rXz I tlz a (e-
if3r)A A 

47T ar r 

I tl [- ·{3e-if3r -i{3r] Z ] e A A =-- ---- rXz 
47T r r2 

From (C-3), we have 

i x z = i x (i cos (J - 6 sin (J) = -ci> sin (J 

Substituting (1-67) into (1-66) gives 

H = I tlz [jf3 + l]e-jf3r sin (J ci> 
47T r r2 

(1-65) 

(1-66) 

(1-67) 

(1-68) 
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The electric field can be obtained from (1-60) as 

E = 1 az [jWJL + ~.l + _1_]e-j~r sin () 0 
41T r ~-;; r2 jWBr3 

1 az [j§ 1 1 1 ] '~r A + -- -- + -- e-] cos ()r 
21T B r2 jWB r3 

Here, (3 is given by (1-51) and is related to wavelength as 

~ r-:- 21T 
(3 = WV JLB =-

A 

(1-69) 

(1-70) 

Note that if the medium surrounding the dipole is air or free space, (3 = wY JLoBo> 
where JLo and Bo are the permeability and permittivity of free space. 

Eqs. (1-68) and (1-69) can be written as 

1 az ( 1 ) e-j~r A 

H = - j(3 1 + -. - sin () cf» 
41T ](3r r 

(1-71a) 

1 az. [ 1 1] e-j~r. A 

E = --]wJL 1 + - - -- -- sm 96 
41T j(3r «(3r)2 r 

1 az [1 1 ] e-j~r 
+--11 --j- --cos9r 

21T r (3r2 r 

(1-71b) 

If (3r is large (Le., (3r » 1, or r » A since (3 = 21T/A), then all terms having inverse 
powers ofj(3r are small compared to unity, and (1-71) reduces to 

1 az e-j~ A 

E = -4 jWJL -- sin () 6 
1T r 

(1-72a) 

1 A -j~r 
H '-lZ 'a e . ;. = 41T] I-' -r- sm () 'I' (l-72b) 

These are the fields of an ideal dipole at large distances from the dipole. The ratio 
of these electric and magnetic field components is 

!: = w; = wJ;e = j§ = 11 (1-73) 

where 11 = ViJ8 is the intrinsic impedance of the medium (for free space 11 0 = 
376.70. = 1201T 0.). This is a property of plane waves. Also, as we shall see, at large 
distances from any antenna the fields are related in this manner. 

Using the fields of (1-72) in (1-30) gives an expression for the complex power 
flowing density out of a sphere of radius r surrounding the ideal dipole: 

1 
S = -E x H* 

2 1 (1 az)2 e-j~r A • e+j~r A 

= 2 41T jWJL -r- sin () 6 X (-jf3) -r- sin 9 cf» 

= ! (1 az)2 WJL(3 sin
2 

() r 
2 41T r2 

(1-74) 
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which is real-valued and radially directed, both characteristics of radiation. The total 
power flowing out through a sphere of radius r surrounding the ideal dipole using 
(1-29) is 

Pf = f f s· ds = ~ e4~z r WJLf3 f:~ dcp !o1T sin
3 

() d() 

1 (I !!Z)2 4 
= 2 4'1T WJLf32'1T 3" 

= WJLf3 (I !!zf 
12'1T 

(1-75) 

This is a real quantity, and real power indica~es dissipated power. It is dissipated in 
the sense that it travels away from the source. In fact, the average power going out 
through a sphere of radius r can be found as indicated in (1-35) by taking the real 
part of (1-75), which leaves it unchanged. This power expression is independent of 
r, and thus if we integrate over a sphere of larger radius, we still have the same total 
power streaming through it. We refer to this type of power as radiated power. The 
fields in (1-72) are called radiation fields. 

The general field expressions of (1-71) are valid at any distance from an ideal 
dipole and are important in some applications and for understanding the input 
impedance of a dipole. For distances so close to the dipole that f3r « 1, or r « A, 
only the dominant terms with the largest inverse powers of r need be retained in 
each component of (1-71): 

I !!ze-i{3r. A 

H'" = 4 2 sm () cl» '1Tr 

of • I!!z e-i {3r. A • I!!z e-i {3r A 

E = -rfl ---- sm () a - 1'1/ ---- cos () r 
4'1Tf3 r3 2'1Tf3 r3 

(1-76a) 

(1-76b) 

These are referred to as the near fields of the antenna. Actually, the magnetic field 
of (1-76a) which varies as 1Ir2 is that of a short, steady or slowly oscillating current, 
that is, an induction field. The electric fields of (1-76b) vaiy as 1Ir3 and are those of 
an electrostatic or quasi-static dipole with charges of +q and -q spaced !!z apart. 
Note that the electric field components Et and E~f are in-phase, but are in 
phase-quadrature with the magnetic field H'J!, indicating reactive power. This can 
be shown directly using these near fields in the complex Poynting vector expression 
of (1-30): 

j'1/ (I !!Z)2 1 ( . 2 A . aA) =--2 -- 5 sm ()r + cos () sm () 
f3 4'1T r 

(1-77) 

Note that this power density vector is imaginary and therefore has no time-average 
radial power flow. The radiation fields, in contrast, are in-phase giving a real-valued 
Poynting vector that is radially directed; see (1-72) and (1-74). The imaginary power 
density corresponds to standing waves, rather than traveling waves associated with 
radiation, and indicate stored energy as in any reactive device. The quadrature 
phase relationship between the electric and magnetic field components of (1-76) 
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indicates that energy is interchanged between these fields with time. That is, at one 
instant of time electric fields near the dipole are strong close to maximum charge 
regions and a quarter-period later energy is stored in the magnetic field, primarily 
close to the center of the dipole where the current is maximum. 

The imaginary power density in the near field is manifested by a reactive com
ponent of the antenna input impedance. The real part of the input impedance rep
resents radiation if ohmic losses on the antenna structure can be neglected. Antenna 
impedance will be discussed further in Sec. 1.9. The power density associated with 
radiation exists everywhere and passes through the near field. The radiated power 
density from (1-74) and the near-field power density from (1-77) are both maXimum 
for () = 90°. The distance for which the maximum radiated and reactive powers are 
equal for the ideal dipole is r = Al21T. That is, interior to this radius reactive power 
dominates. This region is sometimes referred to as the radiansphere. 

At large distances from an antenna, called the far-field region, all power is radi
ated power. The far field is further characterized by the fact that the angular dis
tribution around the antenna (i.e., the radiation pattern) is independent of distance 
from the antenna. Field regions and the distance away from an antenna where the 
far field begins are discussed further in Sec. 1.7.3. 

1.7 RADIATION PATIERNS 

We briefly introduce the radiation pattern in Sec. 1.3 as a description ofthe angular 
variation of radiation level around an antenna. This is perhaps the most important 
characteristic of an antenna. In this section, we present several definitions associated 
with patterns and develop the general procedures for calculating radiation patterns. 

1.7.1 Radiation Pattern Basics 

A radiation pattern (antenna pattern) is a graphical representation of the radiation 
(far-field) properties of an antenna. We have seen that the radiation fields from a 
transmitting antenna vary inversely with distance, e.g., lIr. The variation with ob
servation angles «(), cfJ), however, depends on the antenna. 

Radiation patterns can be understood by examining the ideal dipole. The fields 
radiated from an ideal dipole are shown in Fig. l-lOa over the surface of a sphere 
of radius r that is in the far field. The length and orientation of the field vectors 
follow from (1-72); they are shown for an instant of time for which the fields are 
peale The angular variation of E9 and Hcf> over the sphere is sin (). An electric field 
probe antenna moved over the sphere surface and oriented parallel to E9 will have 
an output proportional to sin (); see Fig. 9-7. Any plane containing the z-axis has 
the same radiation pattern since there is no cfJ variation in the fields. A pattern taken 
in one of these planes is called an E-plane pattern because it contains the electric 
vector. A pattern taken in a plane perpendicular to an E-plane and cutting through 
the test antenna (the xy-plane in this case) is called an H-plane pattern because it 
contains the magnetic field Hcf>. The E- and H-plane patterns, in general, are referred 
to as principal plane patterns. The E- and H-plane patterns for the ideal dipole are 
shown in Figs. l-lOb and l-lOc. These are polar plots in which the distance from 
the origin to the curve is proportional to the field intensity; they are often called 
polar patterns or polar diagrams. 

The complete pattern for the ideal dipole is shown in isometric view with a slice 
removed in Fig. l-lOd. This solid polar radiation pattern resembles a "doughnut" 
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Figure 1·10 Radiation from an ideal dipole. (a) Field components. (b) E-plane radiation 
pattern polar plot of IE81 or IHc/>I. (c) H-plane radiation pattern polar plot of IE81 or IHc/>I. 
(d) Three-dimensional plot of radiation pattern. 

with no hole. It is referred to as an omnidirectional pauern since it is uniform in the 
xy-plane. Omnidirectional antennas are very popular in ground-based applications 
with the omnidirectional plane horizontal. When encountering new antennas, the 
reader should attempt to visualize the complete pattern in three dimensions. 

1.7.2 Radiation from Line Currents 

Radiation patterns in general can be calculated in a manner similar to that used for 
the ideal dipole if the current distribution on the antenna is known. This is done by 
first finding the vector potential given in (1-58). As a simple example, consider a 
filament of current along the z-axis and located near the origin. Many antennas can 
be modeled by this line source; straight wire antennas are good examples. In this 
case, the vector potential has only a z-component and the vector potential integral 
is one-dimensionaI5

: 

A = p. I(z') _e - dz' f 
-j(3R 

z 4'77R 
(1-78) 

snus result could also be obtained by usinglz(r'} = I(z'} c5(x'} c5(y'} in (I-57), where dv' = dx' dy' dz'. 
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Due to the symmetry of the source, we expect that the radiation fields will not vary 
with cpo This is because as the observer moves around the source such that rand z 
are constant, the appearance of the source remains the same; thus, its radiation 
fields are also unchanged. Therefore, for simplicity we will confine the observation 
point to a fixed cp in the yz-plane (cp = 90°) as shown in Fig. 1-11. Then from 
Fig. 1-11, we see that 

r2=y2+z2 

z=rcosO 

(1-79) 

(1-80) 

y = r sin 0 (1-81) 

H we apply the general geometry of Fig. 1-8 to this case, rp = r = yy + zi and 
r' = z'i lead to R = rp - r' = yy + (z - z')i, and then 

R = Vy2 + (z - Z')2 = VyZ + Z2 - 2zz' + (z'i (1-82) 

Substituting (1-79) and (1-80) into (1-81), to put all field point coordinates into the 
spherical coordinate system, gives 

R = {r2 + [-2r cos 0 z' + (Z')2]}1I2 (1-83) 

In order to develop approximate expressions for R, we expand (1-83) using the 
binomial theorem (F-4): 

1 ~-!) 
R = (r2)112 + - (r2)-1I2 [-2r cos 0 z' + (Z')2] + L...L (r2)-3/2 

2 2 
. [-2rcos Oz' + (Z')2]2 + ... 

(z ')2 sin2 0 (z ')3 sin2 0 cos 0 
=r-z'cosO+ + + ... 

2r 2r2 
(1-84) 

The terms in this series decrease as the power of z' increases if z' is small compared 
to r. This expression for R is used in the radiation integral (1-78) to different degrees 
of approximation. In the denominator (which affects only the amplitude), we let 

R = r (1-85) 

We can do this because in the far field r is very large compared to the antenna size, 
so r » z' ~ z' cos 0. In the phase term - (3R, we must be more accurate when 
computing the distance from points along the line source to the observation point. 
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Figure 1-11 Geometry used for field 
calculations of a line source along 
the z-axis. 
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The integral (1-78) sums the contributions from all the points along the line source. 
Although the amplitude of waves due to each source point is essentially the same, 
the phase can be different if the path length differences are a sizable fraction of a 
wavelength. We, therefore, include the first two terms of the series in (1-84) for the 
R in the numerator of (1-78), giving 

R "'" r - z' cos fJ (1-86) 

Using the far-field approximations (1-85) and (1-86) in (1-78) yields 

f e-j/3(r-z' cos (J) e-j/3r f 
A z = pJ(z') dz' = -- pl(z')ej/3Z' cos (J dz' 

41Tr 41Tr 
(1-87) 

where the integral is over the extent of the line source. This may be recognized as 
a Fourier-transform-type integral; see Sec. 4.3. Next, the magnetic field is found 
using (1-37): 

1 1· 
H = - V x A = - V x (Azz) 

JL JL 

= 1:. V x (-A z sin fJO + A z cos fJi) 
JL 

(1-88) 

where (C-3) was used. Since A z is a function of rand fJ, the curl in spherical coor
dinates, as given by (C-35), leads to 

All[a . a ] H = «I» - _. - (-rA sm () - - (A cos fJ) 
JL r ar z afJ z 

Substitution of (1-87) into the above gives 

H = .f, 1:. {-sin fJ f JL I(z')ej/3z'cos(J dz'!... e-j/3r _ e-
j
/3r !.... 

JL 41Tr ar 41Tr2 afJ 

. [cos () f JL I(z ')ej/3Z' cos (J dz' ] } 

= .f,'! e-
j

{3r {jf3 sin () f JL I(z')ej/3Z'cos(J dz' 
JL 41Tr 

- ;: :fJ [cos fJ f JL I(z ')ej/3z' cos (J dz' J} 

(1-89) 

(1-90) 

The ratio of the first term to the second term above is of the order {3r. If {3r » 1, 
the second term is small compared to the first and can be neglected, as we did for 
the far-field approximation of the ideal dipole in Sec. 1.6. Thus, (1-90) becomes 

H = .f, L sin fJ _e - JL I(z ')ej /3Z' cos (J dz' = L sin fJ A .f, .{3 - j/3r f .{3 

JL 41Tr JL z 

The electric field is found from (1-47), which is 

E = -jwA _ j V(V . A) 
WJLE 

(1-91) 

(1-92) 

Using (1-78) in (1-79) and retaining only the r-1 term (and assuming f3r » 1) lead 
to the far-field approximation 

(1-93) 



28 Chapter 1 Antenna Fundamentals and Definitions 

Note that this result is the portion of the first term of (1-92) that is transverse to r 
because -jwA = -jw( -Az sin 00 + A z cos Or). This is an important general re
sult for z-directed sources that is not restricted to line sources. 

The radiation fields from a z-directed line source (any z-directed current source 
in general) are H</> and E8> and are found from (1-91) and (1-93). The only remaining 
problem is to calculate A z, which is given by (1-57) in general and by (1-87) for 
z-dlrected line sources. The calculation of A z is the focal point of antenna analysis. 
We will return to this topic after pausing to further examine the characteristics of 
the far-field region. 

The ratio of the radiation field components as given by (1-91) and (1-93) yields 

wp, wp, 
E8 = /3 H</> = wv;i: H</> = "1H</> (1-94) 

where "1 = VT/iB is the intrinsic impedance of the medium. Thus, the radiation fields 
are perpendicular to each other and to the direction of propagation r and their 
magnitudes are related by (1-94). These are the familiar properties of a plane wave. 
They also hold for the general form of a "transverse electromagnetic (TEM) wave" 
that has both the electric and magnetic fields transverse to the direction of propa
gation. In general, radiation from a finite antenna is a special case of a TEM wave, 
called a "spherical wave," that propagates radially outward from the antenna and 
the radiation fields have no radial components. Spherical wave behavior is also 
characterized by the e-i /3rI4'TT'r factor in the field expressions; see (1-91). The e-i /3r 

phase factor indicates a traveling wave propagating radially outward from the origin 
and the 11r magnitude dependence leads to constant power flow just as with the 
infinitesimal dipole. In fact, the radiation fields of all antennas of finite extent display 
this dependence with distance from the antenna. 

Another way to view radiation field behavior is to note that spherical waves 
appear to an observer in the far field to be a plane wave. This "local plane wave 
behavior" occurs because the radius of curvature of the spherical wave is so large 
that the phase front is nearly planar over a local region. 

1.7.3 Far-Field Conditions and Field Regions 

The results for the line current from the previous section are easily generalized to 
an arbitrary, but finite-sized, antenna. In the far field of an antenna, the fields exhibit· 
local plane wave behavior and have 11r magnitude dependence. In this section, we 
develop the conditions for determining the minimum distance from an antenna for 
far-field behavior. This begins with a geometric interpretation for far-field approx
imations. 

If parallel lines (or rays) are drawn from each point on a line current as shown 
in Fig. 1-12, the distance R to the far field is geometrically related to r by (1-86), 
which was derived by neglecting high-order terms in the expression for R in (1-84). 
The parallel ray assumption is exact only when the observation point is at infinity, 
but it is a good approximation in the far field. Radiation calculations often start by 
assuming parallel rays and then determining R for the phase by geometrical tech
niques. From the general source shown in Fig. 1-13, we see that 

R = r - r' cos a (1-95) 
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Figure 1-12 Parallel ray approximation 
for far-field calculations of a line 
source. 

Using the definition of dot product, we have 

or 

r· r' 
R = r - r'-

rr' 

I R = r - r· r' (1-96) 

This is a general approximation to R for the phase factor in the radiation integral. 
Notice that if r' = z'i, as for line sources along the z-axis, (1-96) reduces to (1-86). 

The definition of the distance from the source where the far field begins is where 
errors due to the parallel ray approximation become insignificant. The distance 

\ 
\ 

\ 

\ 
\ 

Figure 1-13 Parallel ray 
approximation for far-field 
calculations of a general source. 
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where the far field begins, rtf, is taken to be that value of r for which the path length 
deviation due to neglecting the third term of (1-84) is a sixteenth of a wavelength. 
This corresponds to a phase error (by neglecting the third term) of 2'TT/A' Al16 = 
'TT/8 rad = 22S. 

If D is the length of the line source, rtf is found by equating the maximum value 
of the third term of (1-84), which occurs for z' = D/2 and () = 90°, to a sixteenth 
of a wavelength: 

(D/2? A 
--=-

2rtf 16 
(1-97) 

Solving for rtf gives 

(1-98) 

The far-field region is r ~ rtf and rtf is called the far-field distance, or Rayleigh 
distance. 

The far-field conditions are summarized as follows: 

2D2 
r>

A 

r»D 

r» A 

far-field conditions 

(1-99a) 

(1-99b) 

(1-99c) 

The condition r » D was mentioned in association with the approximation R = r 
of (1-85) for use in the magnitude dependence. The condition r » A follows from 
{3r = (2'TTrlA) » 1 that was used to reduce (1-90) to (1-91). Usually, the far field is 
taken to begin at a distance given by (1-98), where D is the maximum dimension 
of the antenna. This is usually a sufficient condition for antennas operating in the 
UHF region and above. At lower frequencies, where the antenna can be small 
compared to the wavelength, the far-field distance may have to be greater than 
2D2/A in order that all conditions in (1-99) are satisfied. See Prob. 1.7-4. 

The concept of field regions was introduced in Sec. 1.6 and illustrated with the 
fields of an ideal dipole. We can now generalize that discussion to any finite antenna 
of maximum extent D. The distance to the far field is 2D2/A. This zone was histor
ically called the Fraunhofer region if the antenna is focused at infinity; that is, if the 
rays at large distances from the antenna when transmitting are parallel. In the far
field region, the radiation pattern is independent of distance. For example, the sin () 
pattern of an ideal dipole is valid anywhere in its far field. The zone interior to rtf, 
called the near field, is divided into two subregions. The reactive near-field region 
is closest to the antenna and is that region for which the reactive field dominates 
over the radiative fields. This region extends to a distance 0.62v'D3/A from the 
antenna (see Prob. 1.7-7), as long as D » A. We mentioned in Sec. 1.6 that for an 
ideal dipole, for which D = Az « A, this distance is Al2'TT. Between the reactive 
near-field and far-field regions is the radiating near-field region in which the radia
tion fields dominate and where the angular field distribution depends on distance 
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from the antenna. For an antenna focused at infinity, the region is sometimes re
ferred to as the Fresnel region. We can summarize the field region distances for 
cases where D » A as follows: 

Region 

Reactive near field 
Radiating near field 
Far field 

Distance from antenna (r) 

o to O.62VD3/>.. 
O.62VD3/>.. to 2D2/>.. 
2D2/>.. to 00 

1.7.4 Steps in the Evaluation of Radiation Fields 

(1-IOOa) 
(1-IOOb) 
(1-IOOc) 

The derivation for the fields radiated by a line source in Sec. 1.7.2 can be generalized 
for application to any antenna. Fortunately, the derivation itself need not be re
peated each time an antenna is analyzed. That is, it is not necessary to return to 
Maxwell's equation with each new antenna system. Instead, we work from the re
sults of the line source and its generalizations, which can be reduced to the three
step procedure detailed below: 

1. Find A. Select a coordinate system most compatible with the geometry of the 
antenna, using the notation of Fig. 1-8. In general, use (1-58) with R = r in the 
magnitude factor and the parallel ray approximation of (1-96) for determining 
phase differences over the antenna. These yield 

For z-directed sources, 

A = JL _e_ Jej/3i.r'dv' -j/3r III 
41Tr v' 

A = iJL e-
j

/3r I I I J
z
ej/3i.r' dv' 

41Tr v' 

For z-directed line sources on the z-axis, 

A = iJL _e_ J(z')e j /3Z' cos 0 dz' -j(3r I 
41Tr 

which is (1-87). 
2. Find E. In general, use the component of 

E = -jwA 

(1-101) 

(1-102) 

(1-103) 

(1-104) 

which is transverse to the direction of propagation r. This is expressed formally 
as 

E = -jwA - (-jwA. r)r = -jw(AoO + A4>~) (1-105) 

which.arises from the component of A tangent to the far-field sphere. For z
directed sources, 

(1-106) 

which is (1-93) 
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3. Find H. In general, use the plane wave relation. 

H=.!iXE 
71 

(1-107) 

This equation expresses the fact that in the far field, the directions of E and 
H are perpendicular to each other and to the direction of propagation, and 
also that their magnitudes are related by 71. For z-directed sources, 

which is (1-73). 

H - E9 "'--71 
(1-108) 

The most difficult step is the first, calculating the radiation integral. This topic 
will be discussed many times throughout the book, but to immediately develop an 
appreciation for the process, we will present an example. This uniform line source 
example also provides a specific setting for introducing general radiation pattern 
concepts and definitions. 

The Uniform Line Source 

The uniform line source is a line source for which the current is constant along its extent. If 
we use a z-directed uniform line source centered on the origin and along the z-axis, the 
current is 

{

IO 
I(z') = 0 

L 
x' = 0, y' = 0, Iz'I::s;-

2 (1-109) 
elsewhere 

where L is the length of the line source; see Fig. 1-14. We first findAz from (1-103) as follows: 

-jfJr fLI2 
A = f.L _e_ IoeifJz' cos 8 dz' 

z 41Tr -LIZ 

L 
T 

L 
-T 

p 
• Z / 

/ 
/ 

(J / 

/ 
/ 

/ 
0/ 

/ 

/ 
/ 

/ 
/ 

(a) Antenna geometry 

e-/{Jr [eifJ(LIZ) cos 8 - e-i{J(LlZ) cos 8J 
=f.L-I 

41Tr 0 jf3 cos 8 

_ IoLe-i{Jr sin[(f3L12 cos 8] 
- f.L 41TT (f3L12) cos 8 . 

L 
T 

z 

f----t--I(z) 

(1-110) 

L -TL..-_...J 

(b) Current distribution 
Figure 1·14 The uniform line 
source (Example 1-1). 
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The electric field from (1-106) is then 

E _. . 8 A a - jwJL!oLe-ifjr . 8 sin[(f3L12) cos 8] a 
- JW sm zU - 4 sm (L/2) u 1Tr f3 cos 8 

(1-111) 

The magnetic field is simply found from this using Hcf> = E8/'T/. 

1.7 oS Radiation Pattern Definitions 

Since the radiation pattern is the variation over a sphere centered on the antenna, 
r is constant and we have only 6 and c/J variation of the field. It is convenient to 
normalize the field expression such that its maximum value is unity. This is accom
plished as follows for a z-directed source that has only a O-component of E: 

. Eo 
F(6, c/J) = Eo(max) (1-112) 

where F(e, c/J) is the normalized field pattern and Eo(max) is the maximum value of 
the magnitude of Eo over a sphere of radius r. 

In general, E(J can be complex-valued and, therefore, so can F( 6, c/J). In this case, 
the phase is usually set to zero at the same point the magnitude is normalized to 
unity. This is appropriate since we are only interested in relative phase behavior. 
Pattern variation is, of course, independent of r. 

An element of current on the z-axis has a normalized field pattern from (1-72a) 
of 

F(e) = (Il1z141T')jwJL(e-
j
{3rlr) sin 6 = sin e 

(Jl1z141T')jwJL(e Jf3
rlr ) 

(1-113) 

and there is no c/J variation. The normalized field pattern for the uniform line source 
is from (1-111) in (1-112) 

F(6) = sin 6 sin[(,BLI2) cos 6] (1-114) 
(f3L12) cos () 

and again there is no c/J variation. The second factor of this expression is the function 
sin(u)lu and we will encounter it frequently. It has a maximum value of unity at 
u = 0; this corresponds to 6 = 90°, where u = (,BLl2) cos 6. Substituting 6 = 90° in 
(1-114) gives unity and we see that F(6) is properly normalized. 

In general, a normalized field pattern can be written as the product 

I F(6, c/J) = gee, c/J )f(6, c/J) I (1-115) 

where g(6, c/J) is the element factor and f(6, c/J) the pattern factor. The pattern factor 
comes from the integral over the current and is strictly due to the distribution of 
current in space. The element factor is the pattern of an infinitesimal current ele
ment in the current distribution. For example, we found for a z-directed current 
element that F(6) = sin 6. This is, obviously, also the element factor, so 

g(6) = sin 6 (1-116) 

for a z-directed current element. Actually, this factor originates from (1-93) and can 
be interpreted as the projection of the current element in the 6-direction. In other 
words, at 6 = 90° we see the maximum length of the current, whereas at 6 = 0° or 
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1800 we see the endview of an infinitesimal current that yields no radiation. The 
sin (J factor expresses the fraction of the size of the current as seen from the obser
vation angle (J. On the other hand, the pattern factor f( (J, cp) represents the inte
grated effect of radiation contributions from the current distribution, which can be 
treated as being made up of many current elements. The pattern value in a specific 
direction is then found by summing the parallel rays from each current element to 
the far field with the magnitude and phase of each included. The radiation integral 
of (1-101) sums the far-field contributions from the current elements and when 
normalized yields the pattern factor. Antenna analysis is usually easier to under
stand by considering the antenna to be transmitting as we have here. However, most 
antennas are reciprocal and thus their radiation properties are identical when used 
for reception; see Sec. 9.4. 

A typical power pattern is shown in Fig. 1-15 as a polar plot. The rays from various 
parts of an antenna arrive in the far field with different magnitude and phase due 
to variations in the current where the ray originated on the antenna and due to 
phase changes arising from path length differences to the far field. These rays in
terfere, as computed through the radiation integral, and produce a "lobing" effect. 

The radiation lobe containing the direction of maximum radiation is the major 
lobe, main lobe, or main beam. It is the most intense portion of the radiation pattern 
and is caused by the fact that the rays from various parts of the antenna arrive in 
the far field more nearly in-phase than they do for other directions. For a source 
with constant phase, all rays arrive in-phase in the direction normal to the antenna 
and the pattern is maximum there. For the ideal dipole, we have said that the source 
is so small that there are essentially no phase differences for rays along the source 
and thus the pattern factor is unity. 

For the z-directed uniform line source pattern of (1-114), we can identify the 
factors as 

and 

1.0 

Half-power point (left) 

0.5 

g(O) = sin (J 

f(O) = sin[(f3L12) cos (J] 

(f3L12) cos (J 

Main lobe maximum direction 

Beamwidth between fIrst nulls (BWFN) 

Figure 1-15 A typical power pattern polar plot. 

(1-117) 

(1-118) 
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For long line sources (L » A), the pattern factor of (1-118) is much sharper than 
the element factor sin (), and the total pattern is approximately that of (1-118); that 
is, F( () = f( (). Hence, in many cases we need only work with f( (), which is obtained 
from (1~103). If we allow the beam to be scanned (this will be discussed in Sec. 
1.7.6), the element factor becomes important as the pattern maximum approaches 
the z-axis. 

Frequently, the directional properties of the radiation from an antenna are de
scribed by another form of radiation pattern, the power pattern. The power pattern 
gives angular dependence of the power density and is found from the (), cJ> variation 
of the r-component of the Poynting vector. For z-directed sources, H</> = E(J/TJ so 
the r-component of the Poynting vector is (1I2)E(JJ4, = IE(J12/2TJ and the normalized 
power pattern is simply the square of its field pattern magnitude P(8) = IF(8)12. The 
general normalized power pattern is 

I P(8, cJ» = IF(8, cJ> W I 
The normalized power pattern for a z-directed current element is 

P( 8) = sin2 8 

and for a z-directed uniform line source is 

P(8) = {Sin 8 sin[(f3L12) cos 8]}2 
(f3L12) cos 8 

(1-119) 

(1-120) 

(1-121) 

Frequently, patterns are plotted in decibels. It is important to recognize that the 
field (magnitude) pattern and power pattern are the same in decibels. This follows 
directly from the definitions. For field intensity in decibels, 

IF(8, cJ> )ldB = 20 logIF(8, cJ»1 (1-122) 

and for power in decibels, 

P(9, c/»cm = 10 log P(9, c/» = 10 logIF(9, c/>)12 = 20 logIF(9, c/»I (1-123) 

and we see that 

I P«(), cJ»dB = IF«(), cJ> )ldB I (1-124) 

L 7.6 Radiation Pattern Parameters 

A typical antenna power pattern is shown in Fig. 1-15 as a polar plot in linear units 
(rather than decibels). It consists of several lobes. The main lobe (or main beam or 
major lobe) is the lobe containing the direction of maximum radiation. There is also 
usually a series of lobes smaller than the main lobe. Any lobe other than the main 
lobe is called a minor lobe. Minor lobes are composed of side lobes and back lobes. 
Back lobes are directly opposite the main lobe, or sometimes they are taken to be 
the lobes in the half-space opposite the main lobe. The term side lobe is sometimes 
reserved for those minor lobes near the main lobe, but is most often taken to be 
synonymous with minor lobe; we will use the latter convention. 

The radiation from an antenna is represented mathematically through the radi
ation pattern function, F(8, cJ» for field and P(8, cJ» for power. This angular distri
bution of radiation is visualized through various graphical representations of the 
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pattern, which we discuss in this section. Graphical representations also are used to 
introduce definitions of pattern parameters that are commonly used to quantify 
radiation pattern characteristics. 

A three-dimensional plot as in Fig. 1-10d gives a good overall impression of the 
entire radiation pattern, but cannot convey accurate quantitative information. Cuts 
through this pattern in various planes are the most popular pattern plots. They 
usually include the E- and H-plane patterns; see Figs.l-l0b and l-lOc. Pattern cuts 
are often given various fixed cP values, leaving the pattern a function of () alone; we 
will assume that is the case here. Typically, the side lobes are alternately positive
and negative-valued; see Fig. 4-la. In fact, a pattern in its most general form can be 
complex-valued. Then we use the magnitude of the field pattern IF«()I or the power 
pattern P«(). 

A measure of how well the power is concentrated into the main lobe is the (rel
ative) side lobe level, which is the ratio of the pattern value of a side lobe peak to 
the pattern value of the main lobe. The largest side lobe level for the whole pattern 
is the maximum (relative) side lobe level, frequently abbreviated as SLL. In decibels, 
it is given by 

IF(SLL)I 
SLLdB = 20 log IF(max)1 (1-125) 

where IF(max)1 is the maximum value of the pattern magnitude and IF(SLL)I is the 
pattern value of the maximum of the highest side lobe magnitude. For a normalized 
pattern, F(max) = 1. 

The width of the main beam is quantified through half-power beam width HP, 
which is the angular separation of the points where the main beam of the power 
pattern equals one-half the maximum value: 

HP = l8m>left - 8m>rightl (1-126) 

where 8m>left and 8m>right are points to the "left" and "right" of the main beam 
maximum for which the normalized power pattern has a value of one-half (see Fig. 
1-15). On the field pattern IF«()I, these points correspond to the value 11'0. For 
example, the sin () pattern of an ideal dipole has a value of 11'0 for () values of 
8m>left = 135° and 8tiPright = 45°. Then HP = 1135° - 45°1 = 90°. This is shown in 
Fig. 1-10b. Note that the definition of HP is the magnitude of the difference of the 
half-power points and the assignment of left and right can be interchanged without 
changing HP. In three dimensions, the radiation pattern major lobe becomes a solid 
object and the half-power contour is a continuous curve. If this curve is essentially 
elliptical, the pattern cuts that contain the major and minor axes of the ellipse 
determine what the IEEE defines as the principal half-power beamwidths. 

Antennas are often referred to by the type of pattern they produce. An isotropic 
antenna, which is hypothetical, radiates equally in all directions giving a constant 
radiation pattern. An omnidirectional antenna produces a pattern that is constant 
in one plane; the ideal dipole of Fig. 1-10 is an example. The pattern shape resembles 
a "doughnut." We often refer to antennas as being broadside or endfire. A broad
side antenna is one for which the main beam maximum is in a direction normal to 
the plane containing the antenna. An end fire antenna is one for which the main 
beam is in the plane containing the antenna. For a linear current on the z-axis, the 
broadside direction is () = 90° and the endfire directions are 0° and 180°. For ex
ample, an ideal dipole is a broadside antenna. For z-directed line sources, several 
patterns are possible. Figure 1-16 illustrates a few If«() 1 patterns. The entire pattern 
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z 

i (a) Broadside (b) Intermediate (c) Endfrre 

Figurf 1-16 Polar plots of uniform line source patterns If(6)1. 

i 
, 

in thtee dimensions is imagined by rotating the pattern about the z-axis. The full 
pattern can then be generated from the E-plane patterns shown. The broadside 
patte~ of Fig. 1-16a is called a fan beam. The full three-dimensional endfire pattern 
for F g. 1-16b has a single lobe in the endfire direction. This single lobe is referred 
to as a pencil beam. Note that the sin () element factor, which must multiply these 
patterns to obtain the total pattern, will have a significant effect on the endfire 
pattetn .. 

i 

I 

1.8 DIRECTfVITY AND GAIN 
I 

One yery important description of an antenna is how much it concentrates energy 
in ont dire~tion in preference to radiation in other directions. This characteristic of 
an a~tenna is called its directivity and is equal to its power gain if the antenna is 
100% efficient. Usually, power gain is expressed relative to a reference such as an 
isotr ic radiator or half-wavelength dipole. 

To. ard the definition of directivity, let us begin by recalling that the power ra
diated by an antenna from (1-29) is 

I 

P = f f S· ds = ~ Re f f (E x H*) • ds (1-127) 

(1-128) 

I 

In general, there will be both {}- and qrcomponents ofthe radiation fields. From (1-
107), We find that 

. E8 
H=-

<I> 71 
and (1-129) 

Using: these in (1-128) gives 

I p ~ 2~ If (IE,I' + IE.I'lr'- d!l (1-130) 

wher~ dO = element of solid angle = sin () d() dt/>, which is shown in Fig. 1-17. The 
integrrl can be evaluated over any surface enclosing the antenna; however, for 
simpliFity a spherical surface centered on the origin is usually used. Since the mag-

'\ 
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tID. = sin B dB d4I 

~ __ ---- ~dB 
;...o'''~ ~ 

sinB dq, Figure 1·17 Element of solid angle dO. 

nitude variations of the radiation fields are 11r, we find it convenient to introduce 
radiation intensity, which is defined from 

U( (), <1» = ! Re(E X H*) • r2f = S( (), <I> )r2 (1-131) 

Radiation intensity is the power radiated in a given direction per unit solid angle 
and has units of watts per square radian (or steradian, sr). The advantage to' using 
radiation intensity is that it is independent of distance r. Radiation intensity can be 
expressed as 

(1-132) 

where Um is the maximum radiation intensity, and IF(8, <1>)12 is the power pattern 
normalized to a maximum value of unity in the direction «()max, <l>max), and 

Um = U«()max, <l>max) (1-133) 

The total power radiated is obtained by integrating the radiation intensity over all 
angles around the antenna: 

P = f f U«(), <1» dO, = Um f f jF«(), <I»j2 dO, (1-134) 

An isotropic source with uniform radiation in all directions is only hypothetical 
but is sometimes a useful concept. The radiation intensity of an isotropic source is 
constant over all space, at a value of Uave. Then P = IfUave dO, = Uave If dO, = 
41TUave since there are 41T sr in all space (see Prob. 1.8-1). For nonisotropic sources, 
the radiation intensity is not constant throughout space, but an average power per 
steradian can be defined as 

Uave = 4~ f f U«(), <1» dO, = :: (1-135) 

The average radiation intensity U ave equals the radiation intensity U( (), <1» that an 
isotropic source with the same input power P would radiate. 

As an example, consider the ideal dipole again; we find from (1-72) and (1-131) 
that 

1 I Az . 
( )

2 

U«(), <1» = 2 41T f3WJL sm2 
() (1-136) 

so 

(1-137) 

and 

F( e, <1» = sin e (1-138) 

I .. 
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The average radiation intensity follows from the total radiated power expression 
(1-75) for an ideal dipole as 

_ p _ ({3wpJ127T)(1 aZ)2 _ ! (I az)2{3 
Uave - 47T - 47T - 3 47T WJL 

2 
=-0, 3 m 

ideal dipole (1-139) 

Thus, Um = 1.5Uave for the ideal dipole, which means that in the direction of max
imum radiation, the radiation intensity is 50% more than that which would occur 
from an isotropic source radiating the same total poweL 

Directivity. Directivity is defined as the ratio of the radiation intensity in a certain 
direction to the average radiation intensity, or 

D( (), cf» = U( (), cf» 
Uave 

(1-140) 

If we divide the numerator and denominator by r2, then we have power densities. 
So, directivity is also the ratio of the power density in a certain direction at a given 
range r to the average power density at that range, or 

D( cf» = U«(), cf> )/r2 = ! Re(E x H*) • i 
(), U

ave
/r2 P147Tr2 (1-141) 

Substitution of (1-135) for Uave in (1-140) yields 

D«(), cf» = U«(), cf» 

4
1
7T f f U«(), cf» dO 

IF( (), cf>)12 

4
1
7T f f IF( (), cf>)12 dO 

= ~: IF«(), cf> )12 (1-142) 

where OA is the beam solid angle defined by 

OA = f f IF«(), cf>)12 dO (1-143) 

This result shows that directivity is entirely determined by pattern shape. Beam 
solid angle is the solid angle through which all the power would be radiated if the 
power per unit solid angle (radiation intensity) equaled the maximum value over 
the beam area. This is illustrated in Fig. 1-18. From (1-134) and (1-143), we see that 

(1-144) 

This can also be inferred from Fig. 1-18b. 
When directivity is quoted las a single number without reference to a direction, 

maximum (peak) directivity is usually intended. Maximum directivity follows from 
(1-140) as 

D = Um 

Uave 

(1-145) 
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Actual pattern 

(a) (b) 

Figure 1-18 Antenna beam solid angle fiA • (a) Plot of 
radiation intensity U( 8, cp) from an actual antenna. 
(b) Plot of radiation intensity with all radiation from 
the actual antenna concentrated into a cone of solid 
angle fiA with constant radiation intensity equal to the 
maximum of the actual pattern. 

Using (1-135) and (1-144) in (1-145) gives 

(1-146a) 
( 

or I 

(1-146b) 

Also from (1-132) in (1-140) we see that 

D«(), 4» = Um IF«(),4>?1 = DIF«(), 4»12 

Uave 
(1-147) 

and since IF«(), 4»12 has a maximum value of unity, the maximum value of directivity 
isD. 

The concept of directivity is illustrated in Fig. 1-19. If the radiated power were 
distributed isotropically over all of space, the radiation intensity would have a max
imum value equal to its average value as shown in Fig. 1-19a; that is, Um = Uave or 
fiA = 47T. Thus, the directivity of this isotropic pattern is unity. The distribution of 
radiation intensity U( (), 4» for an actual antenna is shown in Fig. 1-19b. It has a 
maximum radiation intensity in the direction «()max, 4>max) of Um = DUave and an 
average radiation intensity of Uave = P/47T. By directing the radiated power P in a 
preferred direction, we can increase the radiation intensity in that direction by a 
factor of D over what it would be if the same radiated power had been isotropically 
radiated. 

(a) Radiation intensity distributed 
isotropically 

Figure 1-19 Illustration of directivity. 

( b) Radiation intensity 
from an actual antenna 
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Directivity of an Ideal Dipole 

The directivity of an ideal dipole can now be easily calculated using (1-139) in (1-145): 

Urn Urn 3 
D=-=--=-

Uave ~ U 2 
3 rn 

ideal dipole (1-148) 

Usually directivity is calculated directly from (1-146b), and the directivity calculation reduces 
to one of finding the beaIn solid angle. To illustrate, we use the ideal dipole. Substituting 
(1-138) in (1-143) leads to 

~r 4 8 
!lA =)0 )0 Isin 812 sin 8 d8 dcp = 2'IT 3 = 3'IT (1-149) 

and we obtain the same value of directivity from 

4'IT 4'IT 3 
D=-=-=-

!lA8'IT13 2 
(1-150) 

Thus, the directivity of an ideal dipole is 50% greater than that of an isotropic source, which 
has a directivity of 1. 

Directivity of a Sector Omnidirectional Pattern 

An ideal omnidirectional antenna would have constant radiation in the horizontal plane 
(8 = 9OC) and would fall rapidly to zero outside that plane. Suppose that the pattern in the 

vertical plane is constant out to :!::i (:!::300) from horizontal. The pattern expression is then 

written as 

~~ ~{: 
1 2 
-'IT<8<-'IT 
3 3 

elsewhere 

The solid angle of the pattern from (1-143) is 

!lA = J J IF(8, cp)12 dO = L21T J::13 

12 sin 8 d8 dcp 

= (2 'IT) [ -cos 8]~tf = (2 'IT) (0.5 + 0.5) = 2'IT 

The directivity from (1-146b) is 

(1-151) 

(1-152) 

(1-153) 

Gain. As noted above, directivity is solely determined by the radiation pattern of 
an antenna. When an antenna is used in a system (say, as a transmitting antenna), 
we are actually interested in how efficiently the antenna transforms av~lable power 
at its input terminals to radiated power, together with its directive properties. Power 
gain (or simply gain) is used to quantify this and is defined as 4'IT times the ratio of 
the radiation intensity in a given direction to the net power accepted by the antenna 
from the connected transmitter, or 

(1-154) 
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where G( 8, cf» is the gain and U( 8, cf» is the radiation intensity of the antenna in 

the direction (8, cf» including the effect of any losses on the antenna, and Pin is the 

input power accepted by the antenna. This definition does not include losses due to 

mismatches of impedance or polarization, which are discussed in Sec. 9.1. The max

imum value of gain is the maximum of (1-154), so 

G = 4'1TUm 

Pin 
(1-155) 

Thus, gain can be expressed as a function of 8 and cf> and can also be given as a 

value in a specific direction. If no direction is specified and the gain value is not 

given as a function of 8 and cf>, it is assumed to be the maximum gain. 

Directivity can be written from (1-146a) as D = 4'1TUm IP. Comparing this with 

(1-155), we see that the only difference between maximum gain and directivity is 

the power value used. Directivity can be viewed as the gain an antenna would have 

if all input power appeared as radiated power; that is, Pin = P. Gain reflects the 

fact that real antennas do not behave in this fashion and some of the input power 

is lost on the antenna. The portion of input power Pin that does not appear as 

radiated power is absorbed on the antenna and nearby structures. This prompts us 

to define radiation efficiency er as 

P 
e =-

, Pin 
(1-156) 

Note that 

(1-157) 

Using (1-156) in (1-54) gives 

G(8, cf» = e, 4'1TU~, cf» = e, U~, cf» = e,D(8, cf»;- (1-158) 
ave ::._~/ 

Similarly, for maximum gain 

(1-159) 

Thus, the maximum gain of an antenna is equal to its purely directional character

istic of maximum directivity multiplied by radiation efficiency. 

The terminology found in the literature is inconsistent and often incorrect on the 

topics of directivity and gain. Directivity and gain can be functions of angle or be 

maximum values, that is, D(8, cf» or D, and G(8, cf» or G. Formerly, the term 

"directive gain" was used for directivity as a function of angle, but its use is no 

longer recommended by the IEEE. If no other information is given during a dis

cussion of directivity or gain, it can safely be assumed that the maximum value is 

intended. 

Units for Directivity and Gain. Since gain is a power ratio it can be calculated in 

decibels as follows: 

GdB = 10 log G (1-160) 



1.9 Antenna Impedance, Radiation Efficiency, and the Short Dipole 43 

Similarly for directivity, 

DdB = 10 log D (1-161) 

For example, the directivity in decibels of an ideal dipole is 

DdB = 10 log 1.5 = 1.75 dB ideal dipole (1-162) 

Frequently, gain is used to describe the performance of the antenna relative to 
some standard reference antenna. This relative gain is defined as the ratio of the 
maximum radiation intensity from the antenna Urn to the maximum radiation in
tensity from a reference antenna Um,ref with the same input power, or 

Urn 
Gref =-U 

m,ref 

(1-163) 

This is a convenient definition from a measurement standpoint. The formal defini
tion of gain employs a hypotheticallossless isotropic antenna as a reference antenna. 
This can be shown by noting that the lossless isotropic reference antenna has a 
maximum radiation intensity of Pin/47T since all its input power is radiated, and 
substituting this into (1-163) for Um,ref leads to (1-155). 

It is common at frequencies below 1 GHz to quote gain values relative to that of 
a half-wave dipole. The directivity of a half-wave dipole is 1.64 or 2.15 dB; see Sec. 
5.1. Gain relative to a half-wave dipole carries the units of dBd. The unit dBi is 
often used instead of dB to emphasize that an isotropic antenna is the reference. In 
addition, the term absolute gain, which is synonymous with gain, is sometimes used. 
As a numerical example, consider an antenna with a gain of 6.1 dB; its gain can be 
written in the following ways: 

G = 6.1 dB = 6.1 dBi = 3.95 dBd 

1.9 ANTENNA IMPEDANCE, RADIATION EFFICIENCY, 
AND mE SHORT DIPOLE 

(1-164) 

The input impedance of an antenna is the impedance presented by the antenna at 
its terminals. Thus, suitable terminals must be defined for an antenna. The input 
impedance will be affected by other antennas or objects that are nearby, but for 
this discussion we assume that the antenna is isolated. Input impedance is composed 
of real and imaginary parts: 

(1-165) 

The input resistance RA represents dissipation, which occurs in two ways. Power 
that leaves the antenna and never returns (i.e., radiation) is a form of dissipation. 
There are also ohmic losses associated with heating on the antenna structure, but 
on many antennas ohmic losses are small compared to radiation losses. However, 
ohmic losses are usually significant on electrically small antennas, which have di
mensions much less than a wavelength. The input reactance X A represents power 
stored in the near field of the antenna. As a consequence of reciprocity, the imped
ance of an antenna is identical during reception and transmission. 

First, we discuss the input resistance. The average power dissipated in an antenna 
is 

(1-166) 
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where IA is the current at the input terminals. Note that a factor of! is present 
because current IA is the peak value in the time waveform. Separating the dissipated 
power into radiative and ohmic losses gives 

Pin = P + Pohmic 

(1-167) 

where we define the radiation resistance of an antenna referred to the input ter
minals as 

It follows from (1-167) that 

2P 
Rr = IIAI2 (1-168) 

(1-169) 

where Rohmic is resistance associated with ohmic losses that include the directly 
driven part of the antenna as well as losses in other portions of the antenna structure 
such as a ground plane. Ohmic resistance of an antenna is defined as , 

R . = 2Pohmic = 2(Pin - P) 
ohmic IIAI2 IIAI2 (1-170) 

The radiated power is found using (1-35): 

P = ~ I I (E X H*) • ds (1-171) 
Sff 

where Sff is a surface in the far field, usually spherical. P is real-valued because the 
power density S = !E x H* is real-valued in the far field. 

Radiation resistance can be defined relative to the current at any point on the 
antenna, but we reserve Rr for radiation resistance referred to the input terminals. 
Radiation resistance relative to the maximum current 1m that occurs on the antenna 
Rrm is obtained by using 1m in place of IA in (1-168). In this section, we discuss 
center-fed electrically short antennas, which always have a current maximum at the 
input, so Rr = Rrm. We discuss this topic again in Sec. 5.l. 

The power radiate'd from an ideal dipole of length az « A and input current 
IA = I is given by (1-75), which together with (1-168) gives the radiation resistance: 

P 2 WJLp 2 y-;;:w...;-p,Vi: 2 

Rr = IIAI2 = P 1211" (I az) = Vi: 611" p(az) 

= TJ p2 (az)2 = TJ ~ 11"(az)2 
611" 3 A 

Rr = 8011"2 ( ~z r n ideal dipole (1-172) 

For ideal dipoles, Rr is very small since az « A. 
The relative amounts of input power dissipated by radiation and ohmic losses 

determine the efficiency of the antenna. This is expressed by the radiation efficiency 
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er that was introduced in Sec. 1.8 and defined in (1-156) as the ratio oftotal radiated 
power to the net power accepted by the antenna, so 

P P 
e =-= 

r Pin P + Pohmic 
(1-173) 

(1-174) 

where (1-169) was used. Except for low frequencies, the skin depth 8 = V21wJLuis 
much smaller than the conductor radius and then the ohmic resistance for an an
tenna of length L that carries an axially uniform current is 

L 
R ohmic = -2 Rs 'TTa 

(1-175) 

where L is the length of the wire, a the wire radius, and Rs the surface resistance: 

Rs = ~ (1-176) 

For many antennas, radiation efficiency is nearly 100%. For electrically small an
tennas, however, the radiation efficiency can be low. We, therefore, take a closer 
look at them. 

The ideal dipole has a uniform current as shown in Fig. 1-20a. In reality, the 
current on a straight wire antenna must smoothly go to zero at the wire ends. The 
current distribution on a center-fed wire dipole of length az « A, called a short 
dipole, is approximately triangular in shape as illustrated in Fig. 1-20b. If end loading 
such as with metal plates (see Fig. 2-3) is added to the short dipole, the radial current 
reduces to zero at the edge of the plates, giving a nearly uniform current on the 
vertical portion of the dipole, which permits use of the ideal dipole model. More 
will be said about short dipoles in Sec. 2.1. 

Pattern calculations for the ideal dipole were performed in Sec. 1.6 assuming that 
the magnitude and phase differences of rays coming from points on the wire due to 
different path lengths were negligible. Since the short dipole also satisfies az « A, 
the pattern will also be the same sin () radiation pattern as the ideal dipole. In 

1 

1 J 
Ilz ---I'---/(z) 

1 1 
(a) Ideal dipole 

z 

I 

1 J r 
Ilz ---Jf---/(z) 

1 1 
(b) Short dipole 

Figure 1-20 The ideal dipole 
and short dipole with current 
distributions; dz « A. IA is the 
value of the input current at 
the terminals in the center of 
each antenna. The short dipole 
of (b) is that which is 
encountered in practice. 
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addition, the ideal dipole and short dipole will have the same directivity value of 
1.5 because pattern shape completely determines directivity. 

The triangular current distribution of the short dipole leads to an equivalent 
length that is one-half that of its physical length. This is because the equiva
lent length is proportional to the area under the current versus distance curves 
shown in Fig. 1-20, which follows from the radiation integral of (1-103) with 
exp(j f3z I cos 8) "" 1 for short dipoles. The radiated fields are, in tum, proportional 
to this equivalent length. Since the radiation resistance is proportional to the integral 
of the far-zone electric field squared and the patterns of the ideal and short dipoles 
are the same, the radiation resistances are proportional to the equivalent lengths 
squared. The area of the triangle shape current on the short dipole is one-half that 
of the uniform current shape, so the radiation resistance is one fourth that of the 
ideal dipole. Dividing (1-171) by 4 gives 

Rr = 20-n2(~Zr n short dipole (1-177) 

The ohmic resistance for the short dipole is also reduced from that of the ideal 
dipole. The ohmic resistance of a short dipole is found by first determining the power 
dissipation from ohmic losses, which at any point along the antenna is proportional 
to the current squared. In fact, in general the total power dissipated is evaluated by 
integrating the current squared over the wire antenna, which together with (1-170) 
yields 

_ 2Pohmic _ 1 Rs 2 f
Ll2 

Rohmic - IIAI2 - IIAI221Tll -L/2 II(z) I dz (1-178) 

It is easy to show that this reduces to (1-175) for a uniform current of length L = 
az. The short dipole triangular current of Fig. 1-20b can be written as a function of 
position along the wire as 

Using this in (1-178) yields 

az lzl:5 -
2 

short dipole 

(1-179) 

(1-180) 

Notice that this is one-third that for an ideal dipole of the same length az. Since 
the radiation resistance for the short dipole is one-fourth that of an ideal dipole, 
the radiation resistance is decreased more relative to the ohmic resistance, and thus 
the efficiency is lower for the short dipole than it is for an ideal dipole of the same 
length. 

Radiation Efficiency of an AM Car Radio Antenna 

Most fender-mount car radio antennas are 31 in. long. We assume that the fender images 
the monopole antenna, forming a dipole 62 in. long (L = 1.575 m) and 118 in. in diameter 
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(a = 0.159 cm). For an operating frequency of 1 MHz (A = 300 m), the electrical length is 
0.00525'\, indicating an electrically small antenna. If a short dipole model is assumed, the 
radiation resistance follows from (1-177) as 

Rr = 20~e~~n 
2 

= 0.00545 n (1-181) 

Using the conductivity of steel (see App. B.1) in (1-176) gives 

R = • 
4'1T X 10-

7 
• 2'1T X 10

6 
= 1 40 X 10-3 n 

2·2 X 106 • 
(1-182) 

The ohmic resistance from (1-180) is 

L R. 1.575 1.40 X 10-3 

Rohmic = 2'1Ta "3 = 2'1T . 1.59 X 10-3 3 = 0.0736 n (1-183) 

The radiation efficiency from (1-174), (1-181), and (1-183) is 

Rr e = ___ -_=__-
·r Rr + R ohmic 

0.00545 _ 0 

0.00545 + 0.0736 - 6.7}b (1-184) 

The 6.7% radiation efficiency of the above example is low. Low efficiency in 
receiving antennas for broadcast applications is overcome by using high-power 
transmitters operating into tall antennas that are efficient. Thus, cost and complexity 
are concentrated into a few transmitting stations, allowing inexpensive and simple 
receiving antennas. 

In addition to loss of efficiency, ohmic losses on antennas have another undesir
able effect. As with any resistive element in an electrical system, ohmic losses on 
antennas are noise sources. This can be a problem for receiving applications when 
the signal is low. For frequencies around 1 MHz and below, external noise, mainly 
due to lightning, is significant and always present. The external noise picked up by 
the antenna is proportional to the antenna radiation resistance and is usually larger 
than the noise arising from internal ohmic resistance. Antenna noise is discussed 
further in Sec. 9.2. 

We now return to the reactive part of the input impedance. In contrast to radiated 
power that contributes to the real part of the input impedance, the reactive part of 
the input impedance represents l>0wer stored in the near field. This behavior is very 
similar to a complex load impedanCe:{ in cireuit theory. Antennas that are electrically 
small (i.e., much smaller than a wavelength) have a large input reactance, in addition 
to a small radiation resistance. For dample, the short dipole has a capacitive re
actance, whereas an electrically small loop antenna has an inductive reactance. This 
is an expected result from low-frequency circuit theory. The reactance of a short 
dipole is approximated by [9]: 

X A = - 1!~ [In(~:) -1] n short dipole (1-185) 
'1T

A 

This gives a large capacitive reactance for very short dipoles. The total input im
pedance of the short dipole is Rr + R ohmic + jXA , where X A is given above, Rr is 
given by (1-177), and Rohmic is given by (1-180). 
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Input Reactance of an AM Car Radio Antenna 

We now return to Example 1-4 and calculate the reactive portion of the input impedance. 
Using !1zlA = 0.00525 and !1zl2a = 157.5/2·0.159 = 495.3 in (1-185) gives X A = -37,870 O. 
This is a very large capacitive reactance, leading to a severe impedance mismatch. Also see 
Fig. 5-6. 

Antenna impedance is important to the transfer of power from a transmitter to 
an antenna or from an antenna to a receiver. For example, to maximize the power 
transferred from a receiving antenna, the receiver impedance should be a conjugate 
match to the antenna impedance (equal resistances, equal magnitude and opposite 
sign reactances). Receivers have real-valued impedance, typically 50 n, so it is nec
essary to "tune out" the antenna reactance with a matching network. There are two 
disadvantages to using matching networks: Ohmic losses in the network components 
such as tuning coils reduce efficiency, and second, a matching network provides a 
match only over a narrow band of frequencies, which reduces the operational band
width. Impedance-matching techniques are discussed in Section 5.3. 

1.10 ANTENNA POLARIZATION 

A monochromatic electromagnetic wave, which varies sinusoidally with time, is 
characterized at an observation point by its frequency, magnitude, phase, and po
larization. The first three of these are familiar parameters, but polarization is often 
not well understood by students and practicing engineers. The polarization of an 
antenna is the polarization of the wave radiated in a given direction by the antenna 
when transmitting. In this section, we first discuss the possible polarizations of an 
electromagnetic wave, and then antenna polarization will follow directly from wave 
polarization. A complete discussion of wave and antenna polarization is found 
in [10]. 

The phase front (surface of constant phase) of a wave radiated by a finite-sized 
radiator becomes nearly planar over small observation regions. This wave is referred 
to as a plane wave and its electric and magnetic fields lie in a plane. The polarization 
of a plane wave is the figure the instantaneous electric field traces out with time at 
a fixed observation point. An example is the vertical, linearly polarized wave in Fig. 
1-21, which shows the spatial variation of the electric field at a fixed instant of time. 

'Xy . 

Figure 1·21 The spatial behavior 
of the electric (solid) and 
magnetic (dashed) fields of a 
linearly (vertical) polarized wave 
for a fixed instant of time. (From 
[10]. Reprinted by permission of 
Artech House, Inc., Boston, MA.) 
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As time progresses, the electric field (~x) at a fixed point oscillates back and forth 
along a vertical line. For a completely polarized wave, the figure traced out is, in 
general, an ellipse. As indicated in Fig. 1-21, the temporal and spatial variations of 
the magnetic field are similar to those for the electric field, except that the magnetic 
field is perpendicular to the electric field. Waves can have a nonperiodic behavior, 
but we will not consider such randomly polarized wave components because anten
nas cannot generate them. 

There are some important special cases of the polarization ellipse. If the electric 
field vector moves back and forth along a line, it is said to be linearly polarized; see 
Figs. 1-22a and 1-22b. An example is the electric field from an ideal dipole or any 
linear current. If the electric field vector remains constant in length but rotates 
around in a circular path, it is circularly polarized. Rotation at radian frequency w 
is in one of two directions, referred to as the sense of rotation. If the wave is traveling 
toward the observer and the vector rotates clockwise, it is left-hand polarized. The 
left-hand rule applies here: With the thumb of the left hand in the direction of 
propagation, the fingers will curl in the direction of rotation of the instantaneous 
electric field ~. If it rotates counterclockwise, it is right-hand polarized. Left- and 
right-hand circularly polarized waves are shown in Figs. 1-22c and 1-22d. A helix 
antenna produces circularly polarized waves and the sense of rotation of the wave 
is the same as that of the helix windings; for example, a right-hand wound helix 
produces a right-hand circularly polarized wave; see Sec. 6.2. Finally, Figs. 1-22e 
and 1-22fshow the most general cases of left-hand and right-hand sensed elliptical 
polarizations. 

The time-space behavior of the important special case of circular polarization is 

(a) Vertical linear polarization. 
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(d) Right-hand circular polarization. 

",,--
I 
\ 

" ..... _- -- / 
". 

(e) Left-hand elliptical polarization. (j) Right-hand elliptical polarization. 

Figure 1-22 Some wave polarization states. The wave is approaching. 
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Spatial sequence of 
electric field vectors 

z 

Time sequence of 
electric field vectors 
in a fixed plane 

Figure 1·23 Perspective view of a 
left-hand circularly polarized wave 
shown at a fixed instant of time and 
the time sequence of electric field 
vectors as the wave passes through 
a fixed plane in the +z-direction. 
(From [10]. Reprinted by 
permission of Artech House, Inc., 
Boston, MA.) 

difficult to visualize. Figure 1-23 provides a space perspective view of a left-hand 
circularly polarized wave. As the vector pattern translates along the +z-axis, the 
electric field at a fixed point appears to rotate clockwise in the xy-plane (yielding a 
left-hand circularly polarized wave). This is illustrated with the time sequence of 
vectors in the fixed plane shown in Fig. 1-23. 

A general polarization ellipse is shown in Fig. 1-24 with a reference axis system. 
The wave associated with this polarization ellipse is traveling in the + z-direction. 
The sense of rotation can be either left or right. The instantaneous electric field 
vector ~ has components ~x and ~y along the x- and y-axes. The peak values of 
these components are E1 and Ez. The angle 'Y describes the relative values of E1 
and E2 from 

(1-186) 

y 

----------~~------~~--~~~~~----~-----x 

, 

Figure 1·24 The general polarization ellipse. The wave; direction is out of the page in the 
+ z -direction. The tip of the instantaneous electric field' vector ~ traces out the ellipse. 
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The tilt angle of the ellipse r is the angle between the x-axis (horizontal) and the 
major axis of the ellipse. The angle 8 is seen from Fig. 1-24 to be 

1 :5 IARI :5 00, (1-187) 

where the axial ratio of the ellipse IARI is the ratio of the major axis electric field 
component to that along the minor axis. The sign of AR is positive for right-hand 
sense and negative for left-hand sense. Axial ratio is often expressed in dB as 20 
log IARI. 

The instantaneous electric field for the wave of Fig. 1-24 can be written as (with 
z = 0 for simplicity) 

(1-188) 

where 5 is the phase by which the y-component leads the x-component. This rep
resentation describes the ellipse shape as time t progresses. If the components are 
in-phase (5 = 0), the net vector is linearly polarized. The orientation of the linear 
polarization depends on the relative values of E1 and E2. For example, if E1 = 0, 
vertical linear polarization results; if E2 = 0, horizontal linear results; if E1 = E2, 
the polarization is linear at 45° with respect to the axes. Linear polarization is a 
collapsed ellipse with infinite axial ratio. If 5 is nonzero, the axial ratio is finite. 
When 5 > 0, ~y leads ~x in-phase and the sense of rotation is left-hand. For 5 < 0, 
the sense is right-hand. If E1 = E2 (thus, Y = 45°) and 5 = ±90°, the polarization 
is circular (+90° is left-hand and -90° is right-hand). The axial ratio magnitude of 
a circularly polarized wave is unity. 

The phasor form of (1-188) is 

E = Eli. + E2ej8y 
which can be written as (see Prob. 1.10-3) 

E = Vm + E~(cos yi. + sin yej8 y) = IEle 

(1-189) 

(1-190) 

The factor lEI is the field magnitude and e is the complex vector representation for 
the field and is normalized to unity magnitude. Thus, 'Y and 5 completely specify 
the polarization state of the wave. In fact, either pair of angles (8, r) or (y, 5) 
uniquely define the polarization state of a wave. The transformations between these 
angles are 

1 
Y = '2 cos-1(cos 28 cos 2r) (1-191) 

,;:, _l(tan 28) u=tan --
sin 2r 

(1-192) 

The polarization of an antenna is the polarization of the wave radiated by the 
antenna when transmitting. Therefore, all the discussions on wave polarization ap
ply directly to antenna polarization. The polarization of waves radiated by an an
tenna will vary with direction. Usually, the polarization characteristics of an antenna 
remain relatively constant over its main beam and the polarization on the main 
beam peak is used to describe the antenna polarization. However, the radiation 
from side lobes can differ greatly in polarization from that of the main beam. When 
measuring the radiation from an antenna, both Ee and E.p should be measured to 
be complete. The principal plane patterns of a perfectly linearly polarized antenna, 
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such as a line source on the z-axis, are completely specified when a linearly polarized 
probe antenna is oriented to respond to Eo. 

Reciprocal antennas have identical radiation patterns on transmit and receive. 
This extends to the vector nature of the radiation that includes polarization. A 
transmit antenna is polarization matched to a receive antenna if its polarization 
ellipse axial ratio, sense, and major axis orientation are the same as those of the 
receive antenna (in the direction of the transmit antenna). For example, a right
hand circularly polarized receiving antenna is polarized matched to a right circularly 
polarized wave. As a mechanical analogy, consider a right-hand threaded rod cor
responding to a right-hand circularly polarized (RHCP) wave and a right-hand 
tapped hole representing a RHCP antenna. The rod and hole are matched when 
screwed in or out, corresponding to reception or transmission. 

It is interesting to examine the polarizations used in the U.S. broadcast FM radio 
and TV industry. Historically, TV and FM broadcast transmitting antennas were 
horizontally polarized. In recent years, CP has been used for TV and FM since the 
FCC now allows transmitters to have the maximum EIRP in both horizontal polar
ization and vertical polarization. This was permitted because nearly all vehicle re
ceiving antennas are VP. 

REFERENCES 

1. Jack Ramsay, "Highlights of Antenna History," IEEE Ant. & Prop. Soc. Newsletter, pp. 8-20, Dec. 
1981. 

2. Sir Edmund Whittaker, A History of the Theories of Aether and Electricity, VoL 1: The Classical 
Theories, Harper Torchbooks, New York, 1960. 

3. R. C. Hansen, Ed. Microwave Scanning Antenna, Vol. I: Apertures, Academic Press, New York, 
1964, Chap. 2. 

4. E. Larsen, Telecommunications-A History, Frederick Muller Ltd., London, 1977. 
5. M. I. Pupin, "A Discussion on Experimental Tests of the Radiation Law for Radio Oscillators," 

Proc. Inst. Radio Engineers, Vol. 1, pp. 3-13, 1913. 
6. S. Silver, Ed., Microwave Antenna Theory and Design, M.I.T. Radiation Laboratory Series, Vol. 12, 

McGraw-Hill, New York, 1949. 
7. S. A. Schelkunoff and H. T. Friis, ANTENNAS: Theory and Practice, John Wiley & Sons, New York, 

1952, p. 127. 
8. J. Van Bladel, "Lorenz or Lorentz?," IEEE Ant. & Prop. Magazine, Vol. 33, p. 69, April 1991. 
9. R. C. Johnson, Ed., Antenna Engineering Handbook, 3rd ed., McGraw-Hill, New York, 1993, 

Chap. 4. 
10. W. L. Stutzman, Polarization in Electromagnetic Systems, Artech House, Boston, 1992. 

PROBLEMS 

1.3-1 What is this antenna? (a) Locate an antenna that you would like to know more about. 
It can be one you see in your community or one you find in a catalog or magazine. Investigate 
and learn more about the antenna as you move through this book. For now make a sketch 
of the antenna and describe its location and surroundings. (b) After covering a substantial 
part of this book, provide an explanation of the antenna in (a) including the type of antenna 
it is, its operating frequency, how it is being used, and performance parameter values that 
you can estimate such as beamwidth and gain. 
1.4-1 Use (1-6) in (1-1) to derive (1-7). 
L4-2 Use (1-13) in (1-19) together with (1-11), (1-12), and (1-20) to derive (1-18). 
1.4-3 Assuming 8 and J.L are real and M = 0, derive (1-28) through (1-34) using the identity 
(C-19). 

/ 
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1.4-4 Write the complex power equation for a series RLC network driven by a voltage gen
erator in a form analogous to the Poynting theorem. 
1.5-1 Derive (l-4S) starting with (I-IS). 
L5-2 a. Show that", = Ce-j{Jrlr satisfies (1-54) at all points except the origin. 

b. By integrating (1-52) over a small volume containing the origin, substituting", = 
Ce-j{Jrlr, and letting r approach zero, show that C = (471r\ thus proving (1-55). 
1.6-1 Show that (l-71b) follows from (1-69). 
1.6·2 The expression for the electric field intensity of an ideal dipole can be derived in two 
ways. 

a. Derive (l-71b) using the magnetic field intensity expression (l-71a) in (1-60). 
b. Derive (l-71b) using the vector potential expression (1-62) in (1-45). 

L6·3 For a z-directed current element I dz in free space and located at the origin of a 
spherical coordinate system: 

a. Calculate the complex Poynting vector in the general case, where r can be in the near
field region. Use the fields of (1-71). 

b. Then find the expression for the time-average power flowing out through a sphere of 
radius r enclosing the current element. Your answer will be that of (1-75). Why? 
L6·4 Show that the electric field for the ideal dipole in (l-71b) satisfies Maxwell's equation 
V·E =0. 
L7·1 Prove (1-93) by using (1-S7) in (1-92) and retaining only lIr terms; that is,· using 
~r» 1. 
L7·2 Uniform line source. 

a. Find the half-power beamwidth of the uniform line source pattern factor If(9)1 of 
(I-lIS). Your answer should be in the form 

HP = KAIL for L» A. 

Determine the constant K. Hint: First find the values UHP of u = (~Ll2) cos 9 for which 
If(uHP)1 = 1tV2. Then use the approximation cos-1

( ±x) = 'Tr12 + x for x small. 
b. Calculate the maximum side lobe level for the pattern in decibels relative to the main 

beam maximum. The side lobe maximum can be located by differentiating f(u) with respect 
to u, setting equal to zero, and solving for u. 

c. Suppose now that the current has a linear phase taper across it so that 

What is f(9) now? If we let ~o = -~ cos 90 where is the pattern maximum (main beam 
pointing direction)? This is how the scanned beams of Fig. 1-16 are generated. 
L7·3 Equation (1-96) can be derived without initially assuming that the rays are parallel. 
Derive (1-96) by writing R = [(r - r') • (r - r')j1I2, expanding, factoring out an r, neglecting 
the smallest term, and using the first two terms of the binomial expansion. 
L7·4 Using the inner boundary of the far-field to be rtf = 2L2/A for a linear antenna of length 
L, find rtf for the following three antennas: L = SA, a half-wave dipole (L = Al2), and a short 
dipole (L = O.01A). Is the far-field boundary you have computed valid for each of these; if 
not, why not? 
L7·5 It can be shown that criteria for the far-field distance corresponding to (1-99b) and 
(1-99c) are more accurately given by r > 5D and r > 1.6A. Using these together with (1-99a), 
plot a single graph of rIA (vertical axis) versus DlA for the far-field boundary. Indicate which 
region of the graph corresponds to the far field. 
L7·6 A car radio antenna is 1 m long and operates at a frequency of 1 MHz. Use the graph 
of Prob. 1.7-5 to find the far-field distance. . 
L7·7 Derive the near-field region boundary expression in (1-100) of 0.62YD3/A. Do this by 
finding the maximum error of the fourth term in (1-84) with z' = Dl2 and equating to 'TrIS. 
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1.8-1 Show that there is 4?T sr in all space by integrating dO over a sphere. 
1.8-2 A power pattern is given by Icosn 81 for 0 :s; 8 :s; ?T/2 and is zero for ?T/2 :s; 8 :s; ?T. 
(a) Calculate the directivity for n = 1,2, and 3, (b) Find the HP values in degrees for each 
n, (c) Sketch the patterns for the n values on one polar plot and comment on the them, 
(d) Explain the directivity value for the case of n = O. 
L8-3 An antenna has a far-field pattern which is independent of c/J but which varies with 8 
as follows: 

F=1 for 0° :s; 8 :s; 30°. 

F = 0.5 for 60° :s; 8 :s; 120°. 

F = 0.707 for 150° :s; 8 :s; 180°. 

F=O for 30° < 8< 60° and 120° < 8 < 150°. 

Find the directivity. Also find the directivity in the direction 8 = 90°. 
1.8-4 For a single-lobed pattern the beam solid angle is approximately given by 

OA = HPEHPH 

where HPE and HPH are the half-power beamwidths in radians of the main beam in the E 
and H planes. Show that 

D = 41,253 
HPE'HPH' 

where HPE' and HPHo are the E and H plane half-power beamwidths in degrees. 
1.8-5 A hom antenna with low side lobes has half-power beamwidths of 29° in both principal 
planes. Use the approximate expression in Prob. 1.8-4 to compute the directivity of the hom 
in decibels. 
1.8-6 A sector pattern has uniform radiation intensity over a specified angular region and is 
zero elsewhere. An example is 

?T ?T 
--a<8<-+a 
2 2 

elsewhere 

Derive an expression for the directivity corresponding to this pattern. 
1.8-7 An airplane is flying parallel to the ground (in the z-direction). For a surface search 
radar an antenna is required that uniformly illuminates the ground over some region. The 

so-called cosecant pattern will do this. From the figure we see that h = r cos(i - 8) or 

h 
r = ~8 = h esc 8. 

sm 

This expresses how much farther the radiation must travel to reach the ground as 8 is de
ceased. The radiation pattern 

F(8) = csc 8, 

will just compensate for the lIr field variation with distance. If, in addition, the c/J variation 
is a sector pattern of small angular extent c/Jo, then 

{

csc 8 
F(8, c/J) = 0 

?T 
81 < 8 < 2"' 0 < c/J < c/Jo 

elsewhere. 
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1.8·8 Gaussian Pattern. A circularly symmetric, narrow beam antenna pattern is frequently 
modeled by a Gaussian shape given by 

F«(}) = e-4lnv2 (81HP)2 

Derive expressions for the directivity associated with this pattern in terms of the half-power 
beamwidth HP in radians and in degrees. Do this by approximating sin () by () in the inte
gration for OA and extending the integration limits to infinity. 
L8·9 An antenna has a directivity of 20 and a radiation efficiency of 90%. Compute the gain 
in dB. 
1.8·10 Compute the gain of an antenna which has a radiation efficiency of 95% and the 
following radiation pattern 

~.) ~ G·7m 20° ~ () < 120° 

120° ~ () < 180° 

L9·1 A 2-m-long dipole made of 6.3S-mm (0.2S-in.) diameter aluminum is operated at 
500 kHz. Compute its radiation efficiency, assuming . 

a. The current is uniform 
b. The current is triangular. 

1.9·2 A citizen's band radio at 27 MHz uses a half-wavelength long antenna that has a ra
diation resistance of 70 O. Compute the radiation efficiency if the antenna is made with 6.35-
mm-diameter aluminum. As a rough approximation assume that the current is triangular. 
1.9·3 Use the ohmic resistance formula of (1-178) to verify the expression for Rohmic for 

a. A uniform current given by (1-175) 
b. A triangular current given by (1-180). 

1.9-4 A cordless telephone operating at 50 MHz has a 38-cm long monopole antenna made 
of 4-mm diameter aluminum tUbing. Compute the radiation efficiency. 
L10·1 The instantaneous electric field components of an elliptically polarized wave are 
~x = E1 cos( wt - (3z) and ~y = E2 cos( wt - (3z + 8). Specify E10 E2, and 8 for the following 
polarizations: 

a. Linear with E1 *' 0 and E2 *' O. 
b. Right circular. 
c. Left circular. 
d. Elliptical with E1 = E2. 
e. Elliptical with 8 = 90°. 

L10·2 Write the frequency domain form of the total vector electric fields given in Prob. 
1.10-l. 
1.10·3 Start with (1-189) and prove (1-190). Use the fact that the magnitude of E follows 
from IEI2 = E· E*. Also note that 'Y in Fig. 1-24 is in a triangle with sides E1 and E2 and 
hypotenuse lEI. 
L10-4 Prove that a RHCP wave normally incident on a plane perfect conductor changes to 
LHCP upon reflection. 



Chapter2 

Some Simple Radiating 
Systems and 
Antenna Practice 

In this chapter, we introduce the simple antenna forms of the electrically small 
dipole, half-wave dipole, and electrically small loop. These antennas are fundamen
tal to antenna practice, and they are used in the discussion of arrays in the next 
chapter. We return to a more in-depth treatment of wire antennas in Chap. 5. Image 
theory is also presented in this chapter for use in examining antennas operated in 
the presence of a perfect ground plane. Wireless communication systems are also 
discussed in this chapter to provide a motivation for further study in antennas by 
showing how antennas are frequently applied in practice. 

2.1 ELECTRICALLY SMALL DIPOLES 

56 

An antenna whose dimensions are small compared to the wavelength at the fre
quency of operation is an electrically small antenna and is the most basic antenna; 
see Fig. 1-6. How much smaller than a wavelength an electrically small antenna 
must be depends on the application, but generally is taken to be on the order of a 
tenth of a wavelength in extent or less. We have already encountered two electrically 
small antennas in Chap. 1, the ideal dipole and the short dipole. We revisit these 
dipoles in their practical forms in this section. 

Electrical size and physical size can be quite different. An antenna operating at 
low frequencies can be physically large but electrically small, that is, a small fraction 
of a wavelength in extent. This is especially true for frequencies in the low MHz 
range and below. Electrically small antennas are inherently inefficient. However, 
this often is not a serious problem in receiving systems and physically small antennas 
offer the advantages in size, weight, cost, and portability. 

The simplest electrically small antenna is the short dipole shown in Fig. 2-1a as a 
wire with a feed point in the center. It has been suggested that the resemblance of 
the arms of the dipole to the feelers, or antennae, of an insect leads to the use of 
the name antenna [1]. The current distribution of the short dipole is nearly triangular 
in shape as modeled in Fig. 1-20b. This is because the current distribution on thin 
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z 

GJ I---~l(z) 

(a) (b) 

Figure 2-1 Short dipole, .:1z « A. 
(a) Current on the antenna and the electric fields surrounding it. 
(b) Current and charge distributions. 

wire antennas (diameter « A) is approximately sinusoidal and also must be zero 
at the wire ends. Since the arms of the short dipole are a fraction of a wavelength 
long, only a small portion of the sine wave current appears on the arm and is there
fore nearly linear. 

The decreasing current toward the wire ends requires that charges peel off and 
appear on the wire surface as shown in Fig. 2-1a. The current and charge distribu
tions shown in Fig. 2-1h are for an instant of time when the input current at the 
dipole terminals is maximum. Since the input current is changing sinusoidally with 
time, the current and charge distributions on the dipole do also. This charge accu
mulation leads to a displacement current density jweE in the space surrounding the 
dipole. The displacement current density, in turn, gives rise to an electromagnetic 
wave that propagates outward from the source as illustrated in Fig. 1-4. Displace
ment current in space couples a transmitting antenna to a receiving antenna, much 
as a conduction current provides coupling between lumped elements in a circuit. 
The radiation pattern of all forms of the electrically small dipole (with its radiating 
portion along the z-axis) is sin () as shown in Fig. 1-10. 

In the ideal dipole, all charge accumulates at the ends of the antenna. In fact, the 
ideal dipole can be analyzed as either a uniform current or two point charges os
cillating at radian frequency w (see Prob. 2.1-1) as shown in Fig. 2-2. The charge 
dipole model shows that charge accumulates at the ends of the antenna, leading to 
a higher radiation resistance. In fact, the ideal dipole radiation resistance of (1-172) 
is four times that of the short dipole given by (1-177). 

The input reactance of a short dipole is capacitive. This can be seen by visualizing 
the antenna as an open-circuited transmission line as in Fig. 1-3. When the distance 

• _qej(J)t 

(a) (b) 

Figure 2·2 Ideal dipole models. (a) Uniform 
current model. (b) charge dipole model with 
1= jwq. 
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from the end of the antenna to the feed point is much less than a quarter wavelength, 
the input impedance is capacitive, since from transmission line theory the impedance 
a distance s from an open-circuit termination is -jZo cos({3s). Simple transmission 
line theory only gives qualitative results when radiation is present. An approximate 
expression for the capacitive reactance of the short dipole is given in (1-185). Mo
ment method computation techniques are used for accurate impedance evaluation; 
see Sec. 10.5. Loading coils are frequently used to tune out this capacitance. 

The larger radiation resistance associated with the uniform current of the ideal 
dipole can be realized in practice by providing a mechanism for charge accumulation 
at the wire ends. One method of accomplishing this is to place metal plates at the 
ends of the wire. This is called a capacitor-plate antenna, or top-hat-Ioaded dipole 
antenna. Figure 2-3 shows the construction of the antenna and the current and 
charges on it. If Az « A, the radial currents on the plates will produce fields that 
almost cancel in the far field, since the currents are opposite-directed and the phase 
difference due to separation is small ({3 Az « 21T). If, in addition, Az « Ar, the 
plates will provide for charge storage such that the current on the wire is constant. 
The capacitor-plate antenna then closely approximates the uniform current ideal 
dipole model. Frequently in practice, radial wires are used for the to.p loading in 
place of the solid plates. 

Another small antenna used to approximate the ideal dipole is the transmission 
line loaded antenna as shown in Fig. 2-4a. The results of transmission line theory 
can be borrowed to determine the current distribution. The current is essentially 
sinusoidal along the wire with a zero at the ends. This current distribution is 
sketched in Fig. 2-4b for L < Al4. If Az « A, the fields from the currents on the 
horizontal wires essentially cancel in the far field. If also Az « L, the horizontal 
wires provide an effective place for the charge to be stored and the current on the 
vertical section is nearly constant as illustrated in Fig. 2-4b. Then radiation comes 
from a short section over which the current is nearly constant and the antenna 
approximates an ideal dipole. 

The monopole form of the transmission line loaded dipole shown in Fig. 2-4c is 
called the inverted-L antenna. The inverted-L and variations of it such as the 
inverted-F antenna are popular in small handheld radio units [2]. 

Transmission line loading ideas can be extended by attaching several horizontal 
wires to the ends of the short vertical section. If the transmission lines of Fig. 2-4a 

1 
~ 

Figure 2-3 Capacitor-plate antenna. The arrows on the antenna 
indicate current. The charges on the plates are also shown. 
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(a) Transmission line loaded dipole (b) Current on the transmission line loaded dipole with 

the wire folded out. The dashed line indicates current 
on the horizontal section. 
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(c) The inverted-L antenna 

Figure 2-4 Transmission line loaded antennas. 

are extended in opposite directions, the reactance is one-half its former value (by 
paralleling identical capacitive elements). As more wires are added, the reactance 
is further reduced and the structure approaches that of a capacitor-plate antenna. 

At different portions of the frequency spectrum, electrically small antennas are 
used for different reasons. For instance, in the VLF region where wavelength is very 
large, an electrically short vertical radiator is used with a large-top hat load. The 
top-hat loading makes the antenna appear like the capacitor-plate antenna of Fig. 
2-3. Further up the spectrum, such as in the AM broadcast band, receiving antennas 
are usually small electrically, as we saw in Section 1.9. AM transmitting antennas 
are not small, but are of resonant size as discussed in the next section. At VHF 
frequencies and above, electrically small antennas are only used in special situations. 

2.2 DIPOLES 

A very widely used antenna is the half-wave dipole antenna. It is a linear current 
whose amplitude varies as one-half of a sine wave with a maximum at the center. 
For simplicity, we will assume this to be a filament of current. Also, it could be 
imagined to flow on an infinitely thin, perfectly conducting, half-wavelength long 
wire. This is a good approximation of a wire half-wave dipole that has a diameter 
much smaller than its length. The advantage of a half-wave dipole is that it can be 
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made to resonate and present a zero input reactance, thus eliminating the need for 
tuning to achieve a conjugate impedance match. Input impedance of dipole anten
nas is discussed in detail in Section 5.1, but for now we point out that to obtain a 
resonant condition for a half-wave dipole, the physical length must be somewhat 
shorter than a free space half-wavelength, and as the antenna wire thickness is 
increased, the length must be reduced more to achieve resonance. 

As usual, the current distribution is placed along the z-axis and for the half-sine 
wave current on the half-wave dipole, the current distribution is written as 

A Izl :5-
4 

(2-1) 

where {3 = 27TtA. This current goes to zero at the ends (for z ±Al4) and its 
maximum value 1m occurs at the center (z = 0) as shown in Fig. 2-5a. From this 
current, we can calculate the radiation pattern. Since it is a z-directed line source, 
we can use (1-103) in (1-106) to find the electric field as 

-if3r f E9 = jwp.. sin 0 e__ I(z ')ejf3z · cos 9 dz' 
47Tr 

(2-2) 

Substituting (2-1) into the integral of (2-2) and evaluating gives 

fun = J I(Z')eif3Z' cos 9 dz' = f~~4 1m sin(~ - {3lz'l)eif3z, cos 9 dz' 

= I fO sin(~ + {3z')eif3Z'COSfJ dz' 
m -M4 2 

+ 1m JO
M4 

Sin(~ - (3z')eif3Z'COSfJ dz' (2-3) 

where fun is the unnormalized pattern factor. Using the integral (F-ll) 

J sin(a + bx)eCX dx = b2 e: c?- [c sin(a + bx) - b cos(a + bx)] (2-4) 

in (2-3), we have 

0"' fJ [ ( ) ( )]0 &~COS . 7T 7T 
fun = 1m 2 _ 2 2 j{3 COS 0 sin -2 + {3z' - {3 cos -2 + {3z' 

{3 {3 cos 0 -A/4 

&~COS 7T 7T 
0"' fJ [ ( ) ( )]M4 + 1m {32 _ {32 cos2 0 j{3 cos 0 sin "2 - {3z' + {3 cos "2 - (3z' 0 

I,:, [j{3 cos 0 - e-i(7r/2)cosfJ(_{3) + ei(7r/2)COSfJ({3) - j{3 cos 0] 
(32 sm2 0 

1m (7T) = (3 sin2 0 2 cos "2 cos 0 (2-5) 

Substituting this into (2-2) gives 

E . 21m e-i /3r • 0 cos[( 7Tt2) cosO] 
fJ = ,wp.. 7 47Tr sm sin2 0 (2-6) 
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Figure 2·5 The half-wave dipole. 
(a) Current distribution I(z). 
(b) Radiation pattern F«(J). 

In this expression, we can identify the element factor g( 0) = sin 0 and the normalized 
pattern factor 

f(O) = cos[(?T!2) cos 0] 
sm2 0 

(2-7) 

Both g(O) and f(O) are maximum for 0 = ?T/2 and have a value of unity there. The 
complete (normalized) far-field pattern is then [see (1-115)] 

F(O) = g(O)f(O) = cos[( ?T:2) cos 0] half-wave. dipole (2-8) 
sm () 

This pattern is plotted in Fig. 2-5b in linear, polar form. The input impedance of an 
infinitely thin half-wavelength dipole is 73 + j42.5 n. If it is slightly reduced in length 
to achieve resonance, the input impedance is about 70 + jO n. 

So far, we have introduced three dipole antennas: the ideal, short, and half-wave 
dipoles. The characteristics and performance of these dipoles are listed in Fig. 2-6. 
The ideal and short dipoles, with uniform and triangular current distributions, re
spectively, have identical patterns. Both have a half-power beamwidth of 90° and a 
directivity of 1.5; see Fig. 1-10. The half-wave dipole has a narrower beamwidth of 
78°, and, thus, a higher directivity value of 1.64, which will be derived in Sec. 5.1. 

In Section 2.1, we briefly discussed one viewpoint on the phenomena of radiation. 
We are now ready to discuss another viewpoint in which the fields in space are 
considered to be produced by currents and charges on the antenna. We know that 
in a complete system at any instant of time there must be equal numbers of positive 
and negative charges, and if these were static fields (i.e., zero frequency and infinite 
wavelength), the fields at a great distance from the positive and negative sources 
would cancel. However, when the distance between positive and negative oscillating 
sources becomes a significant fraction of a wavelength, the phase shift (or retarda
tion) due to different path lengths from positive and negative sources to an obser
vation point prevents cancellation. In the case of the half-wave dipole, the current 
is essentially in phase and radiation will be strongest in a direction normal to the 
dipole and weakest along the axis of the dipole. For longer dipoles, the current on 
some sections of the dipole will be out of phase with others, leading to partial or 
total cancellation in the far field in the broadside direction and reinforcement in 
off-broadside directions; see Figs. 5-3 and 5-4. This explains why most practical wire 
antennas are on the order of a wavelength or less in size. 
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Figure 2·6 Characteristics and performance of some dipole antennas. 
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2.3 ANTENNAS ABOVE A PERFECT GROUND PLANE 

Our treatment of antennas thus far has been for a free space environment. In prac
tice, environmental effects are small for elevated high gain antennas. However, the 
radiation properties of antennas with broad beams are affected by their surrounding 
environment. Both the pattern and impedance are influenced by the presence of 
nearby objects. The most commonly encountered object is a ground plane. The real 
earth is a ground plane and is discussed in Sec. 5.6. The ideal form of a ground 
plane is planar, infinite in extent, and perfectly conducting, and is referred to as a 
perfect ground plane. The perfectly conducting assumption is very mild and any 
good conductor such as aluminum or copper is very accurately modeled as a perfect 
conductor. The infinite extent assumption is more severe. Accurate evaluation of a 
finite-sized ground plane can be found from the moment method or geometrical 
theory of diffraction techniques, which are discussed in Chaps. 10 and 12. In most 
cases, a perfect ground plane is well approximated by a solid metal plate or a planar 
wire grid system that is large compared to the size of the antenna, if the antenna is 
not far from the conducting plane. In this section, we present image theory to model 
an antenna operating in the presence of a perfect ground plane and apply the theory 
to monopole antennas. 

2.3.1 Image Theory 

An antenna operating in the presence of a perfect ground plane produces two rays 
at each observation angle, a direct ray from the antenna and a second ray due to 
reflection from the ground plane such that Snell's law of reflection is satisfied. This 
is the approach used in Sec. 5.6 to analyze antennas above perfect and imperfect 
ground planes. Here, we develop the solution from first principles and it will be 
seen that the image antenna acts as an equivalent source for the reflected ray. 

Consider first an ideal dipole near a perfect ground plane and oriented perpen
dicular to the ground plane as shown in Fig. 2-7a. Ground planes are usually hori
zontal, so this situation is referred to as a vertical ideal dipole above a perfect ground 
plane. We wish to find the fields E and H above the plane PP'. The uniqueness of 
the solution to a differential equation (the wave equation) plus its boundary con
ditions permits introduction of an equivalent system that is different below PP' but 
satisfies the same boundary conditions on PP' and has the same sources above PP'. 
Such an equivalent system, which produces the same fields above PP' as the original 
system, has an image source the same distance below the plane PP' and similarly 
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(a) Physical model. (b) Equivalent model using image theory. 

Figure 2-7 Ideal dipole above and perpendicular to a perfectly conducting ground plane. 
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directed. In this case, the image source is the virtual ideal dipole as shown in Fig. 
2-7b. 

It is a simple matter to prove that the boundary condition of zero tangential 
electric field along plane PP' is satisfied by this source configuration. To do this, we 
examine the electric field expression for an ideal dipole given by (1-71b). The com
plete expression must be used because the ground plane can be, and usually is, in 
the near field of the antenna. The radial component varies as cos () and the 
()..component varies as sin (), where () is the angle from the axis along the direction 
of the current element. Let ()l and ()2 be the angles from the line of the current 
elements to a point on the plane PP' for the primary source and its image, respec
tively. The radial components from the sources are then 

E,l = C cos ()l 

ErZ = C cos ()2 

(2-9) 

(2-10) 

The constant C is the same for each field component since the amplitude of the 
sources is the same and points on the boundary are equidistant from the current 
elements. From Fig. 2-8a we see that 

so, 

E,l = C cos(180° - ()2) = -C cos ()2 

Comparing this to (2-10), we see that 

along boundary 

(2-11) 

(2-12) 

(2-13) 

Thus along the plane PP', the radial components are equal in magnitude and op
posite in phase. ErZ is directed radially out from the image source since ()2 is less 
than 90°, and then cos ()2 is positive. On the other hand, E,l is radially inward toward 
the primary source since (2-12) is negative. Figure 2-Sa illustrates this and shows 
that the projections of each along PP' will cancel. A similar line of reasoning for 
the ()..components leads to 

EOl = D sin ()l = D sin ()2 

E/J2 = D sin ()2 

t t 

(2-14) 

(2-15) 

d 1 " I Cancel 
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d 01 02 

~ t 
(a) Radial components (b) Theta components 

Figure 2-8 The ideal dipole and its image in a ground plane of Fig. 2-7. The source and its 
image acting together give zero tangential electric field intensity along the plane PP' 
where the original perfect ground plane was located. 
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(a) Physical model. (b) Equivalent model using image theory. 

Figure 2·9 Ideal dipole above and parallel to a perfect ground plane. 

where D is a constant and thus 

E61 = EIJ2 along boundary (2-16) 

Figure 2-8b demonstrates that the net projection of these O-components along plane 
PP' is zero. 

We have shown that the total tangential electric field intensity is zero along the 
image plane PP' for an ideal dipole perpendicular to the plane and its image was 
acting together. Therefore, since the source configuration above the plane and the 
boundary conditions were not altered, the system of Fig. 2-7b is equivalent to the 
original problem of Fig. 2-7 a. The systems are equivalent in the sense that the fields 
above the plane PP' are identical. The above derivation can be reversed by starting 
with the two sources of Fig. 2-7b and then introducing a perfect ground plane with 
its surface along plane PP', thus arriving at Fig. 2-7a. The essential feature to re
member is that the fields above a perfect ground plane from a primary source acting 
in the presence of the perfect ground plane are found by summing the contributions 
of the primary source and its image, each acting in free space. 

An ideal dipole oriented parailel to a perfect ground plane (i.e., horizontal) has 
an image that again is equidistant below the image plane, but in this case the image 
is oppositely directed as shown in Fig. 2-9. The equivalent model of Fig. 2-9b, which 
gives the same fields above plane PP' as the physical model of Fig. 2-9a, can be 
proven by simple sketches similar to those of Fig. 2-8. 

The image of a current element oriented in any direction with respect to a perfect 
ground plane can be found by decomposing it into perpendicular and parallel com
ponents, forming the images of the components, and constructing the image from 
these image components. An example is shown in Fig. 2-10. The image of an arbi
trary current distribution is obtained in a similar fashion. The current is decomposed 
into perpendicular and parallel current elements whose images are readily found. 
The image current distribution is then the vector sum of these image current 
elements. 

+19N"**! M' •• ". 

'/ f4--
(a) Physical model. (b) Equivalent model using image theory. 

Figure 2·10 Ideal dipole above and obliquely oriented relative to a perfect ground plane. 
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2.3.2 Monopoles 

The principles of image theory are illustrated in this section with several forms of 
the monopole antenna. A monopole is a dipole that has been divided in half at its 
center feed point and fed against a ground plane. Three monopoles and their images 
in a perfect ground plane are shown in Fig. 2-11. High-frequency monopoles are 
often fed from coaxial cables behind the ground plane as shown in Fig. 2-12a. 

The currents and charges on a monopole are the same as on the upper half of its 
dipole counterpart, but the terminal voltage is only half that of the dipole. The 
voltage is half because the gap width of the input terminals is half that of the dipole, 
and the same electric field over half the distance gives half the voltage. The input 
impedance for a monopole is therefore half that of its dipole counterpart, or 

Z - VA,mono 
A,mono - I 

A,mono 

~ VA,dipole _ 1 Z 
I - -2 A,diople 

A,dipole 
(2-17) 

This is easily demonstrated for the radiation resistance. Since the fields only extend 
over a hemisphere, the power radiated is only half that of a dipole with the same 
current. Therefore, the radiation resistance of a monopole is given by 

R P mono 
r,mono = !II 12 

2 A,mono 

~Pdipole _! 
!II . 12 - 2 Rr,dipole 
2 A,dipole 

For example, the radiation resistance of a short monopole is from (1-177) 

(2-18) 

Rr,mono = 407T2(~) 
2 

for h « A (2-19) 

where h is the length of the monopole and az = 2h. 
The radiation pattern of a monopole above a perfect ground plane, as in Fig. 

2-12, is the same as that of a dipole similarly positioned in free space since the fields 
above the image plane are the same. Therefore, a monopole fed against a perfect 
ground plane radiates one-half the total power of a similar dipole in free space 
because the power is distributed in the same fashion but only over half as much 

# ¥, 4 

l 
I 

;:*~ 
(a) Monopole anrenna (b) Capacitor plare monopole 

• • 

- -4-, 
l 
.----<---~--. 

(c) Transmission line monopole 

Figure 2-11 Monopole antennas over perfect ground planes with their images (dashed). 
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(a) Monopole fed against a large 
solid ground plane. 

Short monopole current 

_I Quarter-wave 
I ,~, monopole current 

I " : <It>--Image currents 

I " 1// 
I',' If; 

(b) Equivalent dipole model 
shown with currents. 

(c) Practical monopole antenna with radial wires to simulate a groun,d plane. 

Figure 2-12 Monopole antennas fed against a ground plane with a coaxial cable. 

space. As a result, the beam solid angle of a monopole above a perfect ground plane 
is one-half that of a similar dipole in free space, leading to a doubling of the direc
tivity: 

41T 
Dmono = n 

:A,mono 

41T in = 2Ddipole 
2 :A,dipole 

(2-20) 

This can be shown in another way. If a dipole in free space has a maximum radiation 
intensity of Urn, a monopole of half the length above a perfect ground plane with 
the same current will have same value of Urn since the fields are the same. The total 
radiated power for the dipole is P, so the power radiated from the monopole is !P. 
The directivity from (1-145) for the two antennas is 

and 

_ Urn _ Urn 
Ddipole - Uave - P/41T 

Urn 
Dmono = !P/41T = 2Ddipole 

(2-21) 

(2-22) 

The directivity increase does not come from an increase in the radiation intensity 
(and, hence, field intensity) but rather from a decrease in average radiation intensity. 
This, in tum, comes about because only half the power radiated by a dipole 
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ill 
(a) Monopole with insulators to 

reduce currents in guys 
(b) Umbrella-loaded monopole 

Figure 2-13 Monopoles with supporting guy wires. 

is radiated by a monopole. The directivity of a short monopole, for example, is 
2(1.5) = 3. 

The directivity of a quarter-wave monopole is twice that of a half-wave dipole in 
free space; that is, from Fig. 2-6 and (2-22) 

D = 2(1.64) = 3.28 = 5.16 dB Al4-monopole (2-23) 

The input impedance of an infinitesimally thin quarter-wave monopole from Fig. 2-
6 and (2-17) is 

ZA = ~ (72 + j42.5) = 36 + 1'21.3 n Al4-monopole (2-24) 

At low frequencies, a monopole that is a quarter wavelength long or less can be 
rather large physically. For example, in the standard AM broadcast band at 1 MHz, 
the wavelength is 300 m, and a quarter-wave monopole is 75 m tall. Such a large 
structure is usually not self-supporting, and guy wires are employed for support. 
Currents can exist in these guy wires in a downward direction tending to cancel the 
effect of the vertical element. Insulators are added to break up these currents, as in 
Fig. 2-13. 

H currents are allowed to continue from the monopole out onto the guys, there 
is a partial top-loading effect for towers shorter than a quarter wavelength, thereby 
increasing the radiation resistance. See Fig. 2-13b. The loading is usually not enough 
to give uniform current on the vertical member. Also, the downward angle of the 
guys gives a slight canceling of the fields from the vertical current. For a comparable
length monopole, the umbrella-loaded version has a lower radiation resistance than 
the capacitor-plate monopole. Experimental data are available in the literature for 
umbrella-loaded monopoles [3]. 

2.4 SMALL LOOP ANTENNAS 

A closed loop current whose maximum dimension is less than about a tenth of a 
wavelength is called a small loop antenna. Again, small is interpreted as meaning 
electrically small, or small compared to a wavelength. In this section, we use two 
methods to solve for the radiation properties of small loop antennas. First, we show 
that the small loop is the dual of an ideal dipole, and by observing the duality 
contained in Maxwell's equations, we use the results previously derived for the ideal 
dipole to write the fields of a small loop. Next, we derive the fields of a small loop 
directly and show that the results are the same as those obtained using duality. 

2.4.1 Duality 

Frequently, an antenna problem arises for which the structure is the dual of an 
antenna whose solution is known. H antenna structures are duals, it is possible to 



2.4 Small Loop Antennas 69 

R L 

(a) Original network (b) Dual network 

Figure 2-14 Dual networks: I (=) V, G (=) R, C (=) L. 

write the fields for one antenna from the field expressions of the other by inter
changing parameters using the principle of duality. Before examining the small loop, 
we discuss the general principle of duality as applied to antennas. 

Dual antenna structures are similar to dual networks. For example, consider a 
simple network of a voltage source applied to a series connection of a resistor R 
and an inductor L as in Fig. 2-14a. The dual network of Fig. 2-14b is a current source 
1(=) V applied to the parallel combination of conductance G ( = ) R and capacitance 
C (=) L. The symbol "( =)" means replace the quantity on the left with the quantity 
on the right, much as the equal sign in a computer program statement. Since the 
networks are duals, the solutions are duals. In this example, the original series net
work can be described by the mesh equation 

V = RI + jwLI (2-25) 

The dual of this mesh equation is a node equation obtained by replacing V by I, R 
by G, and L by C. The node equation for the dual parallel network is then 

1= GV + jwCV (2-26) 

Returning to the antenna problem, suppose we have an electric current source 
with current density J1 and boundary conditions on materials present (8h ILh (T1)' 
Maxwell's equations for this system from (1-16) and (1-15) are 

v X E1 = -jwIL1H1 

V X H1 = jW8~E1 + J1 

(2-27) 

(2-28) 

where E1 and H1 are the fields generated by J1 with materials (8h ILh (Tl) present. 
Now suppose a fictitious magnetic current source with magnetic current density M2 
exists with materials (82, JL2, (T2) present. Maxwell's equations for this system from 
(1-15) and (1-21) are 

V X H2 = jW82E2 

V X E2 = -jWJL2H2 - M2 

where E2 and H2 are the fields arising from M2. 

(2-29) 

(2-30) 

The electric and magnetic systems are duals if the procedure in Table 2-1 can be 
performed. This is easy to demonstrate. To see if (2-29) and (2-30) are the duals of 
(2-27) and (2-28), we substitute the quantities in the left-hand column of Table 2-1 
into (2-29) and (2-30) for the corresponding quantities of the right-hand column. 
This yields 

V X E1 = jWIL1( -H1) 

V x (-HI) = -jw8~E1 - J1 

(2-31) 

(2-32) 
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Table 2-1 Dual Radiating Systems. 
Radiating System #1 with Electric Currents 

and System #2 with Magnetic Currents 
Are Duals If One Can: 

Replace the Following 
in System #2 

By the Following 
in System #1 

Thus, the equations of the electric system, (2-27) and (2-28), are dual to the equa
tions of the magnetic system, (2-29) and (2-30), just as (2-25) and (2-26) are dual 
equations. Since the equations of the systems are dual, the solutions will be also. 
Before illustrating this, we summarize the principle of duality: 

If the sources of two systems are duals, that is, 

M2 (=) J1 (2-33) 

and if the boundary conditions are also dual, l that is, 

JL2 (=) 81, 82 (=) JL1 (2-34) 

then the fields of system #2 can be found from the solution of system #1 by the 
substitutions 

(2-35) 

in the field expressions for system #1 along with the substitutions in (2-34). 
Now we use duality to find the fields of a small current loop from a knowledge 

of the fields of an ideal electric dipole. A current loop can be represented as a 
fictitious (ideal) magnetic dipole with uniform magnetic current r and length Az. 
The sources are duals as required by (2-33) if we let 

(2-36) 

where r is the current of an ideal electric dipole bf length Az. Since no materials 
are present, there are no boundary conditions. The ideal electric dipole has field. 
solutions of the form 

E1 = Em9 + Er1r 

HI = H"'l~ 
The fields of the dual magnetic dipole are then found from (2-35) as 

~ (=) -HI = -H"'l~ 

H2 (=) El = E819 + Er1r 

(2-37) 

(2-38) 

(2-39) 

(2-40) 

1Note that 81 = 81 - j( U1/w). If magnetic conductors of magnetic conductivity u!J.' were assumed to exist 
in system #2, then fL2 would become JL2 = f.L2 - j(u!J.'lw) and 81 would be replaced by 11-2, or equivalently 
U1 replaced by u!J.'. 



(a) Small current loop and 
equivalent magnetic dipole. 

( b) Ideal electric dipole. 
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Figure 2-15 Radiation field 
components of ideal magnetic and 
electric dipoles. 

if we make the substitutions 

JLz = f.L (=) Bi = Band B2 = B (=) f.Ll = f.L (2-41) 

which follow from (2-34) and the fact that in both systems the surrounding medium 
is a homogeneous material of f.L and B. Note that f3 remains the same since replacing 
f.L by Band B by f.L in wYiU: yields w-vep:.Now, using (2-36) and (2-41) in the ideal 
electric dipole field expressions of (1-71) together with (2-39) and (2-40) gives 

1m az ( 1 ) e-i{jr A 

E2 = --- jf3 1 + -. - sin 0<1» (2-42) 
47T Jf3r r 

1m az. [ 1 1 ] e-i{jr. A 

H2 = 4;- JWB 1 + jf3r + (jf3r)2 -r- sm 06 

1m az [ 1 1 ] e-i{jr 
+ z:;;:- jWB jf3r + (jf3r)2 -r- cos Or (2-43) 

These are the complete field expressions (valid in the near-field region) for a small 
loop of electric current. The far-field components are obtained by retaining only 
those terms that vary as r-l, giving 

e-i{jr A 

E2 = -1m aZ jf3 -4 - sin 0<1» (2-44) 
7Tr 

e-i{jr A 

H2 = 1m aZ jWB -4- sin 06 
7Tr 

(2-45) 

These radiation fields as well as those of the ideal electric dipole are shown in Fig. 
2-15. Both antennas have the same radiation pattern, sin o. The magnetic field 
component H", of the ideal electric dipole is easily remembered by use of the right
hand rule. Place the thumb of your right hand along the current of the dipole and 
pointing in the direction of current flow. Your fingers will then ~ur1 in the direction 
of the magnetic field. This statement is implicit in Ampere's law of (2-28). A similar 
relationship holds for the magnetic dipole, except the left-hand rule is used and the 
field obtained is the electric field component - E",. This follows fr~m (2-30). Another 
realization for a magnetic dipole in addition to the small loop is a narrow slot in a 
ground plane, whose fields can be found from an equivalent magnetic current along 
the long axis of the slot. 

2.4.2 The Small Loop Antenna 

Using duality, we found the field expressions for a small loop of uniform current. 
However, these expressions contain the equivalent magnetic dipole current ampli-
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tude 1m. By solving the small loop problem directly, we can establish the relationship 
between the current 1 in the loop and 1m. This can be accomplished by dealing only 
with the far-field region. 

It turns out that the radiation fields of small loops are independent of the shape 
of the loop and depend only on the area of the loop. Therefore, we will select a 
square loop as shown in Fig. 2-16a to simplify the mathematics. The current has 
constant amplitude 1 and zero phase around the loop. Each side of the square loop 
is a short uniform electric current segment that is modeled as an ideal dipole. The 
two sides parallel to the x-axis have a total vector potential that is x-directed and is 
given by 

(2-46) 

which follows from (1-62). The minus sign in the second term arises because the 
current in side 3 is negative x-directed. Similarly for sides 2 and 4, we find 

(2-47) 

The far-field approximation is that the distances used for amplitude variations are 
nearly equal (i.e., Rl "'" R2 "'" R3 "'" R4 "'" r) and the phase differences are found 
from assuming parallel rays emanating from each side. By comparing the parallel 
path lengths, we find from geometrical considerations that 

z 
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(a) Geometry for a square loop. 

, , , ... 

Figure 2·16 The small loop antenna. 

R2 = r - !.. sin () cos 4> 
2 

R4 = r + ~sin ()cos 4> 

z 

(b) Small loop radiation pattern. 

(2-48) 
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Substituting these into the exponents and r into the denominators of (2-46) and 
(2-47), we have 

or 

pJf -j(3r 
Ax = e (e-1(3(l/2) sin IJsin</> _ e+j(3(l/2)SinlJsin</» 

4'7Tr 

pJf -j{3r 
A = e (e+i(3(l/2) sin IJcos </> _ e-j(3(l/2) sin IJcos </» 

y 4'7Tr 

Ax = -2j JLI:::{3r Sin(~f sin 0 sin cp ) 

Ay = 2j JLI:::{3r sin(~f sin 0 cos cp ) 
(2-49) 

Since the loop is small compared to a wavelength, {3f = 2'7Tfl A is also small and the 
sine functions in (2-49) can be replaced by their arguments, giving 

.. l -j{3r 
Ax = -j _t-W_,e_ {3f2 sin 0 sin cp 

4'7Tr 

pJ, -j(3r 

A = j _e_ {3f2 sin 0 cos cp 
y 4'7Tr 

Combining components to form the total vector potential gives 
pJ, -j{3r 

A = Axx + AyY = j{3f2 -4
e 

sin 0 (-sin cpx + cos cpy) 
'7Tr 

The term in parentheses is the unit vector cj, in (C-6), so 

pJe-j(3r A 

A = j{3S -4-- sin O~ 
'7Tr 

(2-50) 

(2-51) 

(2-52) 

where S is the area of the loop. All of A is transverse to the direction of propagation, 
so the radiation electric field from (1-104) is -jwA, giving 

Ie-j(3r A 

E = 'T1{32S -4- sin O~ (2-53) 
'7Tr 

since WJL{3 = lll-JLv;;B = ViiJi:lll-JLB = 'T1{32. The radiation magnetic field is 

1 Ie-j(3r A 

H = - i X E = _(32s -- sin Of) (2-54) 
'T1 4'7Tr 

Comparing (2-53) or (2-54) to the magnetic dipole radiation fields of (2-44) or 
(2-45), we find that 

(2-55) 

This completes the relationship between the small current loop and its equivalent 
magnetic dipole. The complete field expressions for a small loop of magnetic mo
ment IS are found from (2-42) and (2-43) using (2-55). The fields depend only on 
the magnetic moment (current and area) and not the loop shape. And the radiation 
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pattern for a small loop, independent of its shape, equals that of an ideal electric 
dipole; see Fig. 2-16b. The radiation fields from a large loop are derived in Sec. 5.7. 

The loop antenna has been used since Hertz first used it as a receiver in his 
experiments in 1888. It has an omnidirectional doughnut radiation pattern that is 
needed in many applications. The horizontal small loop (in the xy-plane) and ver
tical (z-directed) short dipole both have uniform radiation in the horizontal (xy) 
plane, but the loop provides horizontal polarization (E",), whereas the dipole is 
vertically polarized (Ee). We now discuss the impedance properties of the small 
loop and introduce the multiturn loop and ferrite core loop. 

The impedance of a small loop antenna is quite different from its ideal dipole 
dual. Whereas the ideal dipole is capacitive, the small loop is inductive. We discuss 
the input resistance first. The radiation resistance is found by calculating the power 
radiated using the small loop radiation fields with (1-128), which yields 

(2-56) 

The radiation resistance is then 

R = 2P = 20({32S)2 = 31 200(!...)2 n 
r ]2 , >.? (2-57) 

This result provides a reasonable approximation to the radiation resistance of an 
actual small loop antenna for a loop perimeter less than about three-tenths of a 
wavelength. 

The radiation resistance of a loop antenna can be increased significantly by using 
multiple turns. The magnetic moment of an N tum loop is N]S, where S is the area 
of a single tum. The radiation resistance is then 

Rr = 20({32NS)2 = 31'200(~~)2 n (2-58) 

The radiation resistance thus goes up as N 2
• Another way to enhance the radiation 

resistance is to wind the loop turns around a ferrite core. A ferrite core of effective 
relative permeability /Leff has a phase constant of {3 = wvIU: = wv' /Lo8o ~ = 
(2'TTI A )~, where A is the free-space wavelength. The relative effective perme
ability depends on the core size and shape and is usually less than the relative 
permeablity of the core material [4]. The radiation resistance of a coil of N turns 
wound on a ferrite core is then 

Rr = 31,200 ( N /Leff :2)

2 

n (2-59) 

A multiturn loop wound on a linear ferrite core is referred to as a loop-stick antenna. 
It is a commonly used low-frequency receiving antenna. For example, it is used with 
most AM broadcast receivers. At frequencies around 1 MHz (e.g., the AM broad
cast band), the recommended ferrite material with /Lr = 100 has an effective relative 
permeability of 40. 

Small loop antennas also have considerable ohmic resistance. For a rectangular 
loop of wire fl by f2' the ohmic resistance of the wire is given approximately by 

2flf2 {1 1} 
Rw = 'TTd2 Rs [(fl/2a)2 _ 1]112 + [(f2/2a? _ 1]112 (2-60) 
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where a is the wire radius and Rs is the surface resistance of (1-176). If £1 and £2 
are much larger than a (Le., the wire is thin), then (2-60) reduces to 

R = 2(£1 + £2) R 
w 21Ta s 

(2-61) 

This formula can be generalized to loops of arbitrary shape as follows: 

(2-62) 

where Lm is the mean length of the wire loop. For a circular loop, this becomes 

circular loop (2-63) 

where b is the mean loop radius and a is the wire radius; see (1-175). 
As mentioned previously, the small loop antenna is inherently inductive. The 

inductance of a small £1 by £2 rectangular loop is given by 

L = ;(£2 cosh-1 ~ + £1 cosh-1 ~) rectangular loop (2-64) 

For a small circular loop of radius b, the inductance for a « b is [5] 

circular loop (2-65) 

Small loop antennas have several applications. The small loop is very popular as 
a receiving antenna. For example, single turn small loop antennas are used in pagers. 
Multiturn small loops are popular in AM broadcast receivers. Small loop antennas 
are also used in direction-finding receivers and for field strength probes. 

Radiation resistance decreases much faster with decreasing frequency for a small 
loop (f-4) than for a short dipole (f-2). Multiturn loops are used to increase radi
ation resistance; see (2-59). However, loss and inductance of an N turn loop must 
be multiplied by N 2

• But wire losses can be reduced by decreasing the number of 
turns in a loop and using a ferrite core to maintain radiation resistance. In practice, 
a variable capacitor is used to tune out inductance by placing it in parallel with the 
loop. This section is concluded with an example to illustrate numerical results. 

A Small Circular Loop Antenna 

To illustrate the impedance calculations for small loop antennas, consider a circular loop 
with a mean loop circumference of 0.2,\ and a wire radius of O.oolA. Then b = O.lAhr and 
a = O.oolA in (2-57) yields the radiation resistance as 

R = 31 2oo('1I"b
2)2 = 31 200(°·01)2 = 0316 n (2-66) 

r ',\2 ' '11" . 

The reactance from (2-65) is 

Xin = wL = 2'11" * bJL[ In(8:) - 1.75] (2-67) 
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where c is the velocity of light. For an air-filled loop, /L = /Lo and then 

3 X 10
8 

O.lA [0.8 ] XA = 21T ----- 41T X 10-7 In -- - 1.75 = 285.8 n 
A 1T 0.0011T 

(2-68) 

To determine the ohmic resistance a frequency must be specified, say 1 MHz. (Note that the 
loop is physically large at 1 MHz, having a circumference of 60 m and a wire diameter of 
0.3 m.) Further suppose the wire is copper, and then /L = /Lo and (T = 5.7 X 107 Slm in (1-
176) gives 

And from (2-63), 

41T X 10-
7 

• 21T X 10
6 

= 2.63 X 10-4 n 
2·5.7 X 107 

b 0.1 4 3 
Rw = ; Rs = O.OOl1T 2.63 X 10- = 8.38 X 10- n 

Adding this to (2-66) gives the total input resistance 

RA = Rr + Rw = 0.324 n 
The input impedance is thus 

ZA = RA + jXA = 0.324 + j 285.8 n 
The radiation efficiency of this loop is 

. _ Rr _ 0.316 _ 0 

er - RA - 0.324 - 97.5 Yo 

2.5 ANTENNAS IN COMMUNICATION SYSTEMS 

(2-69) 

(2-70) 

(2-71) 

(2-72) 

(2-73) 

It is important to have an appre<;iation for the role played by antennas when they 
are employed in their primary application area of communication links. A simple 
communication link is shown in Fig. 2-17. We first discuss the basic properties of a 
receiving antenna. The receiving antenna with impedance ZA and terminated in 
load impedance ZL is modeled as shown in Fig. 2-18. The total power incident on 
the receiving antenna is found by summing up the incident power density over the 
"area" of the receive antenna, called effective aperture. How an antenna converts 
this incident power into available power at its terminals depends on the type of 
antenna used, its pointing direction, and polarization. In this section, we discuss the 
basic relationships for power calculations and illustrate their use in communication 
links. Additional details on communication links as well as the application areas of 
radiometry and radar are treated in Secs. 9.1 to 9.3. 

Directivity and Gain. For system calculations, it is usually easier to work with 
directivity rather than its equivalent, maximum effective aperture. The relation can 
be established by examining an infinitesimal dipole and generalizing. The maximum 
effective aperture of an ideal, lossless dipole of length az is found by orienting the 
dipole for maximum response, which is parallel to the incoming linearly polarized 
electric field Ei. Then the open circuit voltage is found from 

VA = Ei az ideal dipole receiving antenna (2-78) 

I Transmitter I--< >--i Receiver 

..., .. ---R--~) 
Figure 2-17 A communication 
link . 
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Figure 2-18 Equivalent circuit for a 
receiving antenna. (a) Receive 
antenna connected to a receiver 
with load impedance ZL' 

(b) Equivalent circuit. 

The power available from the antenna is realized when the antenna impedance is 
matched by a load impedance of ZL = Rr - jXA if we assume Rohmic = O. The 
maximum available power is then (see Sec. 9.1) 

(2-79) 

where (2-78) was used. The available power can also be calculated by examining 
the incident wave. The power density (Poynting vector magnitude) in the incoming 
wave is 

1 11Eil2 
S = - IE x H*I = - -

2 2 11 
(2-80) 

The available power is found using the maximum effective aperture A em , which is 
the collecting area of the antenna. The receiving antenna collects power from the 
incident wave in proportion to its maximum effective apertures: 

(2-81) 

The maximum available power PAm will be realized if the antenna is directed for 
maximum response, is polarization-matched to the wave, and is impedance-matched 
to its load. The "maximum" refers to the assumption that there are no ohmic losses 
on the antenna. 

Maximum effective aperture for the ideal dipole is found using (2-79) and (2-80) 
with (2-81): . 

1 WAI2 

A = PAm = 8 Rr =!!L IEin!~z)2 =!!L (a )2 = ! 11(az)2 
em S ! IEil2 4 Rr IEil2 4 Rr Z 4 2 (az)2 

211 113 7T T 

= :71'.,\.2 = 0.119"\.2 (2-82) 

where the ideal dipole radiation resistance value from (1-172) was used. The max
imum effective aperture of an ideal dipole is independent of its length az (as long 
as az « A). However, it is important to note that Rr is proportional to (azIA)2 so 
that even though Aem remains constant as the dipole is shortened, its radiation 
resistance decreases rapidly and it is more difficult to realize this maximum effective 
aperture because of the required conjugate impedance match of the receiver to the 
antenna. 
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The directivity of the ideal dipole can be written in the following manner: 

D = ~ = 47T ~ A2 
2 A2 87T 

ideal dipole 

Grouping factors this way permits identification of Aem from (2-82). Thus, 

(2-83) 

(2-84) 

Although we derived this for an ideal dipole, this relationship is true for any antenna. 
For an isotropic antenna, the directivity by definition is unity, so from (2-84) with 
D = 1: 

isotropic antenna (2-85) 

Comparing this to D = 47TlfiA , we see that 

(2-86) 

which is also a general relationship. We can extract some interesting concepts from 
this relation. For a fixed wavelength, Aem and fiA are inversely proportional; that 
is, as the maximum effective aperture increases (as a result of increasing its physical 
size), the beam solid angle decreases, which means power is more concentrated in 
angular space (i.e., directivity goes up, which also follows from D = 47T/fiA)' For a 
fixed maximum effective aperture (i.e., antenna size), as' wavelength decreases (fre
quency increases), the beam solid angle also decreases, leading to increased direc
tivity. 

In practice, antennas are not completely lossless. In Sec. 1.9, we saw that power 
available at the terminals of a transmitting antenna was not all transformed into 
radiated power. The power received by a receiving antenna is reduced to the frac
tion er (radiation efficiency) of what it would be if the antenna were lossless. This 
is represented by defining effective aperture: 

(2-87) 

and the available power with antenna losses included, analogous to (2-81), is 

(2-88) 

This simple equation is very intuitive and indicates that a receiving antenna acts to 
convert incident power (flux) density in W/m2 to power delivered to the load in W. 
Losses associated with a mismatch between the polarization of the incident wave 
and receiving antenna as well as impedance mismatch between the antenna and 
load are not included in Ae. These losses are not inherent to the antenna, but depend 
on how it is used in the system. The concept of gain was introduced to account for 
losses on an antenna, that is, G = erD; see (1-159). We can form a gain expression 
from the directivity expression by multiplying both sides of (2-84) by er and using 
(2-87): 
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or 

(2-89) 

We will show in Sec. 7.3 that for electrically large antennas, effective aperture is 
equal to or less than the physical aperture area of the antenna A p , which is expressed 
using aperture efficiency sap: 

(2-90) 

It is important to note that although we developed the general relationships of 
(2-84), (2-86), and (2-89) for receiving antennas, they apply to transmitting antennas 
as well. The relationships are essential for communication system computations that 
we consider next. 

Communication Links. We are now ready to completely describe the power trans
fer in the communication link of Fig. 2-17. If the transmitting antenna were isotropic, 
it would have power density at distance R of 

S = Uave = ~ 
R2 47TR2 (2-91) 

where Pt is the time-average input power accepted by the transmitting antenna and 
(1-131) and (1-135) have been used. For a transmitting antenna that is not isotropic 
but has gain Gt and is pointed for maximum power density in the direction of the 
receiver, we have for the power density incident on the receiving antenna: 

S = GtUave = GtPt 
R2 47TR2 

Using this in (2-88) gives the available received power as 

P = SA = GtPtAer 
r er 47TR2 

(2-92) 

(2-93) 

where Aer is the effective aperture of the receiving antenna and we assume it to be 
pointed and polarized for maximum response. Now from (2-89), Aer = GrA?147T, so 
(2-93) becomes 

GtGrA? 
Pr = Pt (47TR)2 (2-94) 

which gives the available power in terms of the transmitted power, antenna gains, 
l!lnd waYelength. Or, we could use G t = 47TAe,lA2 in (2-93), giving 

(2-95) 

which is called the Friis transmission formula. 
The power transmission formula (2-94) is very useful for calculating signal power 

levels in communication links. It assumes that the transmitting and receiving anten
nas are matched in impedance to their connecting transmission lines, have identical 
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polarizations, and are aligned for polarization match. It also assumes the antennas 
are pointed toward each other for maximum gain. If any of the above conditions 
are not met;it is a simple matter to correct for the loss introduced by polarization 
mismatch, impedance mismatch, or antenna misalignment. The antenna misalign
ment effect is easily included by using the power gain value in the appropriate 
direction. 

The effect and evaluation of polarization and impedance mismatch are discussed 
in Sec. 9.1, but here we discuss how they are included in systems. Figure 2-18 shows 
the network model for a receiving antenna with input antenna impedance ZA and 
an attached load impedance Z L that can be a transmission line connected to a distant 
receiver. The power delivered to the terminating impedance is given by 

(2-96) 

where 

P D = power delivered from the antenna 
Pr = power available from the receiving antenna 
p = polarization efficiency (or polarization mismatch factor), 0::5 P ::5 1 
q = impedance mismatch factor, 0 ::5 q ::5 1 

Ae = effective aperture (area) 

An overall efficiency, or total efficiency Stotal> can be defined that includes the effects 
of polarization and impedance mismatch: 

Stotal = pqsap (2-97) 

Then PD = StotalPr. It is convenient to express (2-96) in dB form: 

PD(dBm) = 10 log p + 10 log q + Pr(dBm) (2-98) 

where the unit dBm is power in decibels above a milliwatt; for example, 30 dBm is 
1 W. Both powers could also be expressed in units of decibels above a watt, dBW. 
The power transmission formula (2-94) can also be expressed in dB form as 

Pr(dBm) = Pt(dBm) + G,(dB) + Gr(dB) - 20 log R(km) 

- 20 log f(MHz) - 32.44 
(2-99) 

where G,(dB) and Gr(dB) are the transmit and receive antenna gains in decibels, 
R(km) is the distance between the transmitter and receiver in kilometers, and 
f(MHz) is the frequency in megahertz. 

EIRP. A frequently used concept in communication systems is that of effective 
(or equivalent) isotropically radiated power, EIRP. It is formally defined as the 
power gain of a transmitting antenna in a given direction multiplied by the net power 
accepted by the antenna from the connected transmitter. ERP, effective radiated 
power, is similar to EIRP but with antenna gain relative to that of a half-wave dipole 
instead of relative to an isotropic antenna. As an example of EIRP, suppose an 
observer is located in the direction of maximum radiation from a transmitting an
tenna with input power P,; then 

(2-100) 
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(a) Directional antenna with 
input power P, and gain G,. 

(b) Isotropic antenna with input 
power P,G, and unity gain. 

Figure 2-19 Illustration of 
effective isotropically radiated 
power, EIRP. In both (a) and 
(b), EIRP = 47TUm • 

The radiation intensity there is Um as illustrated in Fig. 2-19a and G, = 4'TTUm IP" 
so 

EIRP = P 4'TTUm = 4'TTU , P, m 
(2-101) 

The same radiation intensity could be obtained from a lossless isotropic antenna 
(with power gain Gi = 1) if it had an input power Pin equal to P,G, as illustrated in 
Fig. 2-19b. In other words, to obtain the same radiation intensity produced by the 
directional antenna in its pattern maximum direction, an isotropic antenna would 
have to have an input power G, times greater. Effective isotropically radiated power 
is a parameter used in the broadcast industry. PM radio stations often mention their 
effective radiated power when they sign off at night. 

Direct Broadcast Satellite Reception 

Reception of high-quality television channels at home with an inexpensive, small terminal is 
the result of technology development, including new antenna designs. The typical system 
transmits from 12.2 to 12.7 GHz with 120 W of power and an EIRP of about 55 dBW in each 
24-MHz transponder that handles several compressed digital video channels. The receiving 
system uses a O.46-m (18-in.) diameter offset fed reflector antenna. In this example, we per
form the system calculations using the following link parameter values: 

f = 12.45 GHz (midband) 

P,( dBW) = 20.8 dBW (120 W) 

G,(dB) = EIRP(dBW) - P,(dBW) = 55 - 20.8 = 34.2 dB 

R = 38,000 km (typical slant path length) 

47T 47T (0.46)2 
Gr = ),.z BapAp = (0.024)2 0.7 7T 4'"" = 2538 

= 34 dB (70% aperture efficiency) 

The received power from (2-99) is 

Pr(dBW) = P,(dBW) + G,(dB) + Gr(dB) - 20 log R(km) 

- 20 log f(MHz) - 32.44 

20.8 + 34.2 + 34 - 20 10g(38,ooO) - 20 10g(12,450) - 32.44 

20.8 + 34.2 + 34 - 91.6 - 81.9 - 32.4 

-116.9 dBW (2-102) 

This is 2 X 10-12 W! Without the high gains of the antennas (68 dB combined), this signal 
would be hopelessly lost in noise. This example is revisited in Sec. 9.2 for noise calculations. 
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2.6 PRACTICAL CONSIDERATIONS FOR 
ELECTRICALLY SMALL ANTENNAS 

In this chapter, we examined several simple but basic radiators. Some of these were 
electrically small radiators, whereas one (the half-wave dipole) was of resonant size. 
We will say more about resonant antennas in Chap. 5, but not much more will be 
said about electrically small antennas. Thus, it is appropriate at this point to consider 
the practical limitations of electrically small antennas. 

An electrically small antenna is one that is smaller than a radiansphere (see Sec. 
1.6). It is characterized by a radiation resistance that is much less than its reactance 
and by a far-field pattern that is independent of the antenna size. An electrically 
small antenna behaves like a simple electric and/or magnetic dipole. The electric 
dipole is physically realizable, whereas the magnetic dipole is simulated by a current 

Joop. Although the radiation pattern and the directivity of an electrically small 
antenna are independent of size or frequency, the radiation resistance and especially 
the reactance are not. This makes it difficult to transfer power from the antenna to 
a load or from a generator to the antenna as the frequency changes. An antenna 
with this characteristic has a high Q, where Q is defined as 27Tf times the peak 
energy stored/average power radiated. Practically speaking, high Q means that the 
input impedance is very sensitive to small changes in frequency. An electrically small 
antenna is well approximated by a lumped resonant circuit where impedance band
width = lIQ. 

An analysis by McLean [6], based on the fields surrounding a small radiator, 
predicts the minimum Q that can be achieved for electrically small antennas in 
relation to the volume of the smallest sphere that can enclose the antenna. The 
fields of an ideal dipole (electric or magnetic) have the smallest Q of all possible 
antenna types. For either type of dipole just enclosed by a sphere of radius a, the 
Q is given by 

(2-103) 

This was obtained from McLean's lossless result by multiplying Q by the radiation 
efficiency er • Equation (2-103) is plotted in Fig. 2-20 for several values of the radi
ation efficiency. It is interesting to note that the curves vary as 1I(f3a)3 for small a 
and the near fields of an ideal dipole vary as 1/({3r)3. A practical electrically small 
antenna will have a Q greater than that in Fig. 2-20 since the curves represent a 
fundamental limit that can be approached but not exceeded. The increasing Q with 
diminishing size implies a fundamental limitation on the usable bandwidth of an 
electrically small antenna. The concept of bandwidth will be considered more for
mally in Chap. 5 and 6, but here it is the frequency range over which the antenna 
is usable without retuning to a resonant condition (i.e., tuning out the reactance). 
Thus, high Q and small bandwidth are characteristic limitations of small antennas. 

In addition to having high Q and narrow bandwidth, electrically small antennas 
tend to be superdirective. By superdirectivity, we mean a directivity that is greater 
than normal for an antenna of a given electrical size. For antennas greater in size 
than a wavelength, it will be shown in later material that directivity is directly pro
portional to LI A for a linear antenna of length L and to ApIA 2 for an aperture 
antenna of area Ap- This proportionality breaks down for electrically small antennas 
since the directivity cannot go to zero (in violation of the directivity definition) as 
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Figure 2·20 Q of an ideal antenna as a 
function of {3a with radiation efficiency 

100 L...-....J....----L_..L---.30._~-L___'~...1____.L~ e, as a parameter, where a is the 
0.00 0.20 0.40 0.60 0.80 1.00 minimum radius of a sphere enclosing 

f3a the antenna. 

the antenna size approaches zero, but instead is constant at 1.5 independent of the 
actual (small) size. 

What is taking place as the antenna becomes electrically smaller is a sharp in
crease in the stored energy quite close to the antenna, while the directivity of the 
antenna remains constant. This can be interpreted as radiating energy into what is 
termed the invisible region where, for the linear radiator, for example, () can be 
outside the range of 0 to 11" in the directivity calculation of (1-142). The more the 
pattern extends outside this range, the more superdirective the antenna becomes. 
Superdirectivity and Q are closely related. Supedirectivity, however, does not imply 
supergain. For example, an electrically small antenna with a radiation efficiency less 
than 0.667 will have a gain of less than unity, that is, less than 0 dB. Thus, another 
characteristic of electrically small antennas is that they have gains that are sensitive 
to size and frequency and that are less than unity. More will be said about super
directivity in Chap. 4 and the concept of an invisible region will be illustrated further 
in Chap. 3. 
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PROBLEMS 

2.1-1 Use the oscillating charge model for an ideal dipole as shown in Fig. 2-2b to derive the 
electric field expressions of (1-71b). Hints: The far-field scalar potential function for this 
problem is 

<I> - -- - -----
_ q [e-i{3(r-(l1z/2) cos 8) e-i{3(r+(l1z/2) cos 8) ] 

41TBo r - (l!1zI2) cos 6 r + (l!1zI2) cos 6 

where the parallel ray approximation was used and the ei "" time dependence was suppressed. 
Use r » I!1z, A » I!1z, and I = jwq to show that 

Then make use of (1-40). 

e-j /3r I I!1z 
<I> = 4 ...2 -. - (1 + jf3r) cos 6 

1Tr JWBo 

2.1-2 The current density on an actual short dipole antenna of Fig. 2-1b can be written as 

Find an expression for the associated charge density. 
2.1-3 Show that the capacitance of the capacitor of the capacitor-plate antenna of Fig. 2-3 is 
given by 

c = 1T(l!1r)2Bo 
I!1z 

Assume that capacitance is entirely due to the end plates and neglect fringing. 
2.1-4 a. Using the capacitance formula in Prob. 2.1-3, calculate the capacitive reactance of 
a capacitor-plate dipole for which I!1r = O.OlA and I!1z = 0.02A. 

b. Calculate the radiation resistance of this antenna. 
2.2-1 Sketch the current distribution on a half-wave dipole for various instants during the 
time cycle of the current oscillation. 
2.2-2 Show that the pattern factor for half-wave dipole in (2-7) is normalized to unity at 
6 = 1T12. 
2.2-3 Calculate and plot the radiation pattern F(6) for a half-wave dipole in (2-8) for 0 :5 
6:5 180°. Plot in linear, polar form as shown in Fig. 2-5b. 
2.2-4 Show that the ohmic resistance of a half-wave dipole from (1-178) is given by 

Rs A 
Rohmic = 21Ttl 4 

2.2-5 Use the results of Prob. 2.2-4 to calculate the radiation efficiency of a half-wave dipole 
at loo MHz if it is made of aluminum wire 6.35 mm (0.25 in.) in diameter. Assume the 
radiation resistance to be 70 O. 
2.3~1 Show that the image theory model of Fig. 2-9b for an ideal dipole parallel to a perfect 
ground plane yields zero tangential electric field along plane PP'. 
2.3-2 For a thin monopole as shown in Fig. 2-10a that is a quarter wavelength long: 

a. Rough sketch the radiation pattern in polar form as a function of 6, if the monopole 
is along the z-axis. 

b. What is the directivity? 
c. What is the input impedance? 

2.4-1 Use (1-96) to derive the far-field distance expressions (2-48) for the small square loop. 
2.4-2 Verify that the power radiated from a small loop is given by (2-56). 
2.4-3 Show that (2-61) follows from (2-60). 
2.4-4 Compute the radiation efficiency of a small single tum loop antenna at 1 MHz if it is 
made of No. 20 A WG copper wire and has a loop radius of 0.2 m. 
2.4-5 Compute the inductance of the loop antenna in Prob. 2.4-4. 
2.4-6 A single tum circular loop 15 em in radius is made of 3-mm-diameter copper wire. 
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Calculate the radiation resistance, ohmic resistance, input impedance, and radiation efficiency 
at 1 MHz. 
2.4-7 An AM broadcast receiver operating at 1 MHz uses a loop stick antenna with 500 turns 
of No. 30 copper wire wound on a core of ferrite with fJ-eff = 38 and a cross section that is 
1 em x 3 mm. Find the radiation resistance and the radiation efficiency, neglecting ferrite 
core losses. 
2.4-8 A single turn square loop antenna that is 0.5 m on each side operates at 30 MHz. The 
wire is aluminum with a diameter of 2 em. Compute (a) the radiation resistance, (b) the input 
impedance, and (c) the radiation efficiency. 
2.5-1 Calculate the beam solid angle OA for an ideal dipole in steradians (square radians) 
and square degrees. Use the fact that Aem = 0.119,\2 for an ideal dipole. 
2.5-2 A half-wave dipole has a directivity of 2.15 dB. Derive an expression for its maximum 
effective aperture in terms of wavelength squared. 
2.5-3 Suppose a transmitting antenna produces a maximum far-zone electric field in a certain 
direction given by 

e-ifjr 
E=90/

r 

where / is the peak value of the terminal current. The input resistance of the lossless antenna 
is 50 O. Find the maximum effective aperture of the antenna Aem. Your answer will be a 
number times wavelength squared. 
2.5-4 A parabolic reflector antenna with a circular aperture of 3.66-m diameter has a 6.30 m2 

effective aperture area. Compute the gain in dB at 11.7 GHz. 
2.5-5 The effective aperture of a 1.22-m-diameter parabolic reflector antenna is 55% of the 
physical aperture area. Compute the gain in dB at 20 GHz. 
2.5-6 Compute the gain in dB of a O.3-m circular diameter aperture antenna with 70% ap
erture efficiency at 5, 10, and 20 GHz. This problem approximates the performance of a small 
satellite earth terminal antenna over the range of commonly used frequencies and illustrates 
the frequency dependence of gain for a fixed aperture. 
2.5-7 Derive the dB form of the power transmission equation (2-99) from (2-94). 
2.5-8 Write a power transfer equation similar to (2-99) but with distance R in units of miles. 
2.5-9 Calculate the received power in watts for the DBS system of Example 2-3 using (2-94). 
2.5-10 A ISO-MHz VHF transmitter delivers 20 W into an antenna with lO-dB gain. Compute 
the power in W available from a 3-dB gain receiving antenna 20 km away. 
2.5-11 A low earth orbit (LEO) satellite system transmits 1 W at 1.62 GHz using a 29-dB 
gain antenna with spot beams directed toward users on the earth that are a maximum of 
1500 km away. Find the required satellite transmit power in order for the power received by 
a user at the maximum distance to be at least -100 dBm if the user has a I-dB gain antenna 
directed toward the satellite. 
2.5-12 A cellular telephone base station transmitter at 850 MHz delivers 20 W into a 10-dB 
gain antenna. Compute the power in W available from a 3-dB gain mobile receiving antenna 
20kmaway. 
2.5-13 This problem compares the performance of the wireless system of Prob. 2.5-10 to wire 
line systems using coaxial and fiber optic cables. 

a. Compute the coaxial cable loss in dB for the 50 km distance using an attenuation of 
0.1 dB/m. 

b. What is the net loss for the wireless system of Prob. 2.5-1O? That is, find the net loss 
between the transmit and receive antenna input ports. 

c. Would repeater amplifiers be necessary in the cable system? 
d. Repeat (a) and (b) for the case of a 5OO-m path length. 
e. Repeat (a) and (b) for a 5OO-m path at 300 MHz for a cable attenuation of 0.14 dB/m. 

The antenna gains are the same. 
f. Compute the loss in dB for distances of 50 km and 500 m of a fiber optic cable with 

an attenuation of 1 dBlkm. 
g. Tabulate numerical results. 
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2.5-14 The factor (Al4'TrR? in the communication link formula of (2-94) is often referred to 
as "free-space loss." It is the loss encountered in the free-space region between isotropic 
transmit and receive antennas. The frequency dependence of r 2 in this loss is not easily 
understood until the case of an isotropic transmit antenna and a receiving antenna with a 
fixed effective aperture is considered. Determine the frequency dependence for this link. 
2.5-15 It is often stated that operating a communication link at a higher frequency permits 
the use of smaller-diameter antennas. To address this question in a specific way, suppose the 
operating frequency of a link is doubled. The transmit and receive antennas are of the same 
diameter and there are no changes in efficiencies, the propagation medium, or the transmit 
power. How much does received power increase or decrease after the frequency is doubled? 
2.5-16 Derive a power transfer equation in a form involving the effective isotropically radi
ated power of the transmitter, the effective aperture of the receiving antenna, and free-space 
spreading loss 1!4'TrR2. Start with (2-95). 
2.5-17 An FM broadcast radio station has a 2-dB gain antenna system and 100 kW oftransmit 
power. Calculate the effective isotropically radiated power in kW. 
2.6-1 (a) An electrically small antenna has a Q of 60. The smallest sphere that can enclose 
the antenna has a radius of 0.0159 A. Find the antenna gain in dB. (b) Repeat (a) if the antenna 
Q is 40 and the radius is 0.0318A. (c)Wbat is the directivity of these antennas in dB? 
(d) Explain what negative dB gain means. 
2.6-2 Show that the radius of a radian sphere Al2'Tr corresponds to the distance from an ideal 
dipole where the power density contained in the near field equals that in the far field in the 
direction of maximum radiation, 80 = 90°. 
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Arrays 

Several antennas can be arranged in space and interconnected to produce a direc
tional radiation pattern. Such a configuration of mUltiple radiating elements is re
ferred to as an array antenna, or simply, an array. Many small antennas can be used 
in an array to obtain a level of performance similar to that of a single large antenna. 
The mechanical problems associated with a single large antenna are traded for the 
electrical problems of feeding several small antennas. However, with the advance
ments in solid-state technology, it is possible to realize the feed network required 
for excitation with reasonable cost. Arrays offer the unique capability of electronic 
scanning of the main beam. By changing the phase of the exciting currents in each 
element antenna of the array, the radiation pattern can be scanned through space. 
The array is then called a phased array. Phased arrays have many applications, 
particularly in radar. 

The concept of phased arrays was proposed in 1889, but the first successful array 
(a two-element receiving array) did not appear until about 1906. The introduction 
of shortwave radio equipment in the 1920s made possible the use of reasonably 
sized antenna arrays, providing a convenient way to achieve a directive radiation 
pattern for radio communications. Around the time of World War II, array anten
nas operating at VHF, UHF, and, later, microwave frequencies were introduced for 
use in radar systems. Today, arrays are used extensively. 

Arrays are found in many geometrical configurations. The most elementary is 
that of a linear array in which the array element centers lie along a straight line. 
The elements in an array can form a planar array. A popular planar array is the 
rectangular array in which the element centers are contained within a rectangular 
area. A class of arrays that is still emerging is that of conformal arrays, where the 
array element locations conform to a nonplanar surface. This is a great advantage 
for arrays on the skin of a vehicle such as an airplane. 

Arrays offer many advantages over aperture antennas. For example, the narrow 
main beam of a parabolic reflector antenna is scanned by slewing the entire struc
ture, whereas arrays can be phase-scanned at the speed of the control electronics 
without moving the antenna. In addition, it is possible to track mUltiple targets with 
a phased array. As already mentioned, arrays can be conformed to surfaces. But, 
arrays also present challenges. The advantage of avoiding the mechanical difficulties 
associated with slewing a large aperture antenna is balanced by the complexity of 
the network required to feed the elements of an array. Additional concerns are 
bandwidth limitations and mutual coupling between the elements. 

87 
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The field of antennas, similar to circuits, can be divided into digital and analog 
implementations. Continuous, electrically large antennas are the analog portion and 
must be analyzed using integrals that are often difficult to evaluate. Arrays form 
the digital portion and can be analyzed using simple summations. For this reason, 
we present arrays early in our antenna studies. But arrays are also an important 
area within the field of antennas. They also offer an opportunity to understand the 
relationship between the distribution of current in space and the resulting radiation 
using simple mathematics. 

The radiation pattern of an array is determined by the type of individual elements 
used, their orientations, their positions in space, and the amplitude and phase of 
the currents feeding them. To simplify our discussion of arrays, we will begin by 
letting each element of the array be an isotropic point source. The resulting radia
tion pattern is called the array factor. In this chapter, the array factors for several 
simple arrays will be examined before considering general uniformly excited linear 
arrays. The principle of pattern multiplication introduced in Sec. 3.3 permits inclu
sion of the array element effect. Array directivity is discussed in Sec. 3.4. By con
trolling the current amplitudes in an array, the pattern can be shaped for special 
applications. The relationship between the radiation pattern of an array and its 
element current amplitudes is illustrated by several linear array examples in Sec. 
3.5. The effects of mutual coupling between elements of a real array on impedance 
are detailed in Sec. 3.6. Multidimensional arrays are introduced in Sec. 3.7. Scan
ning of the array pattern by element phase control is discussed in Sec. 3.8. 

3.1 THE ARRAY FACTOR FOR LINEAR ARRAYS 

The fundamental configuration for elements in an array is the linear array shown 
in Fig. 3-1. Linear arrays are used widely in practice and their operating principles 
can be used to understand more complex array geometries. The array of Fig. 3-1 
has identical elements and is operated as a receiving antenna. The pattern charac
teristics of an array can be explained for operation as a transmitter or receiver, 
whichever is more convenient, since antennas usually satisfy the conditions for rec
iprocity. The output of each element can be controlled in amplitude and phase as 
indicated by the attenuators and phase shifters in Fig. 3-1. As we shall see, ampli
tude and phase control provide for custom shaping of the radiation pattern and for 
scanning of the pattern in space. 

The basic array antenna model consists of two parts, the pattern of one of the 
elements by itself, the element pattern, and the pattern of the array with the actual 

Figure 3-1 A typical linear array. The 
symbols f2f and % indicate variable phase 
shifters and attenuators. The output currents 
are summed before entering the receiver. 
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elements replaced by isotropic point sources, the array factor. The total pattern of 
the array is then the product of the element pattern and array factor; this will be 
discussed in detail in Sec. 3.3. We treat the array factor first. 

The array factor corresponding to the linear array of Fig. 3-1 is found by replacing 
each element by isotropic radiators, but retaining the element locations and exci
tations as shown in Fig. 3-2. The array is receiving a plane wave arriving at an angle 
() from the line of the elements and the planes of equal phase (i.e., wavefronts) are 
shown. Rays perpendicular to the wavefronts indicate the direction of travel of the 
wave. With the reference wavefront taken to be of zero phase, the distance to the 
nth element has a corresponding phase delay (found by multiplying by /3) of gn. 
That is, each element is excited with phase gn, due to the spatial phase delay effect 
of the incoming plane wave. The amplitudes of excitation are constant, taken to be 
unity. because a plane wave has uniform amplitude. The resulting excitations of 
1ej €o, lei€t, ... are shown for each element in Fig. 3-2. The elements themselves do 
not weight the outputs since they are isotropic radiators that respond equally to all 
incoming wave directions. 

An isotropic radiator is a hypothetical, lossless antenna occupying a point in space 
and when transmitting radiates uniformly in all directions; see Fig. 1-19a. It is some
times referred to as a point source. The radiation fields of an isotropic radiator at 
the origin of a spherical coordinate system are proportional to 

e-i {3r 

10 = -4-
'TT'r 

(3-1) 

where 10 is the current of the point source. This can be seen by examining the 
radiation field expressions (1-72) for an ideal dipole and dropping the angular de
pendence. The far-field pattern is obtained from the angular dependence (i.e., at 

Array factor 

Figure 3-2 Equivalent 
configuration of the array in 
Fig. 3-1 for determining the 
array factor. The elements of 
the array are replaced by 
isotropic point sources. 
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constant r) of the radiation fields; thus, the pattern of a point source, from (3-1), is 
constant and is given by 

(3-2) 

where AF is the array factor for this "array" of only one point source. Since 10 is 
constant, the array factor in (3-2) could have been written as unity, but as elements 
are added to the array, each with a different current, it is necessary to account for 
their relative field strengths as determined by their element currents. 

The array factor for the array of Fig. 3-1 is found from the array of Fig. 3-2 that 
has isotropic radiators for array elements in place of the actual elements. The array 
factor for this receiving array is then the sum of the isotropic radiator receiving 
antenna responses {ej€o, ej€l, •.• } weighted by the amplitude and phase shift 

. {1o, 11> ••. } introduced in the transmission path connected to each element. The array 
factor of the array shown in Fig. 3-2 is thus 

(3-3) 

where go, g1> ... are the phases of an incoming plane wave at the element locations 
designated 0, 1, .... For convenience, these phases are usually relative to the co
ordinate origin; that is, the phase of the wave arriving at the nth element leads the 
phase of the wave arriving at the origin by gn. 

The expression in (3-3) is very general and can be applied to any geometry. 
However, instead of proceeding with a general form for the array factor, it is much 
more instructive to consider simple geometries in order to understand the basic 
behavior of arrays. This is accomplished through examples of two-element arrays 
of various spacings and phasings. Treating these examples from the transmitting 
point of view permits inference of the general pattern features by inspection. 

Two Isotropic Point Sources with Identical Amplitude and Phase 
Currents, and Spaced One-Half Wavelength Apart (Fig. 3-3) 

Figure 3-3a shows how the pattern of this example can be approximated by inspection. At 
points in the far field along the perpendicular bisector of the line joining the point sources 
(x-axis), path lengths from each point source are equal. Since the amplitudes and phases of 
each source are also equal, the waves arrive in phase and equal in amplitude in the far field 
along the x-axis. Thus, the total field is double that for one source. The situation is different 
along the axis of the array (z-axis). If we look to the right along the + z-axis, waves coming 
from the left source must travel one-half wavelength before reaching the source on the right. 
This amounts to a 1800 phase lag. The waves then continue traveling to the right along the 
+z-axis and maintain this same phase relationship on out to the far field. Thus, in the far 
field, waves from the two sources traveling in the + z-direction arrive 1800 out-of-phase (due 
to the one-half wavelength separation of the sources) and are equal in amplitude (since the 
sources are). Therefore, there is a perfect cancellation and the total field is zero. The same 
reasoning can be used to see the effect in the - z-direction. The total pattern has a relative 
value of 2 in the ±x-directions, 0 in the ±z-directions, and a smooth variation in between 
(because the phase difference between waves from two sources changes smoothly from 0 to 
1800 as the observer moves from the broadside direction to the axial direction along a con
stant radius from the array center). This pattern is sketched in Fig. 3-3b. The pattern in three 
dimensions can be imagined by holding the z-axis in your fingertips and spinning the pattern 
shown to sweep out the total pattern. The three-dimensional pattern in Fig. 3-3c is a dough
nut-type pattern similar to that for an ideal dipole. 
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Cancel:==:::::==~rr--:-i: -- - ---- - z 
zero ~_-!-_.:t..~==::::===Cancel: zero 

(a) Inspection method. 

----~~~--~z 

(b) Polar plot of the array factor 
j(8) = cos[(nI2) cos 8]. 

+1*1---- Z 

(c) 3D polar pattern. 

(d) Geometry for pattern calculation using rays. 

Figure 3·3 Two isotropic point sources with identical amplitude and phase currents, and 
spaced one-half wavelength apart (Example 3-1). 

We can also calculate the array factor exactly. If we use phases corresponding to the path 
length differences shown in Fig. 3-3d in (3-3), the array factor is 

AF = 1e-J/3(dl2) cos 8 + 1ei/3(dl2) cos 8 = 2 cos(,B g cos (1) (3-4) 

The distance between the elements is d = Al2, so ,Bd12 = Trl2 and (3-4) becomes 
I 

AF = 2 cos(~ cos (1) (3-5) 

Normalizing the array factor for a maximum value of unity gives 

f(6) = cos(~ cos (1) (3-6) 

This is maximum for (1 = Trl2 since cos[(TrI2)· 0] = 1 and zero for (1 = 0 since cos[(TrI2) ·1] 
= O. This result agrees with the inspection method that leads to Fig. 3-3b. 
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Two Isotropic Point Sources with Identical Amplitudes and Opposite 

Phases, and Spaced One-Half Wavelength Apart (Fig. 3-4) 

If we consider the array to be transmitting, the gross features of the pattern can be determined 

by inspection as shown in Fig. 340. The path lengths from each point source to a point on 

the x-axis are the same. But the left source is 1800 out-of-phase with respect to the right 

source; thus, waves arriving at points on the x-axis are 1800 out-of-phase and equal in am

plitude, giving a zero field. Along the z-axis (in both directions), the 1800 phase difference 

in the currents is compensated for by the half-wavelength path difference between waves 

from the two sources. For example, in the + z-direction the waves from the left source arrive 

at the location of the right source, lagging the phase of waves from the right source by 3600 

(1800 from the distance traveled and 1800 from the excitation lag). This is an in-phase con

dition and thus the waves add in the far field, giving a relative maximum. From these few 

pattern values, the entire pattern can be sketched, yielding a plot similar to that of Fig. 3-4b. 

The three-dimensional polar plot of the pattern shown in Fig. 3-4c has the shape of a 

dumbbell. 
We calculate the array factor exactly using (3-3) and Fig. 3-3d as 

AF = -1e-i13(dI2) cos 8 + 1ei13(dI2) cos 8 = 2j sin(J3 g cos 9) 
Using d = Al2 and normalizing, we have 

f(8) = Sin(¥cos 8) 

(3-7) 

(3-8) 

Plotting this pattern, we obtain the same result as with the inspection method (see Fig. 3-4b). 

X 
I 
I 
'Cancel 

Add:-2~.~.========~~_~-r ___ \ 
_ 1~-1---r- ====~= Add: 2 ---z 

1 Cancel 

1.. 1 
~2--""" 

(a) Inspection method. 

--~---------+---------+--~-z 

(b) Polar plot of the array factor magnitude 
!f{9)1 = 1 sin[(1r/2) cos 9]1. 

-z 

(c) 3-D polar pattern 

Figure 3-4 Two isotropic point sources with identical amplitudes and opposite phases, and 

spaced one-half wavelength apart (Example 3-2). 
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Two Isotropic Point Sources with Identical Amplitudes and 90° 
Out-oj-Phase, and Spaced a Quarter-Wavelength Apart (Fig. 3-5) 

Waves leaving the left source of the transmitting array in Fig. 3-5 and traveling in the 
+ z-direction arrive at the right source delayed by 90° due to the quarter-wavelength path. 
But the excitation of the right source lags the left source by 90° so waves in the + z-direction 
are in step and add in the far field. For waves leaving the right-hand source and traveling in 
the - z-direction, the phase at the location of the left source is 180° with respect to the wave 
from the left source (90° from the path difference and 90° from the excitation). See Fig. 3-
5b. At angles between 8 = 00 (+ z-direction) and 1800 (-z-direction), there is a smooth 
pattern variation from 2 (perfect addition) to 0 (perfect cancellation). This pattern is shown 
in Fig. 3-5c and is the so-called cardioid pattern. It is used frequently in the area of aC0ustics 
for microphone patterns. The response is strong in the direction of the microphone input 
and weak in the direction where the speakers are aimed to reduce feedback. 

Using these excitations in (3-3) and Fig. 3-3d, we can calculate the array factor expression 
as follows: 

AF :.: 1e-i/3(dI2) cos 8 + 1e-i(TT/2)ei/3(dI2) cos 8 

= e-i (TTI4)[e-i [/3(dl2) cos 8-TT14j + ei [/3(dI2) cos 8-TTI4)] 

= e-
j
(TTI4) 2 cos(~ cos 8 - ~) (3-9) 

Substituting d = Al4 and normalizing give 

f(8) = cos[ ~ (cos 8 - 1)] (3-10) 

1 le- j(Jrl2) 

• A. • --z -4-
(a) Array configuration. 

e -j(1r/2) -j(trI2) 
.... / e -j(trI2) 

cancel:... .... f--___ /~ / • Add -- z 

ejO ----;-r------
e-i(Jrl2) 

(b) Inspection method. 

--~~~----~-~-----z 

(c) Polar plot of the array factor (d) 3-D polar pattern. 
f(B) = cos[Qr/4)(cosB-l)]. 

Figure 3-5 Two isotropic point sources with identical amplitudes and the right element 
-lagging the left by 90°, and spaced a quarter-wavelength apart (Example 3-3). This pattern 
shape is called a cardioid pattern. 
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This function has a maximum value of unity for 6 = 0°, 1IV2 for 6 = 90°, and 0 for 6 = 180°. 
This agrees with the pattern of Fig. 3-Sc obtained by inspection. 

Two Identical Isotropic Point Sources Spaced One Wavelength Apart 
(Fig. 3-6) 

Since the currents are in-phase, the fields of each element add perfectly (i.e., double) in the 
±x-directions. Also, since the phase lag of the field from one element is 360° (one wavelength 
additional path length) with respect to the other, their effects add perfectly in the far field 
in the ±z-directions. However, with the one-wavelength spacing there are directions of per
fect cancellation as indicated in Fig. 3-6b. To determine these directions, we reason as follows. 
For perfect cancellation, the waves from the two sources must be 180° out-of-phase. This 
means a path length difference of one-half wavelength. Since the path length difference as a 
function of 6 is A cos 6 (see Fig. 3-3c), we solve for the values of 6 such that 

A 
A cos e = +-2 or 

1 
cos 6 = :tZ (3-11) 

The solutions are 60° and 120°. By filling in smooth variations between the maxima and zeros 
indicated in Fig. 3-6b, the pattern of Fig. 3-6c results. 

The exact array factor calculation parallels that of Example 3-1 except that with d = A in 
(3-4), 

1 
• • --z __ A----»-

(a) Array configuration. 

AF = 2 cos(f3 ~ cos 6) = 2 cos( '7T cos 6) (3-12) 

x 

c.nocl ~ tjf«'" 
I 60° 

Add ... :f--_____ • ___ A : .. • -\.I...---~~~ ---- z 
I i ~ Add 

~!~ '!: 
I "\: Cancel 

Add 

(b) Inspection method. 

-+-----~-----r~-z 

(c) Polar plot of array factor magnitude If(8) = I cos(ncos8)1. 

Figure 3-6 Two isotropic point sources with identical amplitude and phase currents, and 
spaced one wavelength apart (Example 3-4). 
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The normalized array factor is 

f( 8) = cos( 'IT cos 8) (3-13) 

Note that If(8)1 has a maximum value of unity for 8 = 0°,90°, and 180° and is zero for 8 = 
60° and 120°. These are the same results we obtained by inspection in Fig. 3-6c. This example 
illustrates the fact that multiple lobes will appear for spacings greater than a half-wavelength. 

The inspection method is difficult to use in all but the simplest arrays. Therefore, 
we examine the general array factor given by (3-3) for the case of equally spaced 
arrays. We will study its properties and develop a method to obtain a quick sketch 
of the radiation pattern. 

Suppose we have a linear array of several elements. H the elements are equally 
spaced as shown in Fig. 3-7, the array factor expression (3-3) can be simplified. The 
angie fJ is that of an incoming plane wave relative to the axis of the receiving array. 
The isotropic sources respond equally in all directions, but when their outputs are 
added together (each weighted according to In), a directional response is obtained. 
The phase of the wave arriving at the origin is set arbitrarily to zero, so ~o = O. The 
incoming waves at element 1 arrive before those at the origin since the distance is 
shorter by an amount d cos fJ. The corresponding phase lead of waves at element 1 
relative to those at 0 is ~l = f3d cos fJ. This process continues and (3-3) becomes 

N-l 

AF = 10 + 11ei(3dcos 8 + 12ei(32dcos 8 + ... = 2: Inei(3ndcos 8 (3-14) 
n=O 

Now consider the array to be transmitting. H the current has a linear phase pro
gression (i.e., relative phase between adjacent elements is the same), we can sepa
rate the phase explicitly as 

(3-15) 

where the n + 1th element leads the nth element in phase by a. Then (3-14) becomes 

Define 

Then 

N-l 

AF = 2: Anein«(3dcos 8+a) 

n=O 

1/1= /3dcosO+ a 

N-l 

AF = 2: An ein", 
n=O 

(3-16) 

(3-17) 

(3-18) 

Figure 3-7 Equally spaced linear 
array of isotropic point sources. 
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This array factor is a function of !/J and is a Fourier series. This form is convenient 
for calculations, but we usually want field plots in terms of the polar angle 8. 

The nonlinear transformation from !/J to 8 given by (3-17) can be accomplished 
graphically. For example, consider two elements spaced one-half wavelength apart 
and with identical currents as in Example 3-1. We found the normalized array factor 
in (3-6) to be f(8) = cos[(1/"12) cos 8]. In this case, !/Jfrom (3-17) is ' I 

!/J = f3 d cos 8 + a = 1/" cos 8 

since d = A12 and a = O. Now f is expressed in terms of !/J as 

f(!/J) = cos £ 

(3-19) 

(3-20) 

This is a rather simple function to plot. To obtain a plot of If I as a function of 8, 
first plot If( !/J)I from (3-20) as shown in Fig. 3-8. Then draw a circle of radius !/J = 1/" 
below it as shown, since (3-19) is a polar equation of a circle. For an arbitrary value 
of !/J, say, !/J1> drop a line straight down until it intersects the circle. The values of 
8 = 81 and If I = fl corresponding to 0/ = 0/1 are indicated in the figure. Locating 
several points taken in this fashion produces the desired sketch. Note that as 8 
ranges from 0 to 1/", !/J goes from 1/" to -1/" in this case. The resulting polar plot is 
shown in Fig. 3-10b. It is the same as the result obtained using inspection in Fig. 3-3. 

Before proceeding with more specific examples, we consider a general array factor 
and how a polar pattern is obtained from it. The magnitude of a typical array factor 
is plotted as a function of !/J in Fig. 3-9. Below it a circle is constructed with a radius 
equal to f3d and its center located at !/J = a. The angle 8 is as shown. It is very simple 

1 Iftl/l)I=lcost l 

Figure 3-8 Procedure for obtaining the polar plot of the array factor of two elements 
spaced one-half wavelength apart with identical currents. 
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Figure 3-9 Construction technique for finding the array factor as a function of polar 
angle 8. 

to use this plot. For a given value of e, locate the intersection of a radial line from 
the origin of the circle and the perimeter, point a. The corresponding value of "', at 
point b, is on a vertical line from a. The array factor value corresponding to these 
values of '" and e is then point c, also on the vertical line from a. Notice that the 
distance from the'" = 0 axis to a point, say, at a, can be written as '" = a + /3d 
cos e, which is (3-17). 

To illustrate the procedure further, we will find the polar plots of the array factors 
for some two-element arrays with uniform current amplitudes that were discussed 
earlier in this section. The array factor as a function of "', from (3-18) with N = 2, 
is 

(3-21) 

where Ao = Al = 1. Taking the magnitude eliminates the exponential factor and 
normalization removes the factor of 2, giving 

1/(",)1 = /cos £/ (3-22) 

which also follows from (3-20). The array factor 1/(",)1 is the same for all two
element arrays with the same current amplitudes and is plotted in Fig. 3-lOa. Of 
course, '" changes with element spacing and phasing. For example, if the spacing is 
a half-wavelength and the phases of each element are zero (a = 0), the pattern is 
obtained as shown in Fig. 3-8 with the resultiItg pattern plotted in Fig. 3-10b. This 
is Example 3-1 discussed earlier. For Example 3-2, d = )./2 and a = Tr. The resulting 
polar plot of the array factor using the procedures of Fig. 3-9 is shown in Fig. 3-10c. 
The array factor for Example 3-3 with d = )./4 and a = -Tr12 is shown in Fig. 3-10d. 

By examining the general array factor expression in (3-18), some general prop-
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(a) 

(b) . 

(c) 

(tf) a=-t 

1f{I/!) I = I costl 

If{B)1 

Figure 3-10 Array factors for 
two-element arrays with equal 
amplitude currents. 
(a) Universal array factor. 
(b) Polar plot for d = Al2, 
(3d = 7T, a = 0 (Example 3-1). 
(c) Polar plot for d = Al2, 
(3d = 7T, a = 7T (Example 3-2). 
(d) Polar plot d = Al4, 
(3d = 7T/2, a = - 7T/2 (Example 
3-3). 

erties can be derived that aid in the construction of pattern plots. First, the array 
factor is periodic in the variable I/! with period 21T. This is easily shown as follows: 

AP(I/! + 21T) = L A nefn(I/I+2.,,) = L Anejnl/lejn2'1T = L Anejnl/l = AP(I/!) (3-23) 

The array factor of a linear array along the z-axis is a function of () but not of cf> 
(the element pattern may be though). In other words, the array factor is a pattern 
that has rotational symmetry about the line of the array. Therefore, its complete 
structure is determined by its values for 

O<()<1T (3-24) 

This is called the visible region. This corresponds to -1 < cos () < 1 or - f3d < 
(3d cos () < f3d or 

a-f3d<I/!<a+{3d (3-25) 

Hence, the visible region in terms of () and I/! is given by (3-24) and (3-25), respec
tively. The element spacing of the array in terms of a wavelength, dlA, determines 
the size of the circle in Fig. 3-9 and thus how much of the array factor appears in 
the visible region. The visible region in the variable I/! is of length 2{3d, as seen from 
(3-25). This is the diameter of the circle in Fig. 3-9. Suppose that exactly one period 
appears in the visible region. Since the period is 21T, we have 21T = 2{3d = 2(21T/A) d 
or dl A = ~. Thus, exactly one period of the array factor appears in the visible region 
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when the element spacing is one-half wavelength. Less than one period is visible if 
2{kl < 21T, which corresponds to dlA < !, that is, for spacings less than one-half 
wavelength. For spacings greater than one-half wavelength, more than one period 
will be visible. For one-wavelength spacings, two periods will be visible. For spacings 
larger than a half-wavelength, there may be more than one major lobe in the visible 
region, depending on the element phasings. Additional major lobes that rise to an 
intensity equal to that of the main lobe are called grating lobes. In the one-wave
length spaced, two-element array factor of Fig. 3-6c, there are grating lobes at (J = 
o and 1800

, in addition to the desired lobe in the (J = 900 direction. In most situations, 
it is undesirable to have grating lobes. As a result, most arrays are designed so the 
element spacings are less than one wavelength. 

3.2 UNIFORMLY EXCITED, EQUALLY SPACED LINEAR ARRAYS 

An array is usually comprised of identical elements positioned in a regular geo
metrical arrangement. In fact, this is the definition adopted by the IEEE. However, 
arrays are encountered in practice with unequal interelement spacings. Usually, a 
modifier (e.g., equally or unequally spaced) is included to be completely clear about 
the array geometry. The examples presented in this chapter are for equally spaced 
arrays, and unequally spaced arrays are treated using the theory of Sec. 3.7. 

3.2.1 The Array Factor Expression 

A very important special case of equally spaced linear arrays is that of the uniformly 
excited array. This is an array whose element current amplitudes are identical, so 

(3-26) 

In this section, we consider only element phasings of a linear form accounted for 
by interelement phase shift a. The array factor from (3-18) is then 

N-l 
AF = Ao 2: ein", = Ao(l + eN + ... + ei(N-l)",) (3-27) 

n=O 

Only a few short steps are required to sum this geometric series. First, multiply 
(3-27) by eil/t to obtain 

AF eN = Ao(eil/t + eJ21/t + ... + eiN"') 

Subtracting this from (3-27) gives 

AF(1 - ei "') = Ao(1 - eiN"') 

or 

1 - eiNI/t. 

AF = 1 _ eN Ao 

This is rewritten in a more convenient form as follows: 

eiNI/t - 1 eiNI/t12 eiNI/t12 _ e-iNI/t12 

AF = Ao eN _ 1 = Ao ej l/t12 ej l/t12 _ e-jl/t/2 

_ A j(N-l)I/t12 sin(NI/I12) 
- oe 

sin(I/I12) 

(3-28) 

(3-29) 

(3-30) 
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The phase factor ei (N-l).p/2 is not important unless the array output signal is further 
combined with the output from another antenna. In fact, if the array were centered 
about the origin, the phase factor would not be present since it represents the phase 
shift of the array phase center relative to the origin. Neglecting the phase factor in 
(3-30) gives 

AF = Ao sin(NlpI2) 
sin( t/l/2) 

(3-31) 

This expression is maximum for t/I = 0 and the maximum value from (3-27) is 

AF(t/I = 0) = Ao(1 + 1 + ... + 1) = AoN 

Dividing this into (3-31) gives the normalized array factor 

f( ) = sin(Nt/l/2) 
t/I N sin( t/l12) 

UE,ESLA 

(3-32) 

(3-33) 

This is the normalized array factor for an N element, uniformly excited, equally 
spaced linear array (UE, ESLA) that is centered about the coordinate origin. This 
function is similar to a (sin u)lu function, with the major difference that the side 
lobes do not die off without limit for increasing argument. In fact, the function 
(3-33) is periodic in 27T, which is true in general as we showed in (3-23). 

A number of trends can be seen by examining array factor plots for various values 
of N as shown in Fig. 3-11: 

1. As N increases, the main lobe narrows. 
2. As N increases, there are more side lobes in one period of f( t/I). In fact, the 

number of full lobes (one main lobe and the side lobes) in one period of f( t/I) 
equals N - 1. Thus, there will be N - 2 side lobes and one main lobe in each 
period. 

3. The minor lobes are of width 27TIN in the variable t/I and the major lobes (main 
and grating) are twice this width. 

4. The side lobe peaks decrease with increasing N. A measure of the side lobe 
peaks is the side lobe level that we have defined as 

SLL = ·Imaximum value of largest side lobel (3-34) 
Imaximum value of main lobel 

and it is often expressed in decibels. The side lobe level of the array factor for 
N = 5 is -12 dB and it is -13 dB for N = 20. SLL approaches the value of a 
uniform line source, -13.3 dB, as N is increased. 

5. 1 f(t/I) 1 is symmetric about 7T. It is left as an exercise to show this. 

The radiation field polar plots in the variable () can be obtained from f( t/I) as 
discussed in Sec. 3.1. For example, consider the two-element case. Then (3-33) 
becomes 

sin t/I 
f( t/I) = 2 sin( t/l/2) (3-35) 

This is a universal pattern function for all equal amplitude two-element arrays and 
is plotted in Fig. 3-10a. Note that by the techniques used in Sec. 3.1, we found that 
the array factor for a two-element array was cos( t/l/2); see (3-20). It can be shown 
that this is identical to (3-35). 
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1/(1/1)1 
1.0 
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1/(1/1)1 
1.0 
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Figure 3-11 Array factor of an equally spaced, 
~-L:-...L--L,~-+,-+-"-~--L--::1--- 1/1 uniformly excited linear array for a few array 

(c) 
numbers. (a) Three elements. (b) Five 
elements. (c) Ten elements. 

Four-Element Linear A"ay (Fig. 3-12) 

The universal array factor for a four-element, uniformly excited, equally spaced array is 
plotted in Fig. 3-12b. Let us find the array factor plot for the special case of half-wavelength 
spacing and 90° interelement phasing (i.e., a = 7T"/2). The array excitations are shown in Fig. 
3-12a. The pattern plot can be sketched quickly by locating prominent features such as max
ima and zeros. Then vertical lines are dropped down from these points to the circle below. 
From the intersection points with the circle, straight lines are drawn in to the center of the 
circle. The perimeter of the circle has a pattern value of unity and the center a value of o. 
For linear polar plots such as this one, the magnitude of the pattern factor is linearly pro
portional to the distance from the origin. For example, if the circle radius is 4 cm and the 
pattern value to be plotted is 0.25, the pattern point is 1 cm from the origin along a radial 
line at the appropriate angle 8. After locating the relative maxima and the zeros, a smooth 
curve is drawn, joining these points. The complete polar plot is shown in Fig. 3-12c. Note 
that a polar plot can be made larger or smaller by expanding or contracting the construction 
circle. 
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• • • • --z 
Ie i(1</2) lei" lei(31r/2) 

(a) ~d~ 

1/(1/1)1 = I sin. 2~ I 
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3.2.2 Main Beam Scanning and Beamwidth 

Figure 3·12 Array factor for a 
four-element, uniformly excited, 
equally spaced phased array 
(Example 3-5). (a) The array 
excitations. (b) Universal pattern 
for N = 4. (c) Polar plot for d = 
Al2 and a = Tr12. 

A maximum of an array factor occurs for'" = O. Let ()o be the corresponding value 
of () for which the array factor is maximum. Then from (3-17), we have 0 = 
{3d cos ()o + a, or 

a = -{3d cos ()o (3-36) 

This is the element-to-element phase shift in the excitation currents required to 
produce an array factor main beam maximum in a direction ()o relative to the line 
along which the array elements are disposed. Thus, if we want an array factor max
imum in the () = ()o direction, the required element currents from (3-15) with (3-36) 
are 

(3-37) 

for a uniformly excited, equally spaced linear array. For the broadside case «()o = 
90°), a = O. For the endfire case «()o = 0° or 180°), a = -{3d or {3d. In the example 
illustrated in Fig. 3-12, a = 'Tr/2 and d = Al2 so ()o = cos-1

( -a/{3d) = cos-1
( -n = 

120°. This main beam scanning by phase control feature can be explicitly incorpo
rated into", by substituting (3-36) into (3-17), giving . 

'" = {3d(cos () - cos ()o) (3-38) 

Scanning is discussed further in Sec. 3.8. 
A measure of the width of the main beam of a uniformly excited, equally spaced 

linear array is given by the beamwidth between first nulls, BWFN, which is illustrated 
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in Fig. 1-15 for a general pattern. The main beam nulls are where the array factor 
(3-33) first goes to zero in a plane containing the linear array. The zeros of the 
numerator of (3-33) occur for NlpFN/2 = ±n7T. When the denominator also goes to 
zero (tl/lFN = ±n1T), the pattern factor is unity, corresponding to the main beam 
(n = 0) and grating lobes. The first nulls associated with the main beam occur for 
NI/IFN12 = ±1T. For a broadside array (a = 0°), 1/1 = {3d cos 0, so the angles ° for the 
first nulls are found from 

N21T 
+1T= --dcos ~ - 2 A 

or 

The BWFN is then 

BWFN = I~left - ~rightl 

= Icos-
1

( - ~d) - cos-
1

( + ~d) t 

(3-39) 

(3-40) 

(3-41) 

(3-42) 

For long arrays (length L = Nd» A), we can approximate (3-42) as follows: 

BWFN = I¥ + :d - (¥ -~d) I = !~ near broadside (3-43) 

For an endfire array (see Fig. 1-16c), the beamwidth between first nulls is twice that 
from the main beam maximum to the first null. For long arrays it is approximately 

BWFN = 2jJh endfire (3-44) 

Half-power beamwidth (HP) is a more popular measure of the main beam size 
than BWFN. Both depend on the array length Nd and main beam pointing angle °0 , For a long (Nd » A) uniformly excited linear array, the HP is approximately 
[2] 

A 
HP = 0.886 Nd csc 00 near broadside (3-45) 

and 

Comparing the formulas for 
half of the corresponding B 

3.2.3 The Ordinary Endfire Array 

2)0.886 ~d endfire (3-46) 

and BWFN, we can see that HP is roughly one
value for long, uniformly excited linear arrays. 

In many applications, antenna are required to produce a single pencil beam. The 
array factor for a broadside a ay produces a fan beam, although the proper selec
tion of array elements may eld a total pattern that has a single pencil beam. 
Another way to achieve a sing e pencil beam is by the proper design of an endfire 
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array. We have said that an endfire condition results when (Jo = 0° or 180°, which 
corresponds to a = -f3d or +f3d. Such arrays for which a = ±f3d are referred to 
as ordinary end fire arrays. If the spacing d is a half-wavelength, there will be two 
identical endfire lobes (see Fig. 3-10c). There are several ways to eliminate one of 
these lobes, thus leaving a single pencil beam. The most obvious way is to reduce 
the spacing below a half-wavelength. The visible region is 2f3d wide in the variable 
"', and to eliminate the unwanted major lobe (grating lobe), we should reduce the 
visible region (and thus the spacing d) below the half-wavelength spacing value of 
27T. Since the grating lobe half-width (maximum to null) is 27TIN, we can eliminate 
most of it by reducing the visible region by at least 7TIN, that is, 

7T 
2f3d -< 27T - -- N ordinary end fire (3-47) 

Dividing this by 2f3 gives the condition on the spacings as 

d $. ~ (1 -~) ordinary endfire 
2 2N 

(3-48) 

An ordinary endfire array with spacing d satisfying (3-48) produces a single endfire 
beam at () = 0° fora = -f3d or at () = 180Cl for a = f3d. 

0.5 

(a) 

(b) 

(c) 

(d) 

I dr°.45A. 
i 
! ~------~~---L~~+-----z 

~--------~--------~----z 

d=0.5 A. 
a=n 

--z 

Figure 3·13 Five-element 
uniformly excited, equally spaced 
linear array (Example 3-6). 
(a) Universal pattern plot. 
(b) Polar plot for ordinary 
endfire case with d = 0.45,\ and 
a = 0.91T. (c) and (d) Plots for 
endfire case with d = 0.5'\. 
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Five-Element Ordin~ary Endfire Linear A"ay (Fig. 3-13) 

From (3-48) for a five-element array, we must have d $ (A/2)(1 - 1/10) = O.4SA. If we select 
d = O.4SA with a main beam direction (Jo = 180°, the required element-to-element phase shift 
is a;= -f3d cos (Jo = f3d = (21TIA)(0.4SA) = 0.91T. The pattern construction process is shown 
in Figs. 3-13a and 3-13b. Note the single endfire main lobe. If spacing is not reduced in 
accordance with (3-48), two main lobes appear as shown in Fig. 3-13c for d = O.SA. The . 
corresponding three-dimensional polar plot is shown in Fig. 3-13d. 

3.2.4 The Hansen-Woodyard Endfire Array 

In the ordinary endfire case, the interelement excitation phase, a = ±{3d, exactly 
equals the spatial phase delay of waves in the endfire direction. It is possible to 
make the main beam narrower and thus increase directivity by increasing the in
terelement phase shift, thereby moving some of the main beam outside of the visible 
region. If the phase shift is increased over the ordinary endfire case such that 

a = ±({3d + 8) (3-49) 

it is called the Hansen-Woodyard condition for increased directivity [3]. This con
dition was obtained by studying several long line sources, but also applies to long 
arrays. 

To illustrate the Hansen-Woodyard condition, return to Fig. 3-13 and notice that 
as a is increased, the circle moves to the right but the radius of the circle remains 
the same for {3d unchanged. This causes the main beam to narrow since part of the 
main lobe of the If( 1/1)1 plot does not appear in the visible region. However, the side 
lobes become larger relative to the main beam and the back lobe increases in mag
nitude. To prevent the back lobe from becoming equal to or greater than the main 
beam, the phase lal must be less than 71'. Using this in (3-49) gives 

a={3d+8<7I' (3-50) 

Hansen and Woodyard [3] found that maximum directivity is obtained when () = 
2.94/(N - 1) when the array is long and much greater than a wavelength; also see 
(3-82). The simpler form of 8 = 71'IN is usually used. Then (3-49) and (3-50) yield 
the phasing and spacing for a Hansen-Woodyard endfire array: 

(3-51a) 

Hansen-Woodyard 

(3-51b) 

Five-Element Hansen-Woodyard Endfire Linear A"ay (Fig. 3-14) 

The array in this example has five elements, so from (3-51) we must have d < (A/2)(1 - 1/5) 
== 0.4A. Choosing d = 0.37A leads to a = f3d + 1TIN = 0.741T + 0.21T = 0.941T. The pattern is 
shown in Fig. 3-14. The main beam is narrower than when the ordinary endfire condition is 
used (see Fig. 3-13), but the side lobes are higher. Nevertheless, the array exhibits increased 
directivity. The directivity as a function of spacing is compared to that of an ordinary endfire 
five-element array in Fig. 3-15. Note that directivity peaks near the spacing limit of O.4SA 
from (3-48) for ordinary endfire arrays and near O.4A for Hansen-Woodyard endfire arrays. 
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a = 0.9411: -r,Bd = 0;"/11:-1 

1),1' \ 

Figure 3-14 Single endfire beam for a five
element Hansen-Woodyard increased 
directivity array with a = 0.941T and 
d = 0.37A (Example 3-7). 

More directivity is achieved with the Hansen-Woodyard array than with an or
dinary endfire array of the same number of elements. This effect is referred to as 
superdirectivity and, in general, is accomplished with small spacings and phase con
trol; see Secs. 2.6. This causes the peak of the main beam to move into the invisible 
region, narrowing the visible main beam, reducing beam solid angle, and increasing 
directivity. Superdirectivity is discussed further in Sec. 4.3. 

15r---~----'-----r---~----~----~--~----~ 

/ 
Nd / D = 7.28r----, 

/ Hansen-Woodyard case, a = ,Bd + 1I:1N 

10 / 

§ ~ 
.~ 
> 

'.:::l 
(.) 

~ 5 

.,. .... Ordinary endfrre case, a = ,Bd 
,~ 

\ 
\ " ------

..... _---

O~---L----~--~----~--~----~----~--~ 
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Element spacing(d/A.), wavelengths 

Figure 3-15 Comparison of directivities for two five-element equally spaced, uniformly 
excited endfire arrays: ordinary endfire (dotted curve) and Hansen-Woodyard endfire 
(solid curve). Also shown is the directivity approximation (3-82) for the Hansen
Woodyard case. 
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3.3 PATIERN MULTIPLICATION 

So far in our study of arrays, we have discussed only arrays of isotropic point sources. 
Actual arrays have element antennas that, of course, are not isotropic. In this sec
tion, we discuss how to compute the radiation pattern of actual arrays. We will find 
that the array factor plays a major role in these pattern calculations. 

When the elements of an array are placed along a line and the currents in each 
element also flow in the direction of that line, the array is said to be collinear. As a 
simple example of a collinear array, suppose we have N short dipoles as shown in 
Fig. 3-16. The elements are equally spaced a distance d apart and have currents 10 , 

11> 12, ••• ,IN-I' The total current is the sum of the z-directed short dipole currents 
and thus is z-directed and the vector potential is also. The vector potential integral 
in (1-103) reduces to a sum over the element currents (modeled as ideal dipoles) 
as l 

-jf3r 
A = JL _e_ az[l + I ejl*i cos IJ + I ej{ndcos IJ + ... 

z 41Tr 0 I 2 

. e-jf3r N-l . 
+ IN_1e1f3(N-l)dcoSIl] = JL--aZ 2: Ine1/3ndcosIJ 

41Tr n=O 

(3-52) 

in the far field. Then from (1-106), 
-jf3r N-l 

EIJ = jWJL _e_ az sin () 2: Inej/3ndcOSIJ (3-53) 
41Tr n=O 

From this expression, we can identify sin () as the pattern of a single element by 
itself, called the element pattern. The remaining factor 

N-I 

AF = 2: In e jf3nd cos IJ (3-54) 
n=O 

is the array factor of (3-14). The array factor is a sum of fields from isotropic point 
sources located at the center of each array element and is found from the element 
currents (amplitudes and phases) and their locations. On the other hand, the ele-

x 

10 
----~~--._---+----._----------z 

o d 2d 3d 

y 
Figure 3-16 A collinear array of short 
dipoles. 

IThis result could also be obtained by writing the z-directed current density as 

I, = 8(x') 8(y')[Io 8(z') + 11 8(z' - d) + 12 8(z' - 2d) + ... IN - 1 8(z' - (N - 1) d)] ~z 

and substituting this into (1-102), giving 

A, = IL e-
1fJr ~z f~ [10 8(z') + 11 8(z' - d) + .. ·]el/3'·COS9 dz' 

4'ITr -~ 

from which (3-52) follows. 
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ment pattern is that factor of the radiation pattern determined by the individual 
properties of an element based on its current distribution and orientation in space. 
We shall see that this factoring process holds in general if the elements have the 
same pattern and are similarly oriented. 

We now consider a slightly more complicated case. Suppose for the sake of ex
planation, we have N identical element antennas forming a collinear array along 
the z-axis. The nth element is centered at z = Zn and has a current distribution 
in(z'). We are now relaxing the equal spacing constraint. The total current along 
the z-axis is 

N-l 

I(z') = 2: in(z') (3-55) 
n=O 

The vector potential is then 
-i{3r foo N-l 

A z = p,_e_ 2: in(Z')eH3Z'Cosodz' 
41Tr -00 n=O 

(3-56) 

The far-field elecric field from this and (1-106) is 
e-i/3r N-l 

Eo = jwp, -4 - 2: En (0) 
1Tr n=O 

(3-57) 

where 

(3-58) 

is the pattern of the nth element. 
If the array possesses no symmetry, (3-57) cannot be simplified. But if the array 

elements are similar, a great deal of simplification is possible. By similar we mean 
that the currents of each antenna element are in the same direction, of the same 
length, and have the same distribution (although there may be different current 
amplitudes and phases for each element). Thenthe patterns of (3-58) will be similar; 
that is, they will have the same spatial variation but may have different amplitudes 
and phases. In the example at hand, the currents are all z-directed. Now assume 
that each element is of length.e, has a normalized current distribution over its length 
of i(z '), and an input current of In. Then 

(3-59) 

where Zn is the position of the nth element center along the z-axis. Substituting this 
into (3-58) gives 

(Zn+ t /2 

En (0) = sin 0 In JZn-m i(~ - Zn)ei/3~COS 0 d~ 

where ~ replaced z'. Let T = ~ - Zn; then (3-60) becomes 

En(O) = sin 0 In J::2 i(T)ei/3(T+Zn) cos 0 dT 

= sin 0 [r:2 i(T)ei/3TCOSO dT}nei/3ZncosO 

To maintain consistent notation, we replace Tby z', yielding 

En (0) = sin (J [r:2 i(z ')ei(3z, cos 0 dz' ]In ei(3zn cos 0 

(3-60) 

(3-61) 

(3-62) 
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The pattern for each element of an array of similar elements given by (3-62) is a 
product of the pattern of the current distribution, and the amplitude and phase of 
excitation In , and the last factor represents the spatial phase due to the displacement 
from the origin. Substituting (3-62) into (3-57) gives 

E9 = jwp, _e_ sin () i(z')eif3z· cos 9 dz' L Ineif3ZnCOs 9 
-j{J7 [J1

/
2 

] N-l 

47Tr -l/2 n=O 
(3-63) 

The factor 

J
1/2 

sin fJ i(z ')ejf3z , cos 9 dz' 
-e/2 

(3-64) 

when normalized is the element pattern ga(fJ) of any element in the array of similar 
elements. The sum 

N-l 

AF = L Inejf3zncos 9 (3-65) 
n=O 

is the unnormalized array factor. 
In going from (3-57) to (3-63), it was necessary to assume that the elements of 

the array were similar. When this ~s true, the electric field can be written as a product 
of an element pattern, as in (3-64), and an array factor, as in (3-65). Note that the 
array factor of (3-65) is the pattern of a linear array of N point sources located at 
positions {znl on the z-axis. If the elements are equally spaced, (3-14) results. If 
further, they are uniformly excited, the array factor reduces to (3-31). This result is 
not restricted to collinear elements but can be applied to any array of similar ele
ments. This is discussed below. 

The process of factoring the pattern of an array into an element pattern and an 
array factor is referred to as the principle of pattern multiplication. It is stated as 
follows: The electric field pattern of an array consisting of similar elements is the 
product of the pattern of one of the elements (the element pattern) and the pattern 
of an array of isotropic point sources with the same locations, relative amplitudes, 
and phases as the original array (the array factor). 

In Section 1.7, we wrote the normalized electric field pattern of a single antenna 
as a product of a normalized element factor g and a normalized pattern factor f. 
For array antennas, we expand this concept and call the pattern of one-element 
antenna in the array an element pattern gao It, in tum, is composed of an element 
factor that is the pattern of an infinitesimal piece of current on the array ele
ment (i.e., an ideal dipole) and a pattern factor that is the pattern due to its current 
distribution. The complete (normalized) pattern of an array antenna is 

F(fJ, 4» = ga(fJ, 4> )f((), 4» (3-66) 

where ga((), 4» is the normalized pattern of a single element antenna of the array 
(the element pattern) and f(fJ, 4» is the normalized array factor . 

. 
Two Collinear, Half-Wavelength Spaced Short Dipoles (Fig. 3-17) 

To illustrate pattern multiplication, consider two collinear short dipoles spaced a half-wave
length apart and equally excited. The element pattern is sin (J for an element along the z-axis 
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sin8 x cos (~cos8) = sin8cos (~cos8) 
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Figure 3-17 Array of two half-wavelength spaced, equal amplitude, equal phase, collinear 

short dipoles (Example 3-8). (a) The array. (b) The pattern. 

and the array factor was found in (3-6) to be cos[( '1(/2) cos 6]. The total pattern is then sin 6 

cos[('1(/2) cos 6]. The patterns are illustrated in Fig. 3-17. 

Collinear arrays are in widespread use in base stations for land mobile commu

nications. Half-wave dipoles spaced more than a half-wavelength apart are popular. 

The array axis is oriented vertically, producing an omnidirectional pattern in the 

horizontal plane as required for point-to-multipoint communications. Lengthening 

the array by adding elements narrows the beamwidth in the elevation plane, in

creasing the directivity and extending the usable range to a mobile unit. 

The principle of pattern multiplication can be used directly for many different 

geometries. For example, suppose line sources, positioned along the z-axis are not 

z-directed, as in a collinear array, but are parallel as shown in Fig. 3-18. Let 'Y be 

the spherical polar angle from the x-axis; note that 00 :5 'Y:5 1800 and cos 'Y = sin () 

cos 4>. The element pattern is then found from the following expression that is 

analogous to (3-64): 

f
e12 

sin 'Y i(x')eif3x ' cos"y dx' 
-e12 

(3-67) 

The array factor of (3-65) is unchanged. 

x 

~~~--'-~--~-----------z 

Figure 3-18 A linear array of parallel 

y line sources. . 
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Two Parallel, Half-Wavelength Spaced Short Dipoles (Fig. 3-19) 

The complete pattern for the array of two parallel short dipoles in Fig. 3-19a is found by 
pattern multiplication as indicated in Figs. 3-19b and 3-19c. It is difficult to visualize the 
pattern in three dimensions from the principal plane patterns. Figure 3-19d is a three-di
mensional polar pattern plot tilted to show the broad null along the z-axis and a narrow null 
along the x-axis. It is obvious from the pattern that this array has few applications. It is 

x 

~r 8 

~AJ Lz 

(a) 10= 1 2 II = 1 

Element pattern Array factor Total xz-plane pattern 

x x 

~r I 
-z x 2*' (b) 

sinr cos (~cos8) sinrcos (~cos8) 

Element pattern Array factor Total yz-plane pattern 

O-z x 

(c) 

y 

y 

z 

(d) 

Figure 3·19 Array of two half-wavelength spaced, equal amplitude, equal phase parallel 
short dipoles. (a) The array. (b) The xz-plane pattern. (c) The yz-plane pattern. 
(d) Three-dimensional pattern. 
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presented here to illustrate how the element can significantly affect the pattern and to aid in 
understanding the pattern multiplication process. 

Five-Element Endfire A"ay of Parallel Half-Wave Dipoles 

To illustrate parallel element arrays further, suppose the element antennas of Fig. 3-18 are 
half-wave dipoles. Also suppose there are five elements arranged and excited for ordinary 
endfire as in Example 3-6. The complete pattern is the product of the single half-wave dipole 
element pattern and the array factor found from five isotropic sources. The element pattern 
for a half-wave dipole element along the x-axis is 

( ) 
= cos[( 'TT'/2) cos 'Y] 

ga 'Y sin 'Y 

which is (2-10) with (J replaced by 'Y. Since cos 'Y = sin (J cos cp, then 

sin 'Y = V1 - sin2 (J cos2 cp 

and (3-68) becomes 

(11 cp) = cos[(-lT/2) sin 11 cos 4>] 
ga , V1 - sin2 () cos2 cp 

The array factor is (3-33) with N = 5, or 

sin(~"') 
f( "') = 5 sin(!",) 

(3-68) 

(3-69) 

(3-70) 

For this example, a = 0.9'TT' and d = 0.45,.\ so '" = f3d cos () + a = 0.9'TT' cos (J + 0.9'TT', and 
(3-70) is 

f( (J) = sin(2.25'TT' cos () + 2.25'TT') 
5 sin(0.45'TT' cos (J + 0.45'TT') 

(3-71) 

The total pattern of the array in terms of (J and cp is then the product of (3-69) and (3-71): 

( 
",) __ cos[('TT'/2) sin (J cos cp] sin(2.25'TT' cos (J + 2.25'TT') 

R () 'I' (3-72) , V1 - sin2 (J cos2 cp 5 sin(0.45'TT' cos (J + 0.45'TT') 

The polar plot of this pattern is easily obtained by multiplying the plot in Fig. 2-5b, where 
the axis of symmetry is now the x-axis instead of the z-axis, times the polar plot of Fig. 3-13. 
This is a polar plot similar to the array factor plot except that the endfire lobes are slightly 
narrower, and there is a pattern zero in the 'Y = 00 direction caused by the element pattern. 

3.4 DIRECTMTY OF UNIFORMLY EXCITED, 
EQUALLY SPACED LINEAR ARRAYS 

Now that we have developed a method for obtaining the entire pattern expression 
for an antenna array, we can discuss the directivity of various arrays. Directivity is 
determined entirely from the radiation pattern. The array gain can be found by 
multiplying the array directivity by the radiation efficiency of one element if all 
elements are alike. 

To derive directivity expressions, we use D = 41TI.OA , first finding the beam solid 
angle as 

(3-73) 

where ga(8, cp) and f(8) are the normalized element pattern and linear array factor 
and do' = sin 8 d8 dcp. 
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We begin by assuming the elements are equally spaced, uniformly excited, and 
isotropic. This assumption leads to approximate results for situations where the 
element pattern is much broader than the array factor and the main beams of both 
are aligned. The appropriate array factor from (3-33) is 

Ifl2 = 1 sin(NI/l12) 12 (3-74) 
N sine 1/1/2) 

1 2 N-l 

= - + - 2: (N - m) cos ml/l 
N ~m=l 

(3-75) 

where (3-75) is another form for (3-74). This identity can be shown to be true for 
N = 2 since from (3-75), If(I/I)12 = ~ + ~ cos 1/1 == cos2(I/I/2) as in (3-20). With the 
simple expression in (3-75), it is easier to perform the integration in (3-73) in terms 
of the variable 1/1. Using ga(O, 4» = 1, 1/1 = {3d cos 0 + a, and sin 0 dO = -(1/{3d) dl/l 
in (3-73) gives 

(" ('IT (-f3d+a (1 ) 
fiA = Jo dt/J Jo If(o)12 sin 0 dO = 2'IT Jf3d+a If(I/I)12 - {3d dl/l 

2 ff3d+
a =;, _f3d+Jf(I/I)1

2 
dl/l (3-76) 

Substituting (3-75) in the above yields 

2 [1 ff3d+
a 2 N-l ff3d+

a 
] 

fiA = {3; N -f3d+a dl/l + N2 ~1 (N - m) -f3d+a cos ml/l dl/l 

2 
[ 

1 

1

f3d+a 2 N-l . "'I f3d+a ] 'IT "sm m'f' = - - 1/1 + - LJ (N - m) --
(3d N -f3d+a N

2 
m=l m -f3d+a 

.= ~ [~ (2{3d) + ~2~: N: m [sin m({3d + a) - sin m(-{3d + a)]] 

4 'IT 4'IT ~1 N - m . 
= N + N 2 LJ (3d 2 cos ma sm m{3d 

m=l m 
(3-77) 

where (D-i» was used in the last step. 'i 

The foregoing assumes that the array factor reaches its peak of unity in the visible 
region. If this is not the case, renormalization is r~quired. This possibility was in
cluded explicitly in the Hansen-Woodyard array",'development with 8 in (3-49). 
Normalizing the array factor to unity maximum in'the visible region leads to the 
following general form for the directivity of a linea:t.a:rr~y of N isotropic, uniformly 
excited elements spaced distance d apart with interelement phase shift a [4]: 

~ I' ' 

sin(N 812,). 

D = 4'IT = N 1 N sin(812) 
fiA 1 2 N - m ... 

N + N 2 ~1 m{3d sm m{3d cos ma 

(3-78) 

where 8 is zero and the numerator is unity except for endfire operation; see (3-49). 
The directivity expression of (3-78) reduces to a simple result for a broadside 

array of half-wavelength spaced elements. For multiple half-wavelength spacings, 
d = nAl2 with n an integer, {3d = n'IT and sin m{3d = o. The array gives a broadside 
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pattern when all elements are in-phase, or a = O. These conditions simplify (3-78) 
to 

D=N 
A 

d=n- a=O 2' (3~79) 

The directivity of a broadside array of isotropic elements as a function of the spacing 
in terms of a wavelength, d/ A, is plotted in Fig. 3-20 for several element numbers 
N. Notice that the directivity equals N at integer mUltiples of a half-wavelength. 
Also, the directivity curves for each N take a sharp dip for spacings near one and 
two wavelengths. This is caused by the emergence of grating lobes into the visible 
region. For example, see Fig. 3-6 where full grating lobes appear for one-wavelength 
spacing. 

The directivity of a broadside array of isotropic elements is approximated by 

L Nd 
D=2-=2-

A A 
broadside (3-80) 

where L = Nd is the array length. This is a straight-line approximation to the curves 
in Fig. 3-20, being very accurate for d up to almost one wavelength. This approxi
mation is shown in Fig. 3-20 for N = 10. Note that (3-80) is exact for d = Al2, since 
then (3-80) equals N as in (3-79). 

The directivities for arrays with ordinary and Hansen-Woodyard endfire phase 
conditions are plotted in Fig. 3-15 as a function of spacing. Note that D = N for 
ordinary endfire when d = nAl2. The directivity increase when both the Hansen
Woodyard endfire phasing and spacing conditions are satisfied is evident in Fig. 
3-15. The directivity values for Examples 3-6 and 3-7 of 7.4 and 10.0 can be found 
in Fig. 3-15. Approximations exist for endfire arrays of isotropic elements. For an 
ordinary endfire array with a = ±.{3d and the spacing satisfying (3-48), the directivity 
is 

L 
D =4-

A 
ordinary endfire (3-81) 

Figure 3-20 Directivity as a function 
of element spacing for a broadside 
array of isotropic elements for several 
element numbers N. 
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Figure 3-21 Variation of directivity with scan angle for five-element uniformly excited 
arrays of various element spacings. The elements are isotropic. 

For an endfire array of the Hansen-Woodyard type, it is given by 

L 
D = 728-. A Hansen-Woodyard 

This approximation is shown in Fig. 3-15. 

(3-82) 

It is also interesting to examine the directivity expression of (3-78) for various 
scan angles. A few cases are given in Fig. 3-21. It is apparent from the figure that 
for d = nAl2, directivity is independent of scan angle. This will be shown mathe
matically in Sec. 3.5. For the four cases shown, the greatest directivity in the broad
side direction (00 = 90°) is for the largest spacing. In fact, we obtain even higher 
directivities for spacings up to d = 0.8A in the N = 5 case (see Fig. 3-20). As can be 
seen from this example, the directivity of linear arrays remains constant over a wide 
range of scan angles near broadside; this will be explained in Sec. 3.8. The greatest 
directivity in the endfire direction (00 = 0 or 180°) is for the largest spacing that 
satisfies the single main beam criterion of (3-48), which is d ::s; OA5A for N = 5. For 
the four spacings shown, d = OAA is the largest spacing satisfying this single endfire 
beam condition and, thus, displays the largest endfire directivity. 

Inclusion of element pattern effects increases the difficulty of array directivity 
computations. In general, directivity is evaluated by integrating to obtain fiA and 
then using D = 41TlfiA • The following formula is one of the few available for the 
directivity of linear arrays: 

1 
D = N 1 

ao 2" N-m . 
N + N2!:1 mf3d (al sm mf3d + a2 cos mf3d) cos ma 

(3-83) 

where ao, ah and a2 are given in Table 3-1 for various element patterns [5, 6]. The 
directivity of long arrays (L » A) is primarily controlled by the array factor if the 
element pattern is of low directivity and its major lobe is aligned with that of the 
array factor. In cases such as these, the approximate formulas of (3-80) to (3-82) 
can be used. 
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Table 3-1 Parameters for Use in Computing the Directivity of Uniform Current 
Amplitude, Equally Spaced Linear Arrays; see (3-83). 

Element Type Igi6,4»12 aO al 

Isotropic 1 1 1 

Collinear short dipoles (Fig. 3-16) sin2 6 2 2 -
(mf3d)2 3 

Parallel short dipoles (Fig. 3-18) 1 - sin2 6 cos2 4> 2 1 - 1 - (mf3d)2 = sin2 'Y 3 

1 10 I •..... 10 10 10 0 

Viii Viii Viii Viii Viii 
10 

10 

(a) (b) 

a2 

0 
-2 

mf3d 
1 

mf3d 

Figure 3-22 Array directivity may be viewed as the ratio of radiation intensity in the 
maximum radiation direction for an array with total input current 10 to that of an isotropic 
element with the same input current. (a) Reference isotropic antenna with input current 10 • 

(b) Equally excited array with total input current 10 • The power is assumed to divide 
equally among the elements. 

It is jmportant to note that array directivity represents the increase in the radia
tion intensity in the direction of maximum radiation over that of a single element. 
Consider a single isotropic element and an array of N equally excited isotopic ele
ments as shown in Fig. 3-22. The input power to the array is assumed to divide 
equally among the array elements, so the element powers are lIN of the input power 
and the element currents are llYN of the input current. The radiation intensity Uo 

for the isotropic element is proportional to its input power, which in tum is pro
portional to the input current squared I~. The maximum radiation intensity Umax of 
the array in Fig. 3-22b is proportional to (AFmax? = [N(IotVNW = NI~. Thus, 
Umax = NUo = DUo, since D = N for the array. 

3.5 NONUNIFORJ\lLY EXCITED, EQUALLY SPACED LINEAR ARRAYS 

We have seen that the main beam of an endfire array can be narrowed by changing 
the phase from that which is required for the ordinary endfire case. We can also 
shape the beam and control the level of the side lobes by adjusting the current 
amplitudes in an array. General synthesis procedures for achieving a specified pat
tern are presented in Chap. 8. In this section, a few simple techniques for controlling 
side lobe levels and beamwidth are introduced. Several examples are given that 
reveal the relationship between the array current distribution and the radiation 
pattern. The directivity for arrays with nonuniform excitation are also examined. 

The array factor of (3-18) can be written as a polynomial in terms of Z = eN as 
follows: 
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N-l N-l 

AF = 2: Anejn.p = 2: Anzn (3-84) 
n=O n=O 

where the current amplitudes An are real and can be different for each n. 
S. A. Schelkunoff [7] applied the algebra of polynomials to array factors. He showed 
the connection between placement in the complex plane of the N - 1 zeros (roots) 
of the array polynomial in (3-84) and the radiation pattern and element currents. 
However, we examine the relationship between the element excitation and the array 
factor in a direct fashion. It is a simple matter to investigate element current distri
butions using a computer to perform the array factor summation. We present the 
results of several such calculations. The influence of the element current amplitudes 
is apparent since we use the same five-element, broadside linear array with a half
wavelength element spacing throughout this section. 

The pattern of a uniform array with all current amplitudes equal is plotted in 
linear, polar form in Fig. 3-23a and the element currents are shown in Fig. 3-24a. If 
the element current amplitudes form a triangle as shown in Fig. 3-24b, the radiation 
pattern of Fig. 3-23b results. Notice that the side lobes are considerably smaller than 
those of the uniformly illuminated array, but at the expense of increased beamwidth. 
This increased beamwidth (from 20.8 to 26.0°) is responsible for reduced directivity 
(from 5 to 4.26). 

The side lobe reduction introduced by the triangular amplitude taper suggests 
that perhaps an amplitude distribution exists such that all side lobes are completely 
eliminated. Indeed, this is possible if the ratios of the currents are equal to the 
coefficients of the binomial series. To see how this comes about, first consider a 
two-element array with equal amplitudes and spacing d. The array factor from (3-84) 
is AF = 1 + eN and can be written in terms of Z = eN as 

AF=1+Z (3-85) 

If the spacing for this broadside array is less than, or at most equal to, a half
wavelength, the array factor will have no side lobes (see Fig. 3-3). Now consider an 
array formed by taking the product of two array factors of this type: 

AF = (1 + Z)(1 + Z) = 1 + 2Z + Z2 (3-86) 

This corresponds to a three-element array with the current amplitudes in the ratio 
1 : 2: 1. Since this array is simply the square of one that had no side lobes, the three
element array also has no side lobes. This process can also be viewed as arraying 
of two of the two-element arrays such that the centers of each subarray are spaced 
d apart. This leads to a coincidence of two elements in the middle of the total array, 
thus giving a current of 2. The total array factor is the product of the "element 
pattern," which is a two-element subarray pattern, and the array factor that is again 
a two-element, equal amplitude array. Thus, the total array factor is the square of 
one sub array pattern. Continuing this process for an N element array, we obtain 

AF = (1 + Z)N-l 

which is a binomial series; see (F-4). For N = 5, 

AF = (1 + Z)4 = 1 + 4Z + 6Z2 + 4Z3 + Z4 

(3-87) 

(3-88) 

Therefore, the ratios of the current amplitudes are 1: 4: 6: 4: 1. This current distri
bution is shown in Fig. 3-24c and the resulting pattern is shown in Fig. 3-23c. This 
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(a) Uniform (b) Triangular 

(c) Binomial (d) Dolph-Chebyshev, -20 dB SLL 

1800 f--+--t-+--3mE~"""'-+--+---j 

(e) Dolph-Chebyshev, -30 dB SLL 

Figure 3-23 Patterns of several uniform phase (80 = 900
), equally spaced (d = Al2) five

element linear arrays with various amplitude distributions. The currents are plotted in 
Fig. 3-24. (a) Uniform currents, 1:1: 1:1:1. (b) Triangular current amplitude distribution, 
1:2:3:2:1. (c) Binomial current amplitude distribution, 1:4:6:4:1. (d) Dolph-Chebyshev 
current amplitude distribution, 1: 1.61: 1.94: 1.61: 1, for a side lobe level of -20 dB. See 
Example 8-5. (e) Dolph-Chebyshev current amplitude distribution, 1: 2.41 : 3.14 : 2.41 : 1, 
with a side lobe level of -30 dB. 
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Figure 3·24 Current distributions corresponding to the patterns of Fig. 3-23. The current 
phases are zero (a = 0). Currents are normalized to unity at the array center. 

pattern is broader than either the uniform or triangular distribution cases and has 
a lower directivity, but it has no side lobes. 

From these three five-element array examples, a trend has emerged: As the cur
rent amplitude is tapered more toward the edges of the array, the side lobes tend to 
decrease and the beam width increases. This beamwidthlside lobe level tradeoff can 
be optimized. In other words, it is possible to determine the element current am
plitudes such that the beamwidth is minimum for a specified side lobe level, or 
conversely to specify the beamwidth and obtain the lowest possible side lobe level. 
This array is referred to as a Dolph-Chebyshev array and it provides a pattern with 
all side lobes of the same level. The Dolph-Chebyshev array synthesis procedure 
is explained in detail in Sec. 8.4.1. For a five-element array with an element spacing 
of a half-wavelength and a specified side lobe level of -20 dB, the Dolph-Che
byshev current distribution is plotted in Fig. 3-24d and the corresponding pattern is 
shown in Fig. 3-23d. If the side lobe level for the Dolph-Chebyshev array is specified 
to be -30 dB, the distribution is that of Fig. 3-24e and the corresponding pattern is 
shown in Fig. 3-23e. Note that the main beam is slightly broader than in the previous 
case where the side lobe level was 10 dB higher. 

The discussion of nonuniformly excited arrays thus far was for amplitudes that 
are tapered toward the ends of the linear array. If the amplitude distribution be
comes larger at the ends of the array (called an inverse taper), we expect the op
posite effect; that is, the side lobe level increases and the beamwidth decreases. 
Suppose, for example, that we invert the triangular distribution such that the am
plitudes are 3: 2: 1 : 2: 3. The resulting pattern shown in Fig. 3-25 demonstrates the 
expected decrease in beamwidth and increase in side lobe level. Although the di-
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Figure 3-25 The inverse triangular tapered, five-element linear array with d = Al2 and 
80 = 90°. 
(a) The array factor. 
(b) The current distribution, 3:2:1:2:3. 

rectivity for the inverse triangular tapered current is greater than that for the tri
angular taper of Fib. 3-23b, it is still not as large as that produced by the uniform 
distribution. 

The directivity values were given for each of the examples in this section. We 
close this section by developing the directivity expression. With little additional 
complexity, the treatment can be expanded to include unequal element spacings as 
well as nonuniform excitation. The element positions along the z-axis are Zn and 
the element current amplitudes are An. If the element phases are linear with dis
tance, then an = - f3Zn cos (Jo, where (Jo is the angle of the pattern maximum; the 
applications of this type of phasing are discussed in Sec. 3.8. The array factor of 
(3-65) is then appropriate and when normalized is 

N-l 

2: An eianejfJzn cos 8 

f«() = n=O N 1 

2: An 
n=O 

The appropriate beam solid angle expression is 

fiA = 271' fo'" If«(J)12 sin (J d(J 

(3-89) 

2 N-l N-l 1'" 
. = (N_171' )2 2: 2: AmApei(am-ap) 0 e i (3(Zm- zp) cos 8 sin (J d(J (3-90) 

2: Ak m=O p=O . 

k=O 

Evaluating the integral in the above expression and applying the result to D = 
471'tnA yields 

(3-91) 
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where an = - {3Zn cos ()o and the elements can have any positions Zn and current 
amplitudes An. This general result simplifies for a broadside, equally spaced array 
to 

an = 0, Zn = nd (3-92) 

As another special case, when the spacings are a multiple of a half-wavelength, 
(3-91) reduces to 

(~~ An r 
D = 'N""""l---

2: (Anf 

A 
d = 2' A, •.. (3-93) 

n=O 

Note that this is independent of scan angle ()o, as indicated in Fig. 3-21 for d = ,\/2. 
Also, if the amplitudes are uniform, (3-93) yields D = N as given by (3-79). For a 
further example, consider the triangular excitation with the pattern of Fig. 3-23b. 
The directivity value from (3-93) is [2(1) + 2(2) + 3]2/[2(1)2 + 2(2f + (3)2] = 4.26. 
Equation (3-93) is a very instructive formula because it shows that directivity is a 
measure of the coherent radiation from the linear array. The numerator is propor
tional to the square of the total coherent field, whereas the denominator is propor
tional to the sum of the squares of the field from each of the elements. 

There is no closed-form expression for directivity that includes element pattern 
effects in an array with weighted excitations that is analogous to (3-83), which is for 
uniformly illuminated linear arrays of simple element types. Instead directivity is 
found by integrating the pattern to find OA and using D = 41T/OA. This is a relatively 
easy task with a math applications computer package. 

An approximate formula for array directivity often appears in the literature [8]. 
It is the product of the directivity of a single element and the directivity of the array 
with isotropic elements, D = D JJ i. This formula is for large arrays without grating 
lobe effects, but the reader is cautioned that its accuracy varies greatly with the 
array geometry [9]. See Prob. 3.5-7. Generally applicable approximate directivity 
techniques are discussed in Sec. 7.3.3. 

In this section, we showed that the side lobe levels of a linear array can be con
trolled with the current amplitude distribution. To achieve low side lobe levels, it 
is necessary to taper the element current amplitudes from the center to the edges 
of the array. However, low side lobe levels are obtained at the cost of reduced 
directivity due to an increase in beamwidth. 

3.6 MUTUAL COUPLING 

To this point in our treatment of array antennas, the following assumptions have 
been used: The element terminal currents are proportional to their excitations, the 
current distributions on elements in the array are identical, and pattern multipli
cation is valid. As might be expected, in a real array the elements interact with each 
other and alter the currents (and thus impedances) from that which would exist if 
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the elements were isolated. This interaction, called mutual coupling, changes the 
current magnitude, phase, and distribution on each element. This is manifested by 
a total array pattern that is different from the no-coupling case. In addition, these 
effects depend on frequency and scan direction. In this section, we discuss the effects 
of mutual coupling on impedance and pattern and present techniques for determin
ing the impedance and pattern of an array in the presence of mutual coupling. 

3.6.1 Impedance Effects of Mutual Coupling 

The three mechanisms responsible for mutual coupling are illustrated in Fig. 3-26a. 
First is direct space coupling between array elements. Second, indirect coupling can 
occur by scattering from nearby objects such as a support tower. Third, the feed 
network that interconnects elements in the array provides a path for coupling. In 
many practical arrays, feed network coupling can be minimized through proper 
impedance matching at each element. This permits each element in the array to be 
modeled with independent generators as in Fig. 3-26b, where the mth element has 
an applied generator voltage and terminal impedance given by V~ and Z~. The 
voltage and current at the element terminals, V m and 1m , include all coupling effects. 
An array of N elements is then treated as an N port network using conventional 
circuit analysis, giving 

V1 = Zll11 + Z1212 + ... + ZlNIN 

V2 = Z1211 + Z2212 + ... + Z2NIN 
(3-94) 

V N = ZlNI1 + Z2NI2 + ... + ZNNIN 

where Vn and In are the impressed current and voltage in the nth element, and Znn 
is the self-impedance of the nth element when all other elements are open-circuited. 
The mutual impedance Zmn (= Znm by reciprocity) between the two terminal pairs 

U 
(a) Mechanisms for coupling between elements of an array. 

Vm 

Z~U} 
V!. 

(b) Model for mth element in an array. 
Figure 3-26 Mutual coupling in a 
fully excited array antenna. 
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of elements m and n is the open circuit voltage produced at the first terminal pair 
divided by the current supplied to the second when all other terminals are open
circuited; that is, 

Z = Vml 
mn In 1;=0 

for all i except i = n (3-95) 

Mutual impedance is, in general, difficult to compute or measure. However, nu
merical methods such as the method of moments discussed in Chap. 10 can be used 
to compute mutual impedance. We now discuss how the mutual impedance between 
two antennas is measured; this approach is easily generalized for the determination 
of the mutual impedance between any two elements of an arbitrary array Zmn. 
Suppose an antenna when isolated in free space has a voltage V1 and a current 110 
so the input impedance is 

V1 Zn =-
11 

single isolated element (3-96) 

If a second antenna is brought into proximity with the first, then radiation from the 
first antenna induces currents on the second, which in tum radiate and also influence 
the current on the first antenna. The second antenna can either be excited or unex
cited (parasitic), but in any case it has terminal current 12, Then the total voltage at 
the first antenna is 

(3-97) 

Similarly, the voltage at the terminals of the second antenna is expressed by 

(3-98) 

Note that (3-94) is a generalization of (3-97) and (3-98). 
Now suppose the second antenna has a load impedance Z2 across its terminals 

(V~ = 0) such that V2 = -ZY2' We can write (3-98) as 

(3-99) 

Solving for 12 , we obtain· 
. I 

I 
- - Z21I 2 - Z12I 1 

2-
Z22 + Z~ Z22 + Z~ 

(3-100) 

Substituting this into (3-97) and dividing by 110 we find that 

V1 (Z12f 
-I = Z1 = Zn - Z zg 

1 22 + 2 
(3-101) 

This expresses the input impedance in terms of the two self-impedances (Zn and 
Z22) , the mutual impedance Z12, and the load Z~ at the unexcited terminals of 
antenna 2. 

The above discussion suggests the equivalent circuit of Fig. 3-27 for the coupling 
between two resonant antennas (see Prob. 1.7-4). For a single isolated antenna (i.e., 
antenna 2 very far away), Z12 = 0, and (3-101) gives the input impedance equal to 
the self-impedance, Z1 = Zn. If antenna 2 is open-circuited, then Z~ = 00 and 
(3-101) gives Z1 = Zoe = Zn. Open circuiting implies that the current all along 
antenna 2 is reduced to zero. This occurs for antennas such as half-wave dipoles, 
where resonant behavior is eliminated by open circuiting. In other antennas (such 
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Figure 3-27 Network representation of the 
coupling between two antennas. 

as full-wave dipoles), even with an open circuit there will be current induced on the 
antenna. In this case, the second antenna should be removed. 

The general procedure for determining mutual impedance from open-circuit and 
short-circuit measurements involves the following steps [2, pp. 157-160]: 

1. Open circuit (or remove) antenna 2. Measure Zoe = Zu at the terminals to 
antenna 1. For identical antennas, Z22 = Zu. 

2. Short circuit antenna 2. Measure Zse at the terminals to antenna 1. 
3. Compute Z12, using 

Z12 = YZoc(Zoc - Zse) (3-102) 

This follows from (3-101) with Z~ = O. 

The proper sign must be chosen with (3-102). This is aided by examining variations 
with spacing in the limit of small spacing and maintaining continuity through zero 
crossings [10]. 

In order to illustrate mutual impedance behavior, consider two resonant half
wave dipoles. Figure 3-28 shows the mutual impedance between two parallel half
wave dipoles as a function of the spacing between their centers calculated using the 
method of moments in Chap. 10. Figure 3-29 presents the same results for two 
collinear half-wave dipoles. Examining these figures reveals the following trends, 
which are general guidelines [11]: 

'" 
~ 
~ 

~ 
~ 

1. The strength of the coupling decreases (but not smoothly) as spacing increases, 
roughly as lId2

• 

2. The far-field pattern of each element predicts coupling strength. If the ele
ments are oriented such that they are illuminated by a pattern maximum, then 
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Figure 3-28 The mutual impedance between two resonant parallel dipoles as a function of 
their spacing relative to a wavelength. (a) The real part. (b) The imaginary part. 
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Figure 3-29 The mutual impedance between two resonant collinear dipoles as a function 
of spacing relative to a wavelength. (a) The real part. (b) The imaginary part. 

the coupling will be appreciable. If, on the other hand, the individual patterns 
exhibit a null in the direction of the coupled antennas, the coupling will be 
small. 

3. Elements with electric field orientations (i.e., polarizations) that are parallel 
will couple more than when collinear. 

4. Larger antenna elements with broadside patterns have lower coupling to 
neighboring elements. 

For example, two similar parallel elements such as dipoles will couple much more 
strongly than two collinear dipoles, as dictated by rules 2 and 3 and as seen from 
Figs. 3-28 and 3-29. 

The input impedance of the mth element in the presence of all elements and with 
all mutual coupling included is found from (3-94) as 

V m • II 12 IN () Z = - = Z 1 - + Z 2 - + ... + Z N - 3-103 
m 1m m 1m m 1m m 1m 

This is referred to as the active impedance, or driving point impedance. This equa
tion clearly shows the dependence of element input impedance on the mutual im
pedances and the terminal currents. This include the phase of the currents, which 
are varied in phase-scanned arrays. Active impedance can be found from (3-103) 
using mutual impedance values calculated as in Fig. 3-28 or from measurements 
using (3-102). 

3.6.2 Array Pattern Evaluation Including Mutual Coupling 

As we have mentioned, mutual coupling not only affects impedance, but also ra
diation properties such as far-field pattern and polarization. For complete accuracy, 
the pattern of an array antenna must include the variations in the excitation currents 
as well as the patterns of each element acting under the influence of all coupling 
effects. This is a difficult task; however, simplifying approximations are usually pos
sible. Here, we use the model of Fig. 3-26a that represents the usual application, 
often referred to as "free excitation," which models the constant incident power 
situation of Fig. 3-22. It is well suited to the scattering matrix formulation discussed 
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in [2, Chap. 3] and [8, Sec. 2.1]. Two common approaches to the evaluation of array 
patterns that use the element currents and element patterns are presented here [10]. 

In the isolated element pattern, all coupling effects in the total array pattern are 
accounted for in the excitations: 

N 

Fun (e, <f» = gi( e, <f» 2: Imeffm (3-104) 
m=l 

where gm is the total phase contribution (usually referenced to the center of the 
array) due to spatial phase delay. It is the classical array pattern approach of Sec. 
3.3 consisting of the product of an isolated element pattern gi( e, <f» and an array 
factor. Without coupling effects, the currents {1m} vary in proportion to the excita
tion voltages. Coupling effects are included using the simple circuit model of the 
mth element in Fig. 3-26b: 

V~ 
1m = zg + Z 

m m 
(3-105) 

In the ideal case of an infinite array of identical elements with equal spacings, each 
element sees the same operating environment and active impedances are identical 
so that all Zm equal Z A' Then the currents are proportional to voltages across the 
element terminals: 

V~ 
1m = zg + ZA OC V m (3-106) 

This situation applies to large, equally spaced arrays. It must be pointed out that 
the common implementation of (3-104) uses the approximation of (3-106) for finite 
arrays, thereby ignoring terminal current variations due to mutual coupling and only 
including generator voltage variations. It is difficult to obtain accurate current in
formation so that (3-104) can be evaluated, and the active-element pattern method 
is usually employed; this method is discussed next. 

In the active-element pattern approach, all coupling effects are accounted for 
through the active element. The active-element pattern g=e(e, <f» is obtained by 
exciting only the nth element and loading all other elements with the generator 
impedance zg. The active-element pattern arises from direct radiation from the nth 
element combined with fields reradiated from the other elements, which in tum 
receive their power through spatial coupling from the element n. The array pattern 
in this formulation is 

N 

Fun(e, <f» = 2: g=e(e, <f»/n efgn (3-107) 
n=l 

Here, the currents {In} are proportional to excitation voltages {Vn} as in (3-106). All 
mutual coupling effects are incorporated into the active-element patterns 
g~(e, <f», which depend on the element characteristics and the array geometry. To 
represent the possibility of gain variations, the active-element pattern levels are 
relative to a reference element near the center of the array. 

It would be tedious to measure active-element patterns for each element in an 
array. Fortunately, this is usually not necessary. For a large array of identical ele
ments in an equally spaced array, each element sees the same environment of near
est neighbors, except for the edge elements. The appropriate approximation is to 
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factor (3-107) using an average active-element pattern gae(8, c/J), which is the nor
malized pattern for a typical central element in the array: 

N 

Fun(8, c/J) = gai8, c/J) L In ejgn (3-108) 
n=l 

The advantage of this approach is that the summation in the above equation is the 
array factor based on simple theory without mutual coupling. All coupling effects 
are contained in the average active-element pattern, which is found by a single 
pattern measurement of a central element in a large array. 

Figure 3-30 shows measured active-element patterns for a linear array of eight 
elements spaced 0.57 A apart. The polar-dB patterns shown above each element 
correspond to the case where that element is active and the remaining elements are 
connected to loads of zg. The pattern of the interior element (#5) is very symmetric. 
The active-element patterns for the remaining interior elements (#2, 3, 4, 6, 7) are 
nearly identical to that for #5. The patterns of the edge elements (#1 and #8) are 
slightly asymmetric, but are nearly mirror images of each other. If the pattern asym
metries for the edge elements are not severe, the active-element pattern for a central 
element can be used for gai8, c/J) to find the total array pattern with little error. 
This is found by writing (3-108) in normalized form giving 

I F(8, c/J) = gae(8, c/J)f(8, c/J) I 
where 

gae(8, c/J) = average active-element pattern 
f(8, c/J) = array factor 
F( 8, c/J) = array pattern 

This is the modeling approach usually used in practice. 

(3-109) 

The use of "active" is different for active impedance and for active-element pat
tern. Active impedance for the nth element in an array Zn is defined with all ele
ments in the array excited. In contrast, the active-element pattern g.;e(O, cp) is 
defined for the nth element excited and all other elements loaded in their generator 
impedance. This distinction should be clear; if not, the student should review this 
section. 

The isolated- and active-element patterns can be quite different when mutual 
coupling is strong. Similarly, the total array pattern computed with and without 
mutual coupling effects included can be significantly different. Array patterns com
puted with and without mutual coupling are compared in Sec. 10.11 for dipole ar-

'tv -10 ~" 
I -20 \ 

• • • 
3 4 5 6 8 

Figure 3·30 Measured active-element patterns for three elements, an interior element (#5) 
and the end elements (#1 and #8), of a linear array of eight microstrip patch elements 
spaced 0.57 A apart. 
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rays; also see [12]. In addition to pattern, the gain and polarization of the total array 
are affected by mutual coupling. The same guidelines discussed in Sec. 3.6.1 for 
mutual impedance also apply to patterns. Mutual coupling is especially important 
in phased arrays and is revisited in Sec. 3.8. 

3.7 MULTIDIMENSIONAL ARRAYS 

Linear arrays have a number of limitations. For instance, they can be phase-scanned 
in only a plane containing the line of the elements' centers. The beamwidth in a 
plane perpendicular to the line of element centers is determined by the element 
beamwidth in that plane. This usually limits the realizable gain. Thus, multidimen
sional arrays are used for applications requiring a pencil beam, high gain, or main 
beam scanning in any direction. With advances in fabrication and integrated feed 
electronics, the costs of large multidimensional arrays are affordable in many situ
ations. Multidimensional arrays are classified by three characteristics: The geometric 
shape of the surface on which the element centers are located, the perimeter of the 
array, and the grid geometry of the element centers. The surface on which elements 
are placed can be linear, circular, planar, etc. The perimeter of planar arrays, for 
example, is usually circular, rectangular, or square in shape. Figure 3-31 illustrates 
a planar array with a rectangular perimeter. The array grid can have equal or un
equal row and column spacings. A planar array with equal element spacings of dx 

and dy in the principal planes such as in Fig. 3-31 is referred to as having a rectan
gular grid. If dx = dy , the grid is said to be square. A triangular grid is also widely 
used. When the array conforms to a complicated surface such as the fuselage of an 
aircraft, the array is said to be conformal. In this section, we present techniques for 
analyzing arrays of arbitrary geometry as well as a few important special case 
geometries. 

The pattern multiplicatidn principles developed in Sec. 3.3 for linear arrays apply 
to arrays of any geometry as long as the elements are similar. That is, if the elements 
are identical and oriented in the same direction, the total array pattern is factorable 
as in (3-109), which includes mutual coupling effects. This is the usual situation and 
permits us to confine attention to the array factor f(9, "') when studying multidi
mensional arrays. In this section, we develop the array factor for an arbitrary 
geometry. 

The elements for an arbitrary three-dimensional array are located with position 
vectors from the origin to the mnth element: 

z y 

---·---·----;----·7 
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:?*f1x~. 
dy Rectangular 
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m M 

• 
/ . / 

/ 
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perimeter 

(3-110) 

Figure 3-31 Geometry of a planar array. 
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The .array factor is then 
N M 

AF(O, c/J) = 2: 2: Imnej«(3i·rmn-amn) (3-111) 
n=l m=l 

which, when normalized, is f( 0, c/J). This equation is general but is directly applicable 
to the common situation of an array on a surface. The double summation is useful 
in geometries that employ "rows" and "columns." The phase term amn is that por
tion of the excitation current phase used to scan the main beam and is shown ex
plicitly. A common geometry for phased arrays is planar. The array factor for a 
planar array in the xy-plane, as in Fig. 3-31, follows from (3-111) as 

N M 

AF(O, c/J) = 2: 2: Imnejamnejl;mn 
n=l m=l 

where 

~mn = (3i· i':'n = (3[x':'n sin 0 cos c/J + y':'n sin 0 sin c/J] 
amn = - (3[x':'n sin 00 cos c/J 0 + y':'n sin 00 sin c/J 0] 

00> c/Jo'= main beam pointing direction 

(3-112) 

This formulation is a generalization of that given for a linear array in Sec. 3.2.2; 
note that the z-axis is normal to the plane of the array, whereas in our treatment 
of linear arrays the z-axis is along the array. If all rows parallel to the x-axis have 
the same current distribution and if all columns have identical current distributions, 
then the current is separable (e.g., Imn = Ixm1yn) and (3-112) reduces to 

M N 

AF( 0, c/J) = 2: Ixmejl;xm. 2: Iynejl;yn (3-113) 
m=l n=l 

where the phase of the current for beam steering is not shown explicitly and 

~m = {3x':' sin 0 cos c/J and ~yn = (3y ~ sin 0 sin c/J 

This is a product of two linear array factors associated with the row and column 
current distributions. The patterns in the principal planes ( c/J = 0°, 90°) are those of 
the corresponding linear arrays (row, column). Planar arrays normally have sepa
rable current distributions, so linear array analysis can be applied directly to find 
the principal plane patterns. 

For,planes off the principal planes, called intercardinal planes, the pattern is the 
product of the row and column linear array patterns if the current distribution is 
separable. This means that in an off-principal plane away from the main beam, the 
side lobes will be very low if the principal plane patterns have low side lobes, since 
they are a product of low side lobe levels; see Fig. 7-7 for the analogous situation 
in aperture antennas. Another powerful equivalent linear array technique can be 
used for off-principal planes, whether the current distribution is separable or not. 
The technique works by projecting each element onto a line in the pattern plane. 
The projection lines locate elements in the equivalent array. If mUltiple arrayele
ments lie on the same projection line, the currents are summed to determine the 
equivalent array element current. 

Arrays are often operated with a conducting ground plane parallel to the plane 
of the array to greatly reduce radiation in the hemisphere behind the ground plane. 
This increases the array directivity. The array is usually placed a quarter-wavelength 
in front of the array. This gives a total of a half-wavelength path length for the 
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reflected waves from each element. But an additional 180° phase shift is encountered 
during reflection, so the reflected wave reinforces the direct wave for each element. 
The image theory of Sec. 2.3.1 is used to find the pattern. See Probs. 3.7-7 and 3.7-8. 
A second way to find the pattern of an array backed by a ground plane is to consider 
each element and its image as a pair and form a new element pattern in place of 
each element in the planar array. See Prob. 3.7-9 for an example. 

If sufficient symmetry exists, the patterns of multidimensional planar arrays can 
often be found using sequential linear array analysis along each principal direction; 
see Prob. 3.7-10. Multidimensional arrays will be treated at other points in the book. 
Circular and planar arrays are discussed in Sec. 10.11. The directivity of multidi
mensional arrays can be found using the techniques in Sec. 7.3. 

3.8 PHASED ARRAYS AND ARRAY FEEDING TECHNIQUES 

Many antenna system applications require that the main beam pointing direction 
be changed with time, or scanned. This can be done by mechanically slewing a single 
antenna or an array with fixed phase to the elements. However, mechanical slewing 
requires a positioning system that can be costly and scan too slowly. Phased arrays, 
on the other hand, scan the main beam at electronic speeds. In general, a phased 
array is defined as an array antenna whose main beam maximum direction is con
trolled by varying the phase or time delay to the elements. Phased arrays are used 
in radar where rapid target tracking is required, in direction finding, and in com
munications applications where the radiation pattern must be adjusted to accom
modate varying traffic conditions. Array technology is moving toward the integra
tion of transmit/receive electronics and associated controllers. The antenna is then 
a subsystem rather than a separate device. The term smart antenna has been coined 
for antennas that include control functions such as beam scanning. Smart antennas 
are finding wide use in several commercial and military applications. A unique ad
vantage offered by phased arrays is the ability to form multiple main beams pointing 
in different directions simultaneously. In situations that require two-dimensional 
scanning, hybrid approaches are used that combine mechanical pointing in one 
plane and electronic scanning in the orthogonal plane. An example is AWACS 
(Airborne Warning and Control System), which is flown on top of U.S. military 
aircraft. The array of 4,000 waveguide slots is scanned electronically in elevation 
and rotated mechanically inside a radome for azimuth scan. This airborne surveil
lance radar achieves ultra-low side lobes that are below -40 dB. In this section, we 

cexplain the methods of scanning and the feed networks required to support scanning 
functions. 

3.8.1 Scan Principles 

The principles of phase scanning have been discussed throughout this chapter. The 
goal is to form a smooth phase front (i.e., a wave focused at infinity) that is tipped 
to change the main beam direction, which is normal to the phase front. We illustrate 
this with a linear array along the z-axis that can have unequally spaced elements by 
generalizing (3-65): 

N-l N-l 

AF(O) = L Inei€n = L Anei(an+6n}ei€n (3-114) 
n=O n=O 
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The spatial phase for elements with arbitrary positions {Zn} along the z-axis is 

~n = f3zn cos (J (3-115) 

The current for the nth element has magnitude An and phase an + 8n, where an 

is the portion of the phase that varies linearly with distance along the z-axis and is 
responsible for steering the main beam peak to angle (Jo: 

(3-116) 

Since an varies linearly with position Zn , it is referred to as linear phase, or uniform 
progressive phase. The slope, or constant of proportionality, is - f3 cos (Jo' The re
maining part of the excitation phase 8n is nonlinear with distance and is useful in 
beam shaping as discussed in Sec. 8.3. For an equally spaced array, Zn = nd and 
an = na, where a = --:- f3d cos (Jo as in (3-36). 

As the pattern of an array is scanned off broadside, the main beam widens. This 
effect is called beam broadening. We illustrate this for a linear array of five isotropic 
elements spaced O.4A apart. Figure 3-32 shows a series of patterns for increasing 
off-broadside scan angles. Notice the increase in the beamwidth of the main beam 
with scan off broadside. The full pattern for this array is obtained by rotating the 
pattern about the z-axis. Two examples of three-dimensional patterns are shown in 
Figs. 3-32b and 3-32f. As the main beam is scanned away from broadside, the in
crease in beam solid angle of the main beam is just about compensated for by the 
reduced solid angle of the total pattern (formed by rotation of the pattern about 
the array axis). Thus, directivity of the array factor remains relatively constant with 
scan for spacings less than a half-wavelength and for scan angles not close to endfire; 
see Fig. 3-21. For spacings slightly greater than a half-wavelength, a grating lobe 
begins to appear for scan angles near endfire and the directivity decreases; again, 
refer to Fig. 3-21. Since isotropic elements were assumed, these remarks apply to 
array factors. When the element pattern effects are included for the case of a di
rective, broadside element pattern, directivity will decrease with scan angle. 

As we noted in Sec. 3.1, for half-wavelength spacings there is exactly one period 
of the array factor in the visible region and no grating lobe will be visible, except 
for endfire operation that produces two endfire beams. For spacings larger than a 
half-wavelength, part or all of a grating lobe may be visible depending on scan angle. 
For one wavelength spacing or more, there will be visible grating lobes. When spac
ings of several wavelengths are used, many grating lobes are visible and the array 
is called an interferometer. Each major lobe has a narrow beamwidth but there are 
many of them. Large element spacings, however, permit electrically large elements 
with relatively narrow beamwidth patterns that act to decrease the size of the grating 
lobes. In normal applications, grating lobes limit the performance of phased arrays 
and are to be avoided. Grating lobe peaks will be not appear in the visible region 
if element spacings are restricted as follows: 

d< A 
1 + Icos (Jomaxl 

to avoid grating lobes (3-117) 

where (Jomax is the maximum main beam scan angle with respect to the line of the 
array. This relation is derived by solving (3-38) for the first grating lobe at '" = 27T, 
where (J = 0°. For broadside operation, (Jomax = 90° and (3-117) gives d < A. If 
scanning to endfire «(Jo max = 0, 180°) is desired, then d < Al2. This result is based 
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180° I-+--+-H::::*:--t-----if-+--I 0° 

(d) 8 0 = 30° (bifurcated pattern) 

1800 1--+--+-I---':E.---T"""-1t--+--f z 

(e) Endfrre (80 = 0°) if> Endfrre (80 = 90°) 

Figure 3-32 Example of phase-scanned patterns for a five-element linear array along the 
z-axis with elements equally spaced at d = 0.4,\ and with uniform current magnitudes for 
various main beam pointing angles 60 , 

on an omnidirectional element pattern in the plane of scan. Larger spacings are 
permitted for directive element patterns since they diminish the effect of grating 
lobes. 

As we saw in the previous section, the above linear array analysis can also be 
applied to find the patterns of a planar array. The array factor and associated phases 
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of the individual elements amn needed to steer the main beam peak to the direction 
(900 CPo) for a multidimensional array are given in (3-112). 

3.8.2 Feed Networks for Beam Scanning 

The many attractive features of arrays come with the penalty that each element of 
the array must have a transmission path to the receiver (or transmitter). In addition, 
phased arrays must control the phase of the elements. The hardware-connecting 
elements of an array are called a feed network or beam-forming network (BFN). 
Feed networks can take one of three basic geometric forms: parallel, series, or space, 
as illustrated in Fig. 3-33. The parallel feed of Fig. 3-33a is also called a corporate 
feed because of its similarity to an organization diagram of a corporation. The path 
length to each element from the feed point is equal; thus, the phase of the excitations 
will also be equal. Note that impedance effects must be included in feed design. For 
example, parallel combining of two elements will half the impedance. Techniques 
for impedance matching are discussed with microstrip arrays in Sec. 5.7. 

The series feed of Fig; 3-33b is easy to construct and requires little feed network 
hardware. As the wave travels down the transmission line, it is attenuated because 
of power radiated from the elements and this power loss must be accounted for 
when determinating the element excitations. The phase of each element is deter
mined by the connecting transmission line lengths and mutual coupling effects. Se
ries-fed arrays can be scanned by changing frequency, which changes the electrical 
length between elements. This is referred to as frequency scanning. However, except 
for some radar applications, system constraints usually require the frequency to be 
fixed. An example of a series-fed array is a waveguide with slots milled in one wall 
that act as radiating elements. 

(a) Parallel, or corporate, feed. 

e-< 
Primary 
transmitting 
antenna 

>----0-< 
>----0-< 
>----0-< 
>----0-< 

Pickup Secondary 
antenna transmitting 

antenna 
(c) Space feed. 

Figure 3-33 Types of array feed networks. 

(b) Series feed. 

(d) Parallel-series feed. 
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The losses, cost, weight, and size of a BFN can be avoided by using a space feed 
as illustrated in Fig. 3-33c. In the space feed, a primary antenna is connected to the 
transmitter and illuminates several pickup antennas that are connected to secondary 
radiating elements that form the array. The amplitude distribution of the array is 
determined by the primary antenna pattern and pickup antenna placement. The 
phase introduced by different path lengths to each pickup antenna can be compen
sated for with phase shifters on the radiating elements, which can also used for 
beam scanning. 

The three types of feed geometries were illustrated for linear arrays, but they also 
apply to multidimensional arrays. The parallel feed network (realized with radio 
frequency interconnections) for arrays with many elements will become large. To 
avoid this, multidimensional arrays often employ a hybrid combination of feed 
types. A parallel-series hybrid feed for a planar array is shown in Fig. 3-33d. The 
rows are fed in parallel and the columns are series-fed. The parallel-parallel hybrid 
feed facilitates the use of sub arrays that have the same amplitude andlor phase in 
each element of the subarray. The feed types are illustrated here as operating at 
the same frequency as that of the antenna. However, down conversion to a lower 
frequency before beam forming is often employed. This permits the use of less 
expensive electronic components to form the beam and often includes digital pro
cessing. This is a popular approach in modern adaptive arrays for use in both mil
itary and commercial wireless applications. Another non-RF realization is the 
optical feed, which is a recent innovation that converts radio waves to optical fre
quencies and back again in the feed network to take advantage of the small size of 
optical devices. 

The physical construction of the feed network and transmit/receive electronics 
behind the array face takes one of two forms, brick or tile. In the brick construction, 
the complete feed hardware modules for one (or a few elements) is placed perpen
dicular to the array face behind it. The tile construction consists of several parallel 
layers with each layer containing the same components; that is, one layer might 
have all the phase shifters and another might have all the low-noise amplifiers. 

Beam steering is accomplished in the feed network using electronic scanning. 
There are four methods of electronic scanning: frequency scanning, phase scanning, 
time-delay scanning, and beam switching [13]. Frequency scanning was discussed 
above in association with series feeds. Phase scanning is electronic beam pointing 
by variation of the element current phases and it also was discussed above. Time
delay scanning is a form of phase scanning in which phase change is achieved by 
switching in different lengths of transmission paths. It overcomes the instantaneous 
bandwidth limitations of phase shifters. Beam switching involves the use of different 
transmission paths in the beam-forming network for each beam and has one input 
port for each beam. A beam-switched BFN, such as the Butler matrix, avoids the 
use of variable phase shifters [14, 15]. This multiple beam feed network has beam 
ports that can be used to form simultaneous beams, or the port outputs can be 
weighted and combined for pattern control. 

Electronic beam scanning is commonly realized with a phased array using phase 
shifters that are either analog or digital. Analog phase shifters can be set to any 
phase over its range. Digital phase shifters introduce 2M discrete multiples of 360°/ 
2M phase, where M is the number of bits of the phase shifter. For example, a 3-bit 
phase shifter can be set to one of the following 23 = 8 phases; 0, 45, 90, 135, 180, 
225, 270, or 315°. Typically, phased arrays require 4- to 7-bit phase shifters, which 
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have 22.5 to 2.80 phase increments. Quantization of the phase with digital phase 
shifters increases the side lobe levels [8, Sec. 7.3]. There are many forms of phase 
shifters that can be broadly classified as either ferrite or semiconductor-diode [15]. 
Ferrites in the transmission path alter the phase in proportion to an applied static 
magnetic field. Ferrite phase shifters can be either digital for fast switching or analog 
for more accuracy, lower loss, and lower cost. Diode phase shifters offer fabrication 
advantages and can be integrated with other feed network electronics. 

The simplest BFN is completely passive and consists of power dividers and fixed 
phase shifters. Placement of active devices at the subarray level gives a semidistri
buted approach that reduces the effects of active device failure. The most flexible 
design employs fully distributed BFNs with active devices at the element level. 

Another feed configuration used in tracking systems is the sum and difference 
feed. This feed network combines the left and right halves of an array both in-phase 
and out-of-phase, creating a sum pattern and a difference pattern. The sum pattern 
is that of a conventional array with a broad main beam for coarse angular tracking 
of distant sources in communications or targets in radar. The difference pattern has 
a sharp on-axis null that is used for fine angle tracking. See Prob. 3.8-7. 

3.8.3 Scan Blindness 

Phased array performance varies during beam scanning mostly due to the changes 
introduced by mutual coupling. The most serious of these effects is scan blindness, 
which is manifested by a dramatic reduction of radiated power for certain "blind" 
scan angles. In transmitting applications such as radar, when the feed network is 
configured to steer to a blind scan angle, generator power is reflected rather than 
radiated, which can damage the transmitter electronics. If r m(Oo> CPo) is the voltage 
reflection coefficient of the mth element in a fully excited phased array, the power 
delivered to that element is 

(3-118) 

where Pin~ is the incident power; see Prob. 3.8-6. Based on this, we can express the 
active-element pattern as [16] 

- (3-119) 

where g;(Oo> CPo) is the isolated element pattern. If we factor the total array pattern 
as in Sec. 3.6, the average active-element pattern for large arrays with equal element 
spacings is 

(3-120) 

As the array is scanned by changing (00) CPo), the peak of the total array pattern 
follows the active element pattern. 

Usually, an array is matched at broadside so that nO, 0) = 0 and impedance 
mismatch increases with scan angle away from broadside [8, p. 66]. If scanned far 
enough, a complete mismatch may occur and Inoo> CPo)1 = 1. Then (3-120) shows 
that the active-element pattern is zero and no radiation occurs, giving scan blindness. 
Scan blindness is associated with surface wave-like phenomena and usually occurs 
for spacings less than those for which grating lobes occur; see (3-117) [8, p. 343]. It 
usually can be avoided by using spacings of a half-wavelength or less. Scan blindness 
is illustrated with a planar array of dipoles in Sec. 10.11.3. 
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3.9 PERSPECTIVE ON ARRAYS 

One of the more difficult choices the antenna designer has to make is between an 
array and a single large antenna such as a reflector. The decision is based on avail
able space, power handling, cost, and requirements on scanning. Large printed ar
rays can be constructed at reasonable cost, but feed network losses reduce overall 
efficiency. The tradeoff between arrays and aperture antennas is discussed further 
in Sec. 5.7. 

Electronic scanning arrays will find many applications in the future as fabrication 
costs decrease. Smart antennas make use of electronic scanned arrays. Arrays also 

"- offer the opportunity for combining several functions in a single antenna using a 
multifunctional array. For example, several communication functions can be han
dled along with radar through the same array. The many antennas protruding from 
a vehicle can be replaced by one multifunctional array on the surface of the vehicle. 
Arrays can also be used with aperture antennas. One such use is an array placed at 
the focal point of a reflector antenna to achieve rapid electronic scanning of the 
reflector beam over a limited angular sector while the whole reflector is moved 
mechanically. 

In this chapter, the relationship between a current distribution in space and the 
resulting radiation pattern was established. We found that the array factor for an 
equally spaced array has the form of a Fourier series; see (3-18). In the next chapter, 
we will see that the pattern factor for a continuous linear current distribution has 
the form of a Fourier transform. The same general principles apply to both discrete 
and continuous current distributions. For example, as the current magnitude taper 
increases toward the ends of the source, the side lobes decrease and the main beam 
widens. The operation of continuous aperture antennas discussed in subsequent 
chapters can be understood using the principles introduced in this chapter for array 
antennas. 
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PROBLEMS 

3.1-1 Consider an array of two elements spaced one wavelength apart with currents that are 
equal in amplitude and 180° out-of-phase. 

a. Use the inspection method to rough sketch the polar plot of the array factor. 
b. Derive the exact array factor as a function of 8 if the elements are on the z-axis. 
c. For what angles of 8 is this array factor maximum? 
d. What is the expression for the normalized array factor If( 8)1? 
e. Show that (3-20) reduces to your answer in (d). 

3.1-2 Use the techniques of Fig. 3-9 to obtain a polar plot of the array factor of the array 
given in Prob. 3.1-I. 
3.1-3 Use the techniques of Fig. 3-9 to obtain a polar plot of the array factor of a two-element, 
one-wavelength spaced array with equal amplitude and equal phase currents (Example 3-4). 
3.1-4 Usually, the interelement spacing of an array is about one-half wavelength. Spacings 
much greater than this produce major lobes in undesired directions. To illustrate this point, 
use the techniques of Fig. 3-9 to sketch the array factor for a two-element array with equal 
amplitude, in-phase elements in polar form for the following spacings: (a) d = 3A14 and (b) 
d = 2A. Examples 3-1 and 3-4 and this problem show the effects of spacing on an array of 
fixed excitation. 
3.1-5 Using the array factor for a two-element broadside array (a = 0) with equal current 
amplitude point source elements, show that the directivity expression is 

D = 2 
1 + (sin f3d)/ f3d 

Hint: Change from variable 8 to 1/1 = f3d cos 8. 
3.1-6. Plot the directivity expression of Prob. 3.1-5 as a function of d from zero to two wave
lengths. 
3.2-1 Prove that the array factor magnitude If(I/I) 1 for a uniformly excited, equally spaced 
linear array is symmetric about 1/1 = 71'. 

3.2-2 Show that the array factor expressions (3-20) and (3-35) for a two-element uniformly 
excited array are identical. 
3.2-3 Drive (3-44). 
3.2-4 The expression for the half-power beamwidth of the array factor for a broadside, uni
formly excited, equally spaced, linear array may be approximated as 

A 
HP = K Nd 

for Nd » A. Determine K for N = 10 and 20, and compare to (3-45). 
3.2-5 In this problem, the effects of phasings and spacings on a simple array are illustrated. 
Consider an equally spaced five-element array with uniform current amplitudes. Sketch the 
array factors for: 

a. d = A12, broadside case (80 = 90°). 
b. d = A, broadside case. 
c. d = 2A, broadside case. 
d. d = A12, 80 = 45°. 
e. d = A12, 80 = 0°. 

These five plots can be obtained from one universal pattern plot as discussed in Sees. 3.1 and 
3.2. For the last two cases, determine the interelement phase shift a required to steer the 
main beam as specified. 
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3.2-6 Repeat Prob. 3.2-5 using a computer code (see Appendix G). 
3.2-7 Design a five-element uniformly excited, equally spaced linear array for: 

a. Main beam maximum at broadside. 
b. Main beam maximum at 45° from broadside «(Jo = 45°). 

In each case, select the element spacing and linear phasing such that the beamwidth is as 
small as possible and also so that no part of a grating lobe appears in the visible region. 
Sketch the polar plots of the patterns. 
3.2-8 Design and plot the array factor for an ordinary endfire, five-element, uniformly excited 
linear array with spacings d = 0.35..\.. Use (Jo = 180° and find a. 
3.2-9 Design a linear array of five isotropic elements for ordinary endfire spacing and phasing 
using the maximum spacing. Plot the polar pattern. 
3.2-10 Design a linear array of five isotropic elements for Hansen-Woodyard increased di
rectivity with d = 0.35..\.. Plot the polar pattern. (Note the differences in the results for Prob. 
3.2-8 and Example 3-7.) 
3.2-11 Design a linear array of 10 isotropic elements for Hansen-Woodyard increased di
rectivity with d = 0.4..\.. Plot the polar pattern. 
3.2-12 Show that the array factor for a uniformly excited, equally spaced linear array ap-

'proaches the pattern factor of a uniform line source (i.e., neglect the element factor) in the 
limit of small array element spacings. 
3.3-1 Two collinear half-wave dipoles are spaced a half-wavelength apart (but not quite 
touching) with equal amplitude and equal phase terminal currents. What is the expression: 
for the far-field pattern F«(J) if the element centers are along the z-axis? Use pattern multi
plication ideas to rough sketch the pattern. 
3.3-2 a. Repeat Prob. 3.3-1 for one-wavelength spacing. 

b. Plot F( (J) directly to check your pattern multiplication result. 
3.3-3 Two parallel half-wave dipoles are spaced one wavelength apart with equal amplitude 
and equal phase terminal currents. The element centers are along the z-axis and the dipoles 
are parallel to the x-axis. Write the expressions for the far-field pattern F( (J, cp). Rough sketch 
this pattern, using pattern multiplication ideas, in both the xz-plane and yz-plane. 
3.3-4 A linear array of three, quarter-wavelength long, vertical monopoles is operated against 
an infinite, perfectly conducting ground plane. Let the element feeds be along the z-axis, the 
ground plane in the yz-plane, and the monopoles in the x-direction. 

a. Design the array as a Hansen-Woodyard increased directivity endfire array, that is, 
determine the element spacings and phasings (choose d = 0.3..\.). 

b. Use the universal array factor plot for three uniformly excited elements to obtain a 
polar plot of the array factor for this problem. 
. c. Write the expression for the complete pattern. 

d. Using pattern multiplication ideas, rough sketch the complete far-field patterns in the 
xz-plane and yz-plane. 
3.3-5 Three collinear half-wave dipoles are spaced d = 3/4"\' apart and are excited with uni
form magnitude and phase. Use simple array theory to obtain the polar-linear pattern, start
ing with the universal pattern plot followed by pattern multiplication. 
3.3-6 An array of four identical small circular loop antennas oriented with the loops in the 
xy-plane are spaced 3,.\/4 apart along the x-axis. For equal amplitude and phase excitation, 
use simple array theory and pattern multiplication to obtain the polar-linear patterns in the 
xy-, xz-, and yz-planes. 
3.3-7 Suppose a truck uses a Citizens Band radio to communicate at 27 MHz. The antenna 
system is two quarter-wave monopoles parallel to the x-axis (assumed to operate above a 
perfect ground plane) mounted on mirrors 2.78 m apart along the z-axis and fed with equ~l 
amplitude and phase. Use simple array theory to obtain sketches of the array patterns in the 
three principal planes. 
3.3-8 Design problem. Design a broadside linear array of four parallel half-wave dipole an
tennas for as narrow a beamwidth as possible and with no level outside the main beam above 
-8 dB relative to the main beam peak. The excitations are uniform. (a) Find the spacing d. 
(b) Sketch the polar patterns in the E- and H-planes. 
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3.4-1 Calculate the directivities in decibels for the following broadside arrays of point 
sources: 

a. N = 2, d = Al2. 
b. N = 10, d = Al2. 
c. N= 15, d = A. 

3.4-2 Evaluate (3-78) for d = 3A18 and N = 10 for: 
a. Broadside, and compare the results to that of (3-80), 
b. Ordinary endfire, and compare 'the result to that of (3-81). 

3.4-3 Evaluate (3-78) and plot D as a function of dlA for N = 5 and endfire operation. 
Compare to Fig. 3-21. 
3.4-4 The approximate directivity formula of (3-80) for long, broadside linear arrays of iso
tropic elements can be checked in the following two ways using HP = 0.886 AIL from (3-45): 

a. Use D = 4?T/OA to find D in terms of AIL by approximating OA as 2?T HP. 
b. It has been shown [17] that the following formula gives good results for broadside 

collinear arrays: 

101 
D = HP d - 0.OO27(HP d)2 

where HP d is the half-power beamwidth of the array pattern in degrees. Use HP "" 0.886 AIL. 
and L » A to find D "" KLI A; give the value of K. 
3.4-5 Use a computer to calculate the directivity for the arrays given in Table 3-1. Treat N, 
DIA, and a input variables. Use it to (a) plot the curve in Fig. 3-20 for N = 5, and (b) plot a 
directivity versus dl A curve for an array of eight collinear short dipoles. 
3.4-6 Show that D = N for an ordinary endfire linear array of uniformly excited isotropic 
elements with spacing d = Al4. 
3.4-7 Evaluate the directivity in decibels of a uniformly excited, broadside linear array of 
eight isotropic elements spaced o.n apart in two ways: (a) use Fig. 3-20 and (b) use (3-80). 
3.4-8 Compute the exact directivity of a broadside linear array of four isotropic elements 
with uniform currents and spaced 0.8A apart. Compare to the approximate result based on 
2LIA. ' 
3.4-9 Derive the normalization factor in the numerator of the directivity expression in (3-78). 
Evaluate for a Hansen-Woodyard array of five isotropic elements. 
3.4-10 Design problem. Base station communication antennas are often constructed using a 
collinear array of half-wave dipoles oriented vertically to produce an omnidirectional pattern 
in the horizontal plane. Th objective in this problem is to maximize gain by selecting the 
proper element spacing. Assum' uniform amplitude and phase excitation, design a maxi
mum-directivity four-element array the middle of the cellular telephone band (824 to 
894 MHz). Show solution details. Give the values of spacing d in wavelengths and directivity 
D in decibels at midband and at the band edges. Plot the vertical pattern in polar-linear form. 
Sketch the array, showing its physical length along with a feed network. 
3.5-1 Use an array pattern plotting computer code (see Appendix G) to plot the array factor 
for the following arrays: (a) Fig. 3-240; (b) Fig. 3-24b; (c) Fig. 3-24c; (d) Fig. 3-24d; (e) Fig. 
3-24e; (f) Fig. 3-25. Give the HP value and maximum side lobe level and its location. 
3.5-2 (a) Show that (3-91) follows from (3-90). (b) Show that (3-93) follows from (3-91). 
3.5-3 Verify the directivity values associated with Figs. 3-23c through 3-23e, and Fig. 3-25. 
3.5-4 Shaped beam patterns. Array analysis techniques can be used for shaped beam patterns. 
In this problem, we use the currents derived in Examples 8-3 and 8-4 for producing a sector 
radiation pattern. The arrays are 20 half-wave spaced isotropic elements. Use an array com
puter code (see Appendix G) to generate the pattern for (a) the Fourier series synthesized 
array of Example 8-3 and (b) the Woodward-Lawson synthesized array of Example 8-8. 
3.5-5 Binomial array. Consider a linear array of elements spaced d = Al2 apart with binomial 
current weightings. 

a. Derive the normalized array factor expression in O. 
b. Derive an expression for the directivity. 
c. Evaluate directivity for N = 5. 
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3.5-6 An often quoted approximate directivity formula is D ... D JJ i, where De and D i are 
the directivities of one element in the array and of the array with isotropic elements, respec
tively. Evaluate this approximation for the following arrays of short dipoles and compare to 
the exact values found from (3-83): 

a. N = 4, broadside, collinear, d = Al2. 
b. N = 4, endfire, parallel, d = Al2. 
c. N = 4, broadside, parallel, d = Al2. 
d. N = 3, broadside, collinear, d = Al2. 
e. N = 3, broadside, parallel, d = Al2. 

3.5-7 Array directivity computation. Consider a collinear array of dipoles. 
a. Write a computer code to evaluate the array directivity by direct integration. Verify 

its accuracy by comparing to values obtained using (3-83) for four collinear short dipoles. 
b. Use your computer code to find the directivity of collinear arrays of 2, 3, and 4 half

wave dipoles spaced a half-wavelength apart and excited with uniform amplitude and phase. 
Tabulate directivities as ratios and compare to the directivities for isotropic-element arrays 
Di. Include in the table the directivity found using the approximation D ... DeDi; see Prob. 
3.5-6. 

c. Repeat (b) for the N = 4 case with a binomial current amplitude distribution. 
3.6-1 Two antennas have the following self- and mutual impedances: 

a. Find the input impedance to antenna 1, if antenna 2 is short-circuited. 
b. Find the voltage induced at the open-circuited terminals of antenna 2 when the voltage 

applied to antenna 1 is 1LO° V. 
3.6-2 Derive (3-102), making use of Fig. 3-27. 
3.7-1 Compute and tabulate the element current phases for the four scan cases in Fig. 3-32. 
The center element has zero phase. 
3.7-2 Use an array pattern plotting code (see Appendix G) to plot the array factor for the 
following arrays. Give the HP value and the maximum side lobe level and its location. Com
pute the excitation phases for each element: (a) Fig. 3-32a; (b) Fig. 3-32c; (c) Fig. 3-32e. 
3.7-3 A linear array along the z-axis of half-wave dipole elements is series fed with a trans
mission line of electrical length equal to the spacing, d = Al3. Assume equal amplitude 
currents. 

a. Sketch the array, showing the feed line. 
b. Use simple array theory to obtain polar-linear pattern sketches in the xZ-, YZ-, and 

xy-planes. 
c. Use a computer code to plot the same patterns as in (b). 

3.7-4 Show how the general phase term f3i. r~ of (3-111) reduces to that of (3-65), f3zn cos 6, 
for a linear array. 
3.7-5 A uniformly excited, unequally spaced linear array of four isotropic sources is shown 
below. Using the principle of pattern multiplication, sketch the array pattern, showing your 
intermediate steps. Can (3-33) and the graphical procedure be used to verify your final result? 
Why? 

eP e-j(nm e-f(nJ2 + 2ft1S) e-j(ft+ 2ft1S) 
e e· e e 

~~--~~~IE--~--~~IE~-~~ 
3.7-6 A planar array of four isotropic elements is arranged in the xy-plane with the following 
positions and currents: (Al4, Al4), + 1; (...,.. Al4, Al4), +1; (-Al4, - Al4), -1; (Al4, - Al4), -1. 
Use simple array modeling techniques to obtain sketches of the xz- and yz-plane patterns. 
3.7-7 A half-wave dipole along the x-axis is backed by a perfect ground plane that is parallel 
to it and one quarter wavelength away from it (in the z-direction). Sketch the antenna system 
including coordinates. Use appropriate techniques to obtain polar pattern sketches in the 
xz- and yz-planes. 
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3.7·8 A four-element linear array of parallel, in-phase, half-wave dipoles is located Al4 in 
front of a large planar reflector located in the xy-plane. Assume the reflector to be a perfect 
ground plane. If the dipoles are parallel to the x-axis and spaced Al2 apart, sketch the com
plete pattern in the xy- and yz planes. Show your reasoning. 
3.7·9 A two-element array of vertical short dipoles is operated a quarter-wavelength above' 
a perfect ground plane as shown. The elements are a half-wavelength apart and are excite,g 
with equal amplitude and opposite phase. Obtain polar plots for the radiation pattern of this 
radiating system in the xz- and yz-planes. Carefully explain how you obtain these plots. 

--IJ2-

t 
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3.7·10 A two-dimensional, uniformly excited array of isotropic elements as shown below is 
to be analyzed. Use the principle of pattern multiplication with a pair of elements oriented 
vertically as the "element" and the four pairs as the "array." Give the pattern expression 
F(8, cP) and sketch the patterns in the xZ-, yz-, and xy-planes. 

z 
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3.7·11 An 18-element planar array has three rows of six isotropic elements. The rows have 
current amplitudes in the ratios of 1: 2: 3: 3: 2: 1 and the columns are weighted uniformly. 
The row and column interelement spacings are both equal to d. I 

a. Using the projection technique, sketch the equivalent linear array for determining the 
pattern in the 45° plane. Show current amplitudes and spacings. 

b. Evaluate and plot the patterns in decibels in the 45° plane for the full planar array and 
for the equivalent linear array found in (a) for d = 0.7>... 
3.8·1 An interferometer is constructed from five collinear half-wave dipoles spaced two 
wavelengths apart. Sketch the polar plot of the complete array pattern. 
3.8·2 An array of four collinear, 0.4-.\ spaced short dipoles is fed with uniform current am
plitude and phases such that the main beam peak is 30° off broadside. 

a. Use simple array techniques to obtain a sketch of the array pattern. 
b. Give the phases of each element. 

, c. Draw the array, showing a parallel feed network with parallel wire feed lines that will 
produce the proper phase . 

. 3.8·3 Derive (3-117). 
3.8·4 A parallel fed, uniform array of five half-wave dipole elements has half-wavelength 
spacing at 300 MHz. The five dipoles are located along the z-axis as shown in Fig. 3-18, and 
they all have the same phase. If the array is operated at 360 MHz, compare the pattern in 
the yz-plane at 360 MHz with that at 300 MHz. 
3.8·5 Repeat Prob. 3.7-5 if the array is series fed, starting with the element closest to the 
coordinate origin. Assume all elements have the same amplitudes and that there is 1 m of 
transmission line between adjacent elements that are a half-wavelength apart at 300 MHz. 
3.8-6 Derive (3-118) by expressing V m as V inc(l + r m) and 1m as linc(1 - r m). 
3.8-7 Sum and difference patterns. Consider a linear array of eight half-wave dipole elements 
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with equal excitation amplitudes that are parallel to the x-axis with their centers along the 
z-axis and spaced 0.6A apart. Plot the polar-dB pattern in the yz-plane for the following cases: 

a. All elements in-phase, forming the sum pattern. Use simple array theory. 
b. The left four elements at ()" phase and the right four elements at 1800 phase, forming 

the difference pattern. Use simple array theory. 
c. Repeat (b) but use a moment method code (see Chap. 10) to include mutual coupling 

effects. For the elements, use L = 0.47 A and a = 0.005A. 
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Line Sources 

In Chapter 1, we found that far-zone fields are obtained by a radiation integral over 
the current distribution. For a line source along the z-axis, the far-zone electric field 
intensity from (1-103) and (1-106) is 

-j(3r fLI2 
A e . , 

E = OjWJL -- sin o. I(z ')eJ(3z cos /I dz' 
477T -Ll2 

(4-1) 

where the line source current distribution I(z') is of length L centered symmetrically 
about the origin as shown in Fig. 1-14. The far-zone magnetic field intensity is then 
simply H4> = E/I/"fI. The element factor is sin O. The pattern factor is f(O) and is 
obtained by normalizing the integral in (4-1). This pattern factor is solely deter
mined by the current distribution I(z'). 

In Chapter 3, we found that the far-zone fields of an array are obtained by sum
ming over the individual element currents. For an array of collinear short dipoles, 
the far-zone electric field intensity from (3-53) is 

(4-2) 

The factor sin 0 is, in this case, the element pattern and the summation is the array 
factor. Note the similarities between (4-1) and (4-2); the integral in (4-1) is replaced 
by a summation in (4-2), z' is replaced by nd, and I(z') is replaced by In. The line 
source is, in a sense, a continuous array. It will become apparent to us in the dis
cussion of the line source which follows that much of what we know about the 
pattern characteristics of discrete arrays is also true of line sources. Line sources 
are important because many antennas can be modeled as a line source or combi
nation of line sources. 

4.1 THE UNIFORM LINE SOURCE 

We begin our discussion of line sources by considering an important special case, 
that of the uniform line source. A uniform line source has a current distribution 
with uniform amplitude and linear phase progression given by 

L , L 
-- < z <-

2 2 (4-3) 
elsewhere 
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where 130 is the phase shift per unit length along the line source. The unnormalized 
pattern factor of the uniform line source is 

where 

. , smu 
J

Ll2 . 

fuiu) = -Ll2 I(z')e,fJz 
cos 6 dz' = IoL -u-

L 
u = (13 cos () + 130) 2" 

(4-4) 

(4-5) 

The evaluation of (4-4) is similar to that given in (1-110) for a broadside uniform 
line source. 

It is convenient to introduce an angle (}o such that 

130 = -13 cos (}o (4-6) 

Then (4-5) becomes 

u = 13; (cos () - cos (}o) 

The far-zone electric field from (4-1) and (4-4) is 
. -jfJr . 

E - JWJ..U! I L . () sm u 
6- 4 0 Sin 

'TTT u 

The pattern factor of this uniform line source field expression is 

f(u) = sin u 
u 

(4-7) 

(4-8) 

(4-9) 

The pattern factor is shown in Fig. 4-1 without using absolute values. The maximum 
occurs for u = 0 and is unity (0 dB) there. The nulls occur at multiples of '1T and are 
separated by '1T, except for the beamwidth between first nulls, which is 2'1T. 

f(u) = sin u 
u 

0.4 

0.2 

Figure 4-1 Pattern factor of a uniform line source of length L and u = (f3L12) cos 6. 
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The half-power beamwidth of the uniform line source pattern factor is found from 
solving 

1 sin UHP 

v'2 = UHP 
(4-10) 

The solutions to this are UHP = ±1.39. Then from (4-7), 

OHP = cos-l(;L UHP + cos ( 0 ) = cos-l ( ±0.443 -i + cos ( 0 ) (4-11) 

The plus sign corresponds to the half-power point on the right of the main beam 
maximum and the minus sign to the left half-power point. So from (1-126), 

HP = 10HP left - OHP rightl 

= I cos-l ( -0.443 -i + cos ( 0 ) - cos-l ( 0.443 -i + cos ( 0 ) I (4-12) 

This formula is general but useful only when both half-power points appear in the 
visible region (0 :5 0 :5 180°), which in tum requires that the arguments, of the 
arccosines in (4-12) are between -1 and +1. For a broadside uniform line source, 
00 = 90° and (4-12) reduces to (see Prob. 4.1-1) 

HP = 2 sin-l ( 0.443-i) (4-13) 

For long (L » A) line sources, this is approximately 

HP 0886 A d 508 A d (0
0 

= 90°) "'". L ra = . L egrees (4-14) 

since sin-lex) "'" x for x « 1. For an endfire uniform line source, only one half
power point appears in the visible region and then 

HP = 2 cos-1
( 1 - 0.443 -i) (00 = 0° or 180°) (4-15) 

For long (L » A) line sources, this may be approximated as (see Prob. 4.1-2) 

HP = 2)0.886 -i rad (00 = 0° or 180°) (4-16) 

Since (4-16) leads to wider beamwidths than does (4-14), we conclude that beam
width increases as the pattern is scanned away from broadside (see Fig. 4-3). 

The half-power beamwidth expression HP = 0.886(A/L) for the broadside uni
form line source was developed using two approximations. The effect of the element 
factor sin 0 was neglected and also it was assumed that the line source was long. 
With a few examples, we can see how these approximations affect the beamwidth. 
In Table 4-1, half-power beamwidth values for three uniform line sources are pre
sented for various levels of approximation. The first column is the HP found from 
the complete pattern expression 

F(O) = sin 0 sin[(~Ll2) cos 0] (0
0 

= 900) 
(~Ll2) cos 0 

(4-17) 
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Length 
L 

2A 
5A 

lOA 

Table 4-1 Half-Power Beamwidth Evaluation 
for Broadside Uniform Line Sources 

Exact Value from 
Complete Pattern F 

of (4-17) 

24.766° 
10.112° 
5.071° 

Value from 
Pattern Factor 

f = sin u 
u 

25.591° 
10.166° 
5.080° 

Value from 
A 

HP = 0.886"L 

25.382° 
10.153° 
5.076° 

The third column is the HP obtained from only the pattern factor of (4-9). The last 
column is that of (4-14). Note that even for five wavelengths, all values are in very 
close agreement. We can also see that as the length increases, the approximations 
improve. 

The largest side lobe is the first one (i.e., the one closest to the main beam). The 
side lobe maxima locations are found by differentiating (4-9) and setting it equal to 
zero. This leads to 

USL = tan USL (4-18) 

The intersections of the straight-line curve USL with the curve tan USL give the side 
lobe maximum locations (the main beam maximum is at US4J = 0). The first side 
lobe maximum occurs for USLt = ±1.437T. This is not precisely midway between the 
pattern nulls at 7T and 27T. The side lobe maxima are slightly closer to the main beam 
than midway between their nulls. Evaluating (4-9) at the first side lobe maximum 
location gives 0.217 or -13.3 dB. 

The polar plot of the pattern factor of a uniform line source can be obtained from 
a universal pattern factor in a mariner very similar to that used for linear arrays. 
The uniform line source universal pattern factor is shown in Fig. 4-20. It is used for 
all source lengths L and scan angles ()o. A typical case is shown in Fig. 4-2b. The 
transformation (4-7) between U and () is illustrated graphically by the dashed lines. 
Pattern values for a given value of () can be found from the universal pattern factor 
using this graphical transformation. The radius of the circle used in the transfor
mation is f3L/2 and its origin is at the value of U equal to -(f3L12) cos ()o. 

As an example, consider a three-wavelength uniform line source. The universal 
pattern factor is shown in Fig. 4-3a. The polar plot for the broadside case is illus
trated in Fig. 4-3b. The pattern factor for a main beam maximum angle of 45° is 
polar-plotted in Fig. 4-3c. The endfire case is shown in Fig. 4-3d. Notice that the 
main beam (and also the side lobes) widen near endfire, as pointed out earlier. The 
current distributions required to produce those patterns are shown in Fig. 4-4. The 
amplitudes are constant in all cases, as illustrated in Fig. 4-4a. The required linear 
phase distributions for main beam scanning are depicted in Fig. 4-4b. 

The effects of the element factor on the total pattern are shown in Fig. 4-5 for 
the three-wavelength uniform line source. In the broadside case of Fig. 4-5a, the 
element factor has a relatively minor effect. However, in the endfire case of Fig. 
4-5b where the pattern factor alone produces a single endfire beam, the element 
factor effect on the total pattern produces a null in the endfire direction, thus bi
furcating the main beam. 
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(b) Polar plot of pattern factor for L = 4A. 

Figure 4-2 Illustration of obtaining a polar plot from the universal pattern factor of a 
uniform line source. 

Next, we consider the directivity of the uniform line source. The directivity can 
be found easily if the element factor is assumed to have a negligible effect on the 
pattern. Then, we can work with the pattern factor f alone. First, the beam solid 
angle is from (1-143) and (4-9): 

sm u . 12," 1'" ,. 12 
fiA = 0 0 -u-· sm 0 dO dfj> (4-19) 
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I/(u) 1 = I si~ u I 
1.0 

(a) Universal pattern factor 

(b) Polar plot of pattern factor for f3o L12 = 0, (90 = 90°). 

(c) Polar plot of pattern factor for f3oL12 =-2.12n, (90 = 45°). 

(d) Polar plot of pattern factor for A,L12 = -f3L12 = -lit, (90 = 0°). 

Figure 4·3 Pattern factors for a three-wavelength long (L = 3A) uniform line source for 

various scan conditions. 
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(b) Current phase distributions 

Figure 4-4 Current distributions for the three-wavelength uniform line source patterns of 
Fig. 4-3. 

with the element factor g set to unity. If we change the 0 integration variable to u 
as given by (4-5), then du = -(f3L12) sin 0 dO and (4-19) becomes 

!c
21T 1(-{3+{3o)Ll2. 2 d .n d'" sm u u 

A = 0 'I" ({3+{30)LI2 ~ -(f3L12) 
(4-20) 

l l({3o + {3)Ll2 • 2 
=2~ sm u du L ({3o - {3)LI2 u2 

The evaluation of this expression for the general case is discussed in Prob. 4.1-7. 
For the broadside case (f3o = 0), the limits on the integral are - f3L12 to f3L12. If 
further L » A, then f3L12 » 1 and we approximate the limits as - (Xl to + (Xl, and 
if we use (F-12), the definite integral has a value of 7T. Thus, fiA = 2A7TIL and D = 
47TIfiA yields 

D =2!:. 
U A (broadside, L » A) (4-21) 

where the subscript u indicates a uniform line source. For the endfire case 
(f3o = ±(3), the integrallnnits are 0 and f3L12 that are approximated as 0 and (Xl 

when L » A; this yields a value of 7T/2 for the integral. So, fiA = A7TIL and 

D =4!:. 
U A (endfire, L » A) (4-22) 
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Element 
factor 

g(6) = sin 

Pattern 
factor 
f(6) 

--..::--z 

Total 
pattern 
F(6) 

--~f_--z 

(a) Broadside case (60 = 90°, 130 = 0). Pattern factor is from Fig. 4-3b. 

x ~E-----~z --:~~---z 

(b) Endfrre case (60 = 0°, 13aLl2 = -3n). Pattern factor is from Fig. 4-3d. 

Figure 4-5 Total patterns for a three-wavelength uniform line source. 

These are the same directivity results we obtained for linear arrays; see (3-80) and 
(3-81). The uniform line source exhibits the most directivity that can be obtained 
from a linear phase source of fixed length. Other current distributions will yield 
lower directivities. We found this principle to hold true in Section 3.5 for discrete 
current distributions (arrays). 

From the beamwidth and directivity relationships presented here for the uniform 
line source, we can begin to get a feel for the pattern changes as a function of source 
length and scan angle. First, consider the pattern factor alone. As the length in
creases, the beamwidth decreases and the directivity increases. The side lobe level 
(if the line source is long enough for the first side lobe maximum to be visible) 
remains constant with length variations; it is always -13.3 dB for a uniform line 
source. For a scanned line source, the beamwidth increases as the main beam is 
scanned away from broadside. However, the total main beam volume (obtained by 
rotating the E-plane pattern about the z-axis) decreases and, consequently, fiA de
creases, which in tum leads to an increase in directivity. The beamwidth and direc
tivity change slowly for scan angles near broadside but change rapidly near endfire. 
The complete pattern must include the element factor effects. For long sources 
(L » A), the pattern factor f(O) has a much narrower pattern than the element 
factor g(O) = sin 0 and the total pattern obtained from g(O) f(O) is closely approx
imated by f(O). The side lobe level, beamwidth, and directivity values are then 
accurately determined from the pattern factor f(O) alone, except near endfire where 
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the element factor becomes significant since it forces the total pattern to zero in the 
() = 0 and 1800 directions, as illustrated in Fig. 4-5b. 

Plane Walle Incident on a Slit 

A simple physical example of a uniform line source is a long narrow slit in a good conductor 
that has a uniform plane wave incident on it, as illustrated in Fig. 4-6. Phase fronts (planes 

z 

I 

I 

(a) Broadside case: 60 = 90° and 130 = -f3eos 90° = o. 

(b) Intennediate ease: 130 = -f3eos 60 • 

z 

I 

I .... --... 

(c) Endfrre ease: 60 = 0 and 130 = - f3. 
i, 

Figure 4-6 Example of a uniform line 
source: an infinitely long slit of width L in a 
good conductor illuminated by a uniform 
plane wave from the left. 
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of constant phase) are indicated by the parallel lines. In Fig. 4-6a, the wave is normally 
incident on the slit. Thus, the slit has a uniform amplitude excitation and also has uniform 
phase since the phase fronts are parallel to the slit. The slit then behaves as a uniform line 
source with uniform phase across it. This equivalence of a field distribution to a current 
distribution will be discussed further in Section 7.1. It is obvious, however, that the maximum 
radiation on the right-hand side of the slit will be primarily in the direction of propagation 
of the incident wave corning from the left, that is, 60 = 90°. For a line source, the phase shift 
along the source is related to the· direction of maximum radiation 60 by f30 = - f3 cos 600 

where in this case f3 is the phase constant of the incident plane wave. Since 60 = 90°, f30 = 
- f3 cos 90° = o. This says that there is no phase shift along the slit. We already observed 
that this must be true for a plane wave normally incident on the slit. 

If the direction of propagation of the plane wave makes an angle 60 with the slit plane, 
there will be a phase shift along the slit due to different arrival times of the wave. In fact, 
this phase shift is given by f3oz', where f30 is the phase shift per meter along the slit and we 
have assumed zero phase at z' = O. But the phase shifts f3 radlm in the direction of propa
gation, so the phase shift for distance t1r along the direction of propagation is t1e/> = - f3 t1r 
(since the wave propagates as e-itJr). The same phase shift is encountered in the distance t1z 
along the slit, or t1e/> = f30 t1z (see Fig. 4-6b). But t1r = t1z cos 60, and since the phase shifts 
are equal, we have t1cfJ = -f3 t1z cos 80 = f30 t1z. Thus, f30 = -f3 cos 80 as given by (4-6), 
which was then a convenient definition. It is obvious from Fig. 4-6b that the maximum ra
diation from the slit or its equivalent line source will occur in the direction of propagation 
of the wave 6 = 60 • 

In Fig. 4-6c, the incident wave is traveling parallel to the slit. The phase shift per meter 
along the slit is obviously equal to the negative of the wave phase constant. This also follows 
from f30 = -f3 cos 80 = -f3 for 60 = 0°. The radiated wave on the right side is endfire in this 
case. 

4.2 TAPERED LINE SOURCES 

Many antennas that can be modeled by line sources are designed to have tapered 
distributions. This is because if the current amplitude decreases toward the ends of 
a line source, the pattern side lobes are lowered and the main beam widens. In many 
applications, low side lobes are necessary and a wider main beam is accepted as a 
consequence. This tradeoff between side lobe level and half-power beamwidth is a 
major consideration to the antenna engineer .. 

An an example, consider a current distribution with the so-called cosine taper, 
where 

{

10 c~s(:!!. z')eif3oZ' 
l(z') = L 

o 

L , L 
-"2 < z <"2 
elsewhere 

(4-23) 

The shape of this current distribution is plotted in Fig. 4-7a. The unnormalized 
pattern factor is then found as follows: 

fun«() = 10 J:~~2 cos(i z')ei(f3 COS 9+f3o}z' dz' 

(4-24) 
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(a) Current distribution amplitude 
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(b) Pattern Factor 

,dB 

Figure 4-7 Current distribution and pattern factor for a cosine-tapered line source. 

Evaluating the above expression leads to 

f (0) = I 2L cos[(/3 cos (J + /30)Ll2] 
un 0 7T 1 - [(/3 cos (J + /3o)Ll7T]2 

(4-25) 

Using /30 = -/3 cos (Jo as in (4-6) and normalizing such that the pattern factor is 
unity for (J = (Jo give 

f(O) = cos[(/3L12)(cos 0 - cos ( 0 )] 

1·- [(/3L17T)(COS 0 - cos (JoW 

This pattern can be written in terms of u using (4-7) as 

cos u 
f(u) = 1 - (2U/7T)2 

(4-26) 

(4-27) 

This pattern is plotted in Fig. 4-7b. Compare the side lobe level to that of Fig. 4-
lOa for the uniform line source. 

The side lobe level for the cosine-tapered line source is -23.0 dB and the beam
width is given by 

A A 
HP = 1.19 L rad = 68.2 L degrees (4-28) 
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Table 4-2 Characteristics of Tapered Line Source Distributions 

a. Triangular taper 

2 
fez) = 1 - - Izl 

L 

feu) = [Sin(UI2)]2 
ul2 

L Izl s-
2 

HP (rad) 
Side Lobe Level 

(dB) 

1.28(AlL) 

b. Cosine tapers 

fez) = cosn
( ~z) 

feu) = sin u 
u 

-26.6 

L Izl s-
2 

n=O 

cos u 
feu) = 1 _ (2u1'11'? n = 1 

0.75 

1 sin u 
feu) = 1 - (ul'11')2 U n=2 

Side Lobe Level 
n HP (rad) (dB) 

0 
A 

0.886 I -13.3 

1 
A 

1.19 I -23.0 

2 
A 

1.44 I -31.7 

c. Cosine on a pedestal 
- '11'Z 

fez) ~ C + (1 - C) cos L 

C sin u + (1 _ C) ~ cos u 
feu) = u . '11' 1 - (2ul'11')2 

2 
C + (1 - C)-

'11' 

D/D~ 

1.00 

0.810 

0.667 

I (z) 

1.0 

--z 

I(z) 

r---~IE:"""----t'<r n = 0 
n=l 

Type 

Uniform line source 

Cosine taper 

Cosine-squared taper 

I (z) 
1.0------:;J>"+-. 

o 

L 
2: 

n=2 

--z 
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Table 4-2 (continued) 

Edge Illumination 

-20 log C Side Lobe Level 
C (dB) HP (rad) (dB) DlDu 

0.3162 -10 
A 

1.03 L -20 0.92 

0.1778 -15 
A 

1.08 L -22 0.88 

A 
0 -00 - 1.19 L -23 0.81 

Note 1: The pattern expressions are valid for any value of u = (fJLl2)(cos 9 - cos ( 0 ), However, the half-power 
beamwidth values and directivities are approximations for broadside line sources (90 = 90° and u = (fJLl2) cos 9) 
andL» A. 
Note 2: The directivity for each line source is found from the ratio DIDu as 

for broadside line sources with L » A. 

D D L 
D=-D =-2-

Du u Du A 

Note 3: The element factor sin () has been neglected in the calculations leading to the values in this table. For 
long, broadside line sources, its effect is minimal. 

for the broadside case. The side lobe level is 10 dB lower and thebeamwidth is 38% 
greater than a uniform line source of the same length. Although the side lobes are 
reduced from those of the uniform line source, the main beam widening leads to 
smaller directivity than obtained from a uniform line source. The ratio DlDu is used 
to compare the directivity of a tapered line source to that of a uniform line source 
of the same length. For the cosine taper, DlDu = 0.810. The actual directivity D 
from (4-21) is then 

L 
D = 0.81OD u = 1.620 A (broadside, L » A) (4-29) 

If the current amplitude taper is increased as in the case of a cosine-squared taper, 
the side lobes are reduced even more and the beamwidth is further widened. The 
pattern parameters of the cosine-squared case, as well as many other important 
cases, are summarized in Table 4-2 [1-3]. 

As a further example, consider the triangular current taper given in Table 4-2a. 
The pattern (sin U/U)2 is the square of the uniform line source pattern. This property 
is apparent when the pattern of Fig. 4-8 for the triangular line source is compared 
to that of the uniform line source in Fig. 4-1. The first nulls of the triangular line 
source are twice as far out as for the uniform line source pattern. Thus, the beam
width between first nulls is twice as large. The half-power beamwidth is 44 % larger 
(from 0.886A1L to 1.28A1L). Also, the side lobes of the triangular line source are 
twice as wide in the variable u and the side lobe level in decibels is twice as small, 
-13.3 dB for the uniform line source and -26.6 dB for the triangular line source. 
The directivity (from Table 4-2a) is 75% of the uniform line source value. 

From Table 4-2, we can generalize and make some statements about current 
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Figure 4-8 Pattern factor of a triangular tapered line source. 

amplitude distributions and their influence on the far-field pattern. We assume that 
the current is of constant phase. As the taper of the current amplitude from the center 
to the edges of a line source becomes more severe, the side lobes decrease and the 
beamwidth increases. Consequently, the directivity decreases. There isthen a trade
off between the side lobe level and the beamwidth for the continuous source just 
as there was for discrete sources (see Section 3.5). The antenna engineer must decide 
on a compromise between beamwidth and side lobe level for each specific design 
problem. 

A Cylindrical Parabolic Reflector Antenna 

A cylindrical parabolic reflector antenna (see Fig. 4-9) can be modeled by line sources. Sup
pose the parabolic surface is lOA across at . the edges of the reflector (i.e., the aperture) in 
Fig. 4-9 and that the field distribution in the aperture in the y-direction is that of a cosine on 
a pedestal with -15dB edge illumination. Then from Table 4-2c, the half-power beamwidth 
is 

lIP = 1.03A1L = 0.103 rad = 5.go 

and the side lobe level is -22 dB. Figure 12-21 shows a pattern calculated via a one-dimen
sional aperture integration for an aperture distribution that is nearly a cosine on a pedestal 
(Fig. 12-22). It has -22 dB side lobes and a half-power beamwidth of 5.90 in the H-plane. 
There is no E-plane data because the antenna in Sec. 12.6 is infinite in the x-direction (i.e., 

Figure 4-9 Parabolic cylindrical 
reflector with x-polarized feed 
along the axis of the cylinder. 
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a two-dimensional rather than a three-dimensional problem). Suppose, however, that the 
antenna is also lOA in the x-direction (E-plane), as implied by Fig. 4-9, and the aperture 
distribution is uniform in the E-plane. The E-plane pattern would then be modeled by a 
uniform line source. Aperture directivity can be calculated from line source formulas if the 
principal plane distributions are separable; see (7-86). Much more will be said about aperture 
antennas in Chap. 7, where, as in this example, line source results will play an important role. 

4.3 FOURIER TRANSFORM RELATIONS 
BETWEEN mE FAR-FIELD PATTERN 
AND THE SOURCE DISTRIBUTION 

The far-field pattern and its (nonperiodic) source distribution form a Fourier trans
form pair. To see this, consider (4-1) where I(z') = II(z')leH:!oZ' and write 

f
L'2 

Pun«() = sin () -Ll2 II(z')lei{/:!cos8+/:!o)z' dz' (4-30) 

or 

fun«() = Pu:«() = II(z')lei(/:!cos8+/:!o)z'dz' 
. fL'2 

sm () -Ll2 
(4-31) 

where once again, the element pattern sin () has been absorbed into the far field of 
the line source. Thus, fun«() can be viewed as the far field of a line source in which 
the element pattern is isotropic. Since I(z') is zero for z' > Ll2 and z' < - Ll2, the 
limits on (4-31) may be extended to infinity. Thus, 

fun«() = f~oo II(z')lei(/:!cos8+/:!o)z' dz' (4-32) 

which is recognized as one-half of a Fourier transform pair. The other half of the 
(antenna) pair is 

I(z') = ~ foo !un«()e-iZ '/:!COS8 d(f3 cos () 
2'1T -00 

From circuit theory, the Fourier transform (circuit) pair can be written as 

1 foo f(t) = - g(w)ei"'t dw 
2'1T -:-00 

and 

g(w) = f~oo f(t)e-i",t dt 

(4-33) 

(4-34) 

(4-35) 

If we let cos () and f3z' correspond to t and w, respectively, then z'fA corresponds 
to frequency f. The quantity z' fA is called spatial frequency with units of hertz per 
radian. For real values of () and Icos ()I :5 1, the field distribution associated with 
fun«() represents radiated power, whereas for Icos ()I > 1, it represents reactive or 
stored power (e.g., see Secs. 2.6 or 4.4). The pattern fun«(), or angular spectrum, 
represents an angular distribution of plane waves. For Icos ()I :5 1, the angular 
spectrum is the same as the far-field pattern fun«(). 

In circuit theory, a very narrow pulse (in time) has a large or wide frequency 
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spectrum. To pass such a pulse through a filter requires that the filter have a wide 
passband. Similarly, an antenna with a very narrow far-field pattern must pass a 
wide band of spatial frequencies. That is, the antenna must be electrically large. 
Thus, the antenna may be viewed as a spatial filter, a concept widely used in radi
ometry and radio astronomy. 

Probably the greatest value in recognizing that the source and far-field function 
form a Fourier transform pair is that one can utilize the vast amount of information 
available on Fourier transform theory, particularly in circuit theory. For example, 
Table 4-3 shows some common Fourier transform pairs found in antenna theory. 
Some of these also appear in Table 4-2 that was constructed without reliance on a 
knowledge of Fourier transforms. The pairs in Table 4-3 work in either direction. 
That is, the source distributions and far-field patterns in Table 4-3 may be inter
changed, at least theoretically. In some cases, however, the resulting distributions 
are not practical as far-field patterns or as source distributions. And finally, although 
our familiarity with (4-32) may imply that the application of (4-33) is equally 
straightforward, it is not. Application of (4-33) leads to techniques in antenna syn
thesis. Antenna synthesis is discussed in Chap. 8. 

4.4 SUPERDIRECTIVE LINE SOURCES 

In Sec. 2.5, it was pointed out that electrically small antennas have a directivity 
larger than warranted by their electrical size. That is, they are superdirective. This 
section examines the superdirectivity of line sources that are not electrically small. 
In general, linear sources with L > A are superdirective if the directivity is higher 
than that obtained using a phase distribution e±j(3oz' with Icos 00 1 :s;; 1. Thus, the 
Hansen-Woodyard endfire arrays in Chap. 3 exhibited superdirective properties, 
since lal > f3d implies Icos 00 1 > 1. 

Superdirectivity is produced by an interference process whereby the main beam 
is scanned into the invisible region (see Fig. 4-10), where lui> TrLlA or Icos 00 1 

> 1. This causes energy to be stored in the near field, resulting in a large antenna 
Q. The reactive power is found approximately by integrating over the invisible 
region and the radiated power is found, of course, by integrating the pattern factor 
over the visible region (where lui :s;; TrLlA). To quantify superdirectivity, a super
directive ratio RSD may be defined as the ratio of radiated power plus reactive power 
to radiated power, which for a broadside line source is [2] 

J:oo If(uW du 

RSD = J7rLI>. If(uW du 
-7rLI>' 

(4-36) 

For other than broadside, the limits in the denominator change (see Probs. 4.4-1 
and 4.4-2). 

Since the Q may be expressed as the ratio of reactive power to radiated power, 

J~:LI>. If(u)12 du + J:LI>. If(uW du 

Q = J7rLI>. If(u)12 du 
-7rLl>' 

(4-37) 

Comparing the previous two equations gives RSD = 1 + Q. 
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Figure 4-10 Far-field patterns for a 10,\ line source: The corresponding superdirective 
ratios are found in Table 4-4. 

To investigate superdirectivity for a uniform line source, the directivity can be 
written as 

2L 
Du=RsDA (4-38) 

Comparing (4-21) and (4-22) for long line sources, we conclude RSD = 1 for the 
broadside line source and RSD = 2 for the ordinary endfire line source. For a lOA 
line source, this is approximately true as Table 4-4 shows. The exact values for RSD 
in the table were obtained using (4-36). Table 4-4 indicates that for the Hansen-
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Table 4-4 Superdirectivity for 
a lOA Line Source 

Case RSD 

Broadside 1;01 
Ordinary endfire 2.01 
Hansen-Woodyard 8.23 

Woodyard case, moderate levels of superdirectivity are achievable. The value of 
RSD = 2.01 for the ordinary endfire case does not indicate a superdirective condition 
since RSD was achieved with the linear phase distribution e±jIJoz' and Icos 00 1 ::;; 1. In 
the broadside case, superdirectivity ratios even modestly greater than unity are not 
practical since rapid precisely controlled variations of phase are required. Even if 
such rapid phase variations could be achieved in practice, the resulting superdirec
tivity would not result in supergain because of a decrease in e" the radiation effi
ciency, due to the ohmic losses that would inevitably occur. 

Superdirectivity of a lOA Broadside Line Source 

It is desired to calculate RSD for a broadside line source when L = lOA: 

sin U (3L. 
f(u) = -u- where u = 2 cos (J smce (Jo = 90° 

The superdirective ratio is found using (4-36). The numerator of (4-36) has a value of 7T from 
(F-12). The denominator of (4-36) is evaluated using integration by parts. Let 

so that 

Now 

or in this case, 

1 
dy = - du and x = sin2 U 

u2 

1 
y =-

u 
and dx=2sinucosudu 

f x dy = xy - f y dx 

I 

flO" sin2 u sin2 u 1
10

11" flO" (-1) . 
--2- du = -r---; - - 2 sm u cos u du 

-10" U i U -1011" -10" U 
I 

= 0 :r flO." sin 2u d(2u) = 2 Si(207T) 
I -1011" 2u 
i 

where the sine integral of (F-13) has been used. Thus, , , 

R - 7T - 3.14159 - 1 01 
SD - 2 Si(207T) - 3.10976 - . 

and the broadside entry in Table. 4-4 has been confirmed. 
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PROBLEMS 

4.1-1 Show that 

cos-1( -x) - cos-1(x) = 2 sin-1(x) 

and thereby proving (4-13). To do this, introduce a such that x = sin a and use cos(a ± 
'IT'12) = +sin a. 
4.1-2 Prove the half-power beamwidth expression for an endfire, uniform line source. Start 
with (4-15) and derive (4-16). Hint: Let a = cos-1(1 - y) where y = 0.443(,vL), then form 
cos2 a, neglect y2, expand 1 as cos2 a + sin2 a, and use sin a = a. 
4.1-3 Show that the far-zone electric field expression E9 for a broadside, uniform line source 
approximates that of an ideal dipole for short line sources (L « A). 
4.1-4 Compute the half-power beamwidths (in degrees) and the directivities (in decibels) for 
the following uniform line sources: 

a. Eight-wavelength broadside, uniform line source. 
b. Eight-wavelength endfire, uniform line source. 
c. Sixteen-wavelength broadside, uniform line source. 
d. Sixteen-wavelength endfire, uniform line source. 

4.1-5 a. Use the universal pattern factor for a uniform line source to obtain polar plots of a 
four-wavelength uniform line source for two cases: broadside and endfire (90 = 0°). 

b. Measure the half-power beamwidths from the polar plots obtained in part (a). 
c. Calculate the half-power beamwidths in degrees using (4-14) and (4-16). The agree

ment between these results and those of (b) depends mainly on how accurately you con
structed the polar plot. 
4.1-6 Verify the half-power beamwidth values in Table 4-1 for the three levels of approxi
mation for uniform line sources with the following lengths: (a) 2A, (b) SA, and (c) lOA. 
4.1-7 Uniform line source directivity. 

a. Show that (4-20) leads to the expression 

f3L cos a-I cos b - 1 S·() S'(b) -= + + la + 1 
Du a b 

where Du is the directivity of a uniform line source with excitation phase shift per unit length 
of f30, a = (f3 - f3o)L, b = (f3 + f3o)L, and Si is the sine integral function defined in (F-13). 

b. Plot the directivity relative to that of the broadside, very long, uniform line source 
case, that is, DJ(2LIA), for f3L = 10 and f3L = 100 as a function of 90 from 90° to 0°. 

c. What does the expression in part (a) reduce to for the broadside case (90 = 90°)? 
d. As L becomes much larger than a wavelength, show that your result in part (c) gives 

(4-21). 
e. Use the result from part (c) and plot the directivity relative to that of a broadside, very 

long, uniform line source (i.e., ADu/2L) for f3L from 1 to 10. This result shows how well the 
long line-source directivity approximation behaves. 
4.2-1 Verify for the cosine-tapered line source pattern of (4-27) that (a) HP = 1.19(,vL) in 
the broadside case for L » A, and (b) the side lobe level is -23.0 dB. 
4.2-2 Construct the linear, polar plot of the pattern factor for a broadside cosine-tapered line 
source that is three wavelengths long. Proceed as in Fig. 4-3. 
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4.2·3 A 3-m long, broadside line source operating at 1 GHz has a cosine-squared tapered 
current distribution. 

a. Compute the half-power beamwidth in degrees. 
b. Compute the directivity in decibels. 

4.2·4 Evaluate the half-power beamwidths in degrees and the directivities in decibels of lOA 
long line sources with the following current distributions: (a) uniform, (b) triangular, 
( c) cosine, (d) cosine-squared, and (e) cosine on a -lO-dB pedestal. 
4.2-5 Triangular cu"ent-tapered line source. 

a. From the current distribution in Table 4-20, derive the normalized pattern factor f(u). 
b. Verify that the half-power beamwidth is given by 1.28(AlL) for L » A and the side 

lobe level is - 26.6 dB. You may do this by substitution, and also you may find some of the 
results from the uniform line source helpful. 
4.2-6 The pattern from a triangular-tapered current distribution is the square of that of the 
uniform current distribution. From Fourier transform theory, how are the current distribu
tions related? 
4.2·7 Dipole antennas with lengths less than a half-wavelength have current distributions 
that are nearly triangular (see Fig. 1-20b). 

a. Write the complete electric field expression E8 in the far field for a broadside line 
source with a triangular current distribution. 

b. Approximate the expression of part (a) for short dipoles (L « A). 
c. Compare this to the far-field expression for E8 of an ideal dipole. Discuss. 

4.2-8 Derive the pattern factor expression in Table 4-2 for a cosine-squared line source 
current distribution. Also verify the half-power beamwidth expression. 
4.2·9 A broadside line source has a cosine on a -lO-dB pedestal current distribution. It 
operates at 200 MHz and has a length of 20 m. Compute (a) the half-power beamwidth in 
degrees and (b) the directivity in decibels. 
4.2-10 Derive the pattern factor expression in Table 4-2 for a cosine on a pedestal current 
distribution for a line source. 
4.2-11 The directivity of a line source can be calculated from 

If
LI2 12 

2 -Ll2 I(z) dz 

D=AfLI2 
-L12 II(z)j2 dz 

This is the one-dimensional analogy of (7-66). Use this formula to: 
a. Derive Du = 2L1A, the directivity of a uniform line source. 
b. Derive an expression for DIDu of a cosine on a pedestal current distribution. Evaluate 

for C = 1,0.3162,0.1778, and O. 
4.4-1 Verify the ordinary endfire value for RSD in Table 4-4. Note: u = ({3L12)(cos (J - 1). 
4.4-2 Verify the Hansen-Woodyard value for RSD in Table 4-4. Note: u = O.5[{3L(cos (J - 1) -
2.94]. 
4.4·3 Consider a line source to have a wave traveling on it with a phase velocity v. Hence, 
f30 = (3(c/v). Determine the ratio of C/V for radiation in these three cases: (a) broadside; 
(b) ordinary endfire; ( c) supergain (endfire). For these three cases, identify whether the phase 
velocity is that of a fast wave (i.e;, v> c), a slow wave (Le., v < c), or neither. 
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Resonant Antennas: 
Wires and Patches 

In this chapter, we discuss the important topics of wire antennas and patches. Wire 
antennas are the oldest and still the most prevalent of all antenna forms. Just about 
every imaginable shape and configuration of wires has a useful antenna application. 
Wire antennas can be made from either solid wire or tubular conductors. They are 
relatively simple in concept, easy to construct, and very inexpensive. 

To obtain completely accurate solutions for wire antennas, the current on the 
wire must be solved for, subject to the boundary condition that the tangential elec
tric field is zero along the wire. This approach gives rise to an integral equation, for 
which many approximate solutions have been reported over the last several decades 
[1]. These classical solutions are rather tedious and limited to a few simple wire 
shapes. On the other hand, modern numerical methods implemented on the digital 
computer are rather simple in concept and applicable to many wire antenna config
urations. These numerical (moment method) techniques are discussed in Chapter 
10. In this chapter, we adopt a simple approach to solving for the properties of wire 
antennas. This affords a conceptual understanding of how wire antennas operate, 
as well as yielding surprisingly accurate engineering results. For example, during 
the discussion of the loop antenna in Section 5.7 a detailed comparison of results 
from simple theory and the more exact numerical methods demonstrates the ac
curacy of simple theory. 

In this chapter, we discuss several resonant wire antennas such as straight 
wire dipoles, vee dipoles, folded dipoles, Yagi-Vda arrays, and loops. Microstrip 
patch antennas, which are resonant antennas, are also described. A reSonant an
tenna is a standing wave antenna (e.g., a dipole) with zero input reactance at 
resonance. 

Other wire antennas that are broadband, such as traveling-wave antennas, the 
helix; and log-periodic, are presented in the next chapter. Methods of feeding wire 
antennas and their performance in the presence of an imperfect ground plane are 
included here. Most of the developments in this chapter utilize the principles set 
forth thus far. Design data and guidelines for the construction and use of wire 
antennas are emphasized. 
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5.1 DIPOLE ANTENNAS 

We have discussed short dipoles in Sec. 1.6 and 2.1 and the half-wave dipole in Sec. 
2.2. In this section, dipoles of arbitrary length are examined. The dipole antenna 
has received intensive study [1-3]. We will use a simple but effective approach that 
involves an assumed form for the current distribution. The radiation integral may 
then be evaluated and thus also the pattern parameters. For dipoles, we assume 
that the current distribution is sinusoidal. This is a good approximation verified by 
measurements. The current must, of course, be zero at the ends. We are, in effect, 
using the current distribution that is found on an open-circuited parallel wire trans
mission line. It is assumed that if the end of such a transmission line is bent out to 
form a wire antenna, the current distribution along the bent portion is essentially 
unchanged. Although this is not strictly true, it is a good approximation for thin 
antennas, for which the conductor diameter is on the order of O.OlA or smaller [4]. 

5.1.1 Straight Wire Dipoles 

A straight dipole antenna is shown in Fig. 5-1 oriented along the z-axis. It is fed at 
the center from a balanced two-wire transmission line, that is, the currents on each 
wire are equal in magnitude and opposite in direction. The current distribution 
along the antenna is assumed to be sinusoidal and can be written as 

L 
Izl <"2 (5-1) 

The dipole is surrounded by free space, thus, the phase constant is that of free 
space, {3. 

It is helpful to visualize the current distribution on an antenna. Figure 5-2 shows 
the current on a dipole for L < Al2. The solid lines indicate actual currents on the 
antenna and the dotted lines indicate extensions of the sine wave function. As a 
note of caution with this visualization, the dotted portion of the current distribution 
does not appear on the transmission line [5]. For this case, 1m in (5-1) is not the 
maximum current attained on the antenna. The maximum current on the antenna 
shown in Fig. 5-2 is at the input terminals where z = 0 and is of a value 1m sin({3L/2). 
The arrows in Fig. 5-2 show the current direction. The currents on the top and 
bottom halves of the antenna are in the same direction at any instant of time, and 
thus the radiation effects from each half reinforce. The transmission line, however, 

z 

Figure 5·1 The dipole antenna. 
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z 

I 

J ) l-----i\:-\+,.-- I (z) 

Figure 5-2 Current distribution on a dipole of length L < Al2. 

has oppositely directed currents that have canceling radiation effects for typical 
close conductor spacings. (See Fig. 2-4.) 

In Fig. 5-3, current distributions on various dipoles are plotted together with the 
antennas used to generate them. The sinusoidal curves superimposed on the anten
nas indicate the intensity of the current on the wire, that is, the value of the curve 
at point z is the current value on the wire at the same point z. Again, the arrows 
indicate current directions. To construct plots such as these, begin on the z-axis at 
one end of the wire where the current is zero and draw a sine wave while moving 
toward the feed point. The current on the other half is then the mirror image. For 
dipoles longer than one wavelength, the currents on the antenna are not all in the 
same direction. Over a half-wave section, the current is in-phase and adjacent 
half-wave sections are of opposite phase. We would then expect to see some large 
canceling effects in the radiation pattern. This will be shown later to be precisely 
what happens. For all the current distributions presented, the plots represent the 

J\ 
l/ 

L=~ 

J,) J) 
!/.l) 

L=~A 
Figure 5-3 Current distributions for various center-fed dipoles. Arrows indicate relative 
current directions for these maximum current conditions. 
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maximum excitation state. It is assumed that a sinusoidal waveform generator of 
radian frequency cu = 21rC/ A is connected to the input transmission line. The standing 
wave pattern of the current at any instant of time is obtained by multiplying (5-1) 
by cos cut, which follows from (1-6). 

To obtain the dipole radiation pattern, we first evaluate the radiation integral 

f
Ll2 

fun = -L12 I(z ')ej/3Z' cos 9 dz' (5-2) 

Substituting the current expression from (5-1) gives 

fun = fLI2 1m sin[f3(~ + z-) }j/3Z' cos 9 dz' 
(5-3) 

(Ll2 [(L )]., +)0 1m sin f3 2' - Z' e1/3z 
cos 9 dz' 

Evaluating these integrals (see Prob. 5.1-1) gives the unnormalized pattern 

f = 21m cos[(f3L12) cos fJ] - cos(f3L12) (5-4) 
un f3 sin2 fJ 

Using this in (4-1) leads to the complete far-zone electric field 

E -' . fJ e-j
/3r 21m cos[(f3L12) cos fJ] - cos(f3L12) (5-5) 

(J - ]CUJL sm -4 a . 2 fJ 71'r tJ sm 

Noting that cuJLIf3 .= '11, we see that this expression simplifies to 

E -' e-j
/3r I cos[(f3L12) cos fJ] - cos(f3L12) 

9 - ]'11 271'r m sin fJ (5-6) 

The fJ-variation of this function determines the far-field pattern. For L = Al2, it is 

F(fJ) = cos[( 71':2) cos fJ] 
sm (J 

(L = Al2) (5-7) 

This expression was also derived in Sec. 2.2; see (2-8). This is the normalized electric 
field pattern of a half-wave dipole. The half-power beamwidth is 78° and its pattern 
plot is shown in Fig. 5-4. 

For a center-fed dipole with L = A, the normalized electric field pattern from 
(5-6) is 

F( fJ) = cos( 71' cos fJ) + 1 
2 sin fJ 

(L = A) (5-8) 

The half-power beamwidth for this full-wave dipole is 47°. Its pattern is also shown 
in Fig. 5-4. If L = ~A, the pattern function is 

F(fJ) = 0.7148 cosG~ cos fJ) (L = ~A) (5-9) 
sm fJ 

The factor 0.7148 is the normalization constant. As predicted earlier, for dipoles of 
length greater than one wavelength, the pattern of the three-halves wavelength 
dipole shown in Fig. 5-4 has a multiple lobe structure due to the canceling effect of 
oppositely directed currents on the antenna. This effect is also visible in the ~ wave
length case. 
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Figure 5·4 Radiation patterns of center-fed straight dipole antennas of length L. 

As LI). becomes very small, the dipole pattern variation in (5-6) approaches sin O. 
Thus, we see again that the pattern of a short dipole along the z-axis is sin o. Recall 
that the short dipole pattern has a 900 half-power beamwidth; see Fig. 1-10b. 

To obtain the radiation resistance, first the radiated power must be found. Sub
stituting (5-6) into (1-130) gives 

p = ~ f21T f1T rl ~ {cOS[({3L12) co~ 0] - COS({3LI2)}2 r2 sin 0 dO dcfJ 
271 Jo)o (2'ITr)2 sm 0 . 

= -.!L [2 f21T dcfJ 2 f1T/2 (cos[({3L12) cos 0] - cos({3L12W dO (5-10) 
, 8~ m Jo)o sin 0 

Changing the integration variable to T = cos 0, so dT = -sin 0 dO, gives 

p = ~ [2 fO (cos[({3L12)T] - cos({3L12W (-dT) 
2'IT m)1 1 - ~ 

= ~ [2 e ({COS[({3L12)T] - cos({3L12W 
4'IT m)o 1 + T 

+ (cos[({3LI2)T] - COS({3L12W ) dT 
1 - T 

(5-11) 
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where in the last expression the identity 

1 1( 1 1) 
l-u2 =Z l+u+l-u 

(5-12) 

was used. Equation (5-11) can be evaluated in terms of sine and cosine integral 
functions; see (F-13) and (F-14). A simpler expression for the special case of the 
half-wave dipole is obtainable in terms of a single cosine integral function. Thus, 
when f3L12 = 1T12, (5-11) becomes 

p = .!!.... [2 (1 [COS2
( 1TT12) + cos

2
( 1TTI2)] dT 

41T m Jo 1 + T 1 - T 
(5-13) 

Changing variables again as v = 1 - T and w = 1 + T and substituting into (5-13) 
give 

(5-14) 

Changing the variable of integration to t = 1TV leads to 

p = .!!.... [2 f1T 1 - cos t dt = .!!.... [2 Cin(21T) = .!!.... [2 (2.44) 
81T m Jo t 81T m 81T m 

(5-15) 

where Cin(x) is related to the cosine integral function by (F-16) and is tabulated in 
[6]. In this case, Cin(21T) = 2.44. Using this and 'T/ = 1201T in (5-15) leads to the 
radiation resistance for a half-wave dipole as 

R = 2P = 2(15 [;,. 2.44) = 73 n (L = ~) 
r [;,. [;,. 2 (5-16) 

The infinitely thin dipole antenna also has a reactive impedance component. For 
the half-wave dipole, the reactance is inductive, and the complete input impedance 
is 

ZA = 73 + j42.5 n (L =~) (5-17) 

This can be calculated for an infinitely thin dipole by a classical procedure known 
as the induced emf method [7]. However, the input impedance of dipoles with finite 
wire diameter can be calculated using the numerical methods of Chap. 10, where 
the form of the current is not assumed. The results of such a calculation for the 
input resistance and reactance of a small-diameter, center-fed dipole are given in 
Figs. 5-5 and 5-6. The resonance effects are evident in these plots. Note that the 
input reactance is capacitive for small lengths; as we pointed out in Sec. 2.1. 

The dotted curve in Fig. 5-5 is the input resistance from (1-172) for an ideal dipole 
with uniform current. It does not give good results for an actual wire dipole as shown 
by the solid curve of Fig. 5-5. However, the triangular current approximation with 
Rri = 201T2(LI A f from (1-177) does give a good approximation to the input radiation 
resistance for short dipoles as demonstrated by the dashed curve of Fig. 5-5. Some 
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Figure 5-5 Calculated input 
resistance of a center-fed wire 
dipole of 0.0005.\. radius as a 
function of length L (solid curve). 
Also shown is the input resistance 
Rri = 801f(LI.\.)2 of an ideal dipole 
with a uniform current distribution 
(dotted curve) and the input 
resistance Rri = 201f(LIA)2 of a 
short dipole with a triangular 
current distribution approximation 
(dashed curve). 

simple formulas that approximate the input resistance of wire dipoles are given 
in Table 5-1 [8]. For example, using the second formula for L = )./2 gives Rri = 
24.7('Ti/2)2.4 = 73.0 n, which agrees with (5-17). The values obtained from Table 
5-1 also agree closely with those of Fig. 5-5. 

Input resistance can be related to radiation resistance. There are several ways to 
define radiation resistance by using different current reference points. Usually, ra-

1200 
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a 
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-1200 Figure 5-6 Calculated input 
reactance of center-fed wire 

-1500 dipole of radius 0.0005.\. as a 
Dipole length LfI.. function of length L. 



Table 5·1 Simple Formulas for the 
Input Resis~ance of Dipoles 

Length 
L 

A A -<L<-
4 2 

A 
2< L < 0.637A 

Input 
Resistance 

(Rri), n 

20r(~r 
( 

L)2.4 
24.7 7T'A 

( 
L)4017 

11.14 7T 'A 
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diation resistance is defined using the current distribution maximum ]m, whether or 
not it actually occurs on the antenna. We shall use the symbol Rrm for this definition. 
It is also useful to refer the radiation resistance to the input terminal point. In this 
case, the symbol Rri is used. These definitions can be related by writing the radiated 
power as 

P - 1]2R - 1]2R -Zmrm-ZAri (5-18) 

For dipoles that are odd integer multiples of a half-wavelength long, ]m = ]A and 0 

R rm = R ri . A third radiation resistance, denoted by R" is often used; it is the radi
ation resistance relative to the maximum current that occurs on the antenna. For 
dipoles less than a half-wavelength long, the current maximum on the antenna al
ways occurs at the center, and then Rri = Rrfor center-fed dipoles; this was discussed 
in Sec. 1.9. In practice, we are interested in input resistance, so Rri is of primary 
importance. It is related to R rm for center-fed dipoles by setting z = 0 in (5-1), giving 

I I · f3L 
A = mS1nT (5-19) 

and substituting into (5-18), which yields 

]2 Rrm 
Rri = ]~ R rm = sin2(f3L12) (5-20) 

Rri is the component of input resistance due to radiation and equals the total input 
resistance RA if ohmic losses are neglected, which we shall do unless otherwise 
indicated. 

For dipole lengths, L = A, 2A, 3A, ... , f3L12 = 7T, 27T, 37T, ... , and Rri from (5-20) 
is infinite. For example, the one-wavelength dipole of Fig. 5-3c has a current zero 
at its feed point and thus an infinite input impedance. This, of course, is based on 
the perfect sine wave current distribution. Dipoles of finite thickness have large but 
finite values of input impedance for lengths near integer multiples of wavelength, 
as seen in Fig. 5-5. This effect arises from the deviation of the current distribution 
from that of (5-1) for dipole lengths near integer multiples of the wavelength: there 
is always a finite input current on an actual dipole. For other-length dipoles, 
the sinusoidal current distribution is a good approximation for thin wire dipole 
antennas. 
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Table 5·2 Wire Lengths Required to Produce a Resonant Half-Wave 
Dipole for a Wire Diameter of 2a and Length L j 

Length to Percent 
Diameter Ratio, Shortening 

Ll2a Required 

5000 
50 
10 

2 
5 
9 

Resonant 
Length L 

0.49,\ 
0.475,\ 
0.455,\ 

Dipole 
Thickness 

Class 

Very thin 
Thin 
Thick 

By reducing the length of the half-wave dipole slightly, the antenna can be made 
to resonate (XA = 0). The input impedance of the infinitely thin half-wave dipole 
is then about 70 + jO!l. In Fig. 5-6, the dipole of radius 0.0005A resonates for lengths 
corresponding to the intersections with the horizontal (XA = 0) axis. The first in
tersection is the half-wave dipole case and the resonant length is slightly less than 
Al2. It turns out that as the wire thickness increases, the dipole must be shortened 
more to obtain resonance. Approximate length values for resonance are given in 
Table 5-2. For the dipole of 0.0005A wire radius, the length-to-diameter ratio, L1Za, 
is 500 for the half-wave case. From Table 5-2, we see that about 4% shortening 
(L = 0.48A) would be required to produce resonance. This agrees closely with the 
resonance point from Fig. 5-6. In practice, wire antennas are constructed slightly 
longer than required. Then a transmitter is connected to the antenna and the stand
ing wave ratio (or reflected power) is monitored on the feed transmission line. The 
ends of the antenna are trimmed until a low value of standing wave ratio is obtained. 
Note that as the length is reduced to obtain resonance, the input resistance also 
decreases. For example, for a thick dipole with L1Za = 50 and L = 0.475A, the 
second formula of Table 5-1 gives RA = 64.5 !l; the reactance is, of course, zero. 

Since dipoles are resonant-type structures, their bandwidth is low. The VSWR as 
a function of frequency for a half-wave dipole is shown in Fig. 5-7. In general, 
bandwidth is defined as "the range of frequencies within which the performance of 
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Figure 5·7 Calculated VSWR as a function of frequency for dipoles of different wire 
diameters. 
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=====JI] (f 
Side view 

Figure 5-8 Thin metal strip dipole. 
End view 

a=O.25w 
a = Equivalent radius 
w«L 
w«A, 

the antenna, with respect to some characteristic, conforms to a specified standard" 
[9]. In this case, let the specified standard be a VSWR less than 2.0:1. From Fig. 
5-7, we see that the bandwidths are 310 - 262 = 48 MHz and 304 - 280 = 24 MHz, 
respectively, for a = 0.005 m (L/2a = 50) and a = 0.0001 m (L/2a = 2500). In terms 
of percent relative to the design frequency (300 MHz), the bandwidths are 16 and 
8%. It is an important general principle that the thicker the dipole, the wider is its 
bandwidth. Also, note that the minimum VSWR for the thicker dipole occurs at a 
lower frequency than for the thinner one. In fact, if we use the rules in Table 5-2, 
the resonant frequencies are calculated to be 285 and 294 MHz for wire radii of 
0.005 and 0.0001 m. These values agree well with the minimum points of the curves 
in Fig. 5-7. 

The improved bandwidth offered by the thick circularly cylindrical dipole in Fig. 
5-7 can also be achieved with a flat metallic strip as Fig. 5-8 indicates. The relation
ship between the circularly cylindrical dipole radius and the width of the metallic 
strip for equivalent performance under certain conditions is a = 0.25w [10]. The 
advantage of the flat strip dipole is primarily an economic one. 

Finally, we compute the directivity of a half-wave dipole. It is found from D = 
47TUm IP. The radiated power P was evaluated in (5-15). Using the far-zone electric 
field of (5-6) leads to the maximum radiation intensity as 

_ r2 1 12 _ 1 rf I:" _ 71 2 
Um - 2TJ E6 max - 2TJ (:?7Ti - 87T2 1m (5-21) 

So, 

(5-22) 

This is only slightly greater than the directivity value of 1.5 for an ideal dipole with 
uniform current. So for very short dipoles, the directivity is 1.5 and increases to 1.64 
as the length is increased to a half-wavelength. As length is increased further, di
rectivity also increases. A full-wave dipole has a directivity of 2.41. Even more 
directivity is obtained for a length of about 1.25A. As the length is increased further, ' 
the pattern begins to break up (see Fig. 5-4) and directivity drops sharply. See Prob. 
5.1-12. 

5.1.2 The Vee Dipole 

Wire dipole antennas that are not straight also appear in practice. One such antenna 
is the vee dipole shown in Fig. 5-9. This antenna may be visualized as an open
circuited transmission line that has been bent so that ends of length h have an 
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Figure 5-9 The vee dipole antenna. 

included angle of 'Y. The angle 'Y for which the directivity is greatest in the direction 
of the bisector of 'Y is given by 

'Y = 152(~) 
2 

- 388(~) + 324, 

'Y = 11.5(~) 
2 

- 70.5(~) + 162, 

h 
0.5 :5 A < 1.5 

h 
1.5 :5 A :5 3.0 

(5-23) 

where the resulting angle 'Y is in degrees. The corresponding directivity is 

D = 2.95(~) + 1.15 (5-24) 

These equations were empirically derived for antennas with 0.5 :5 hl'\ :5 3.0 using 
the computational methods (MoM) of Chap. 10. 

The directivity of a vee dipole can be greater than that of a straight dipole. This 
can be seen from the pattern in Fig. 5-10 where h = 0.75'\ and 'Y from (5-23) is 
118S. Notice that the direction of maximum radiation is f/J = 900 while radiation 
in the f/J == 2700 direction is about 2 dB less. Even more significant is the low level 
of the side lobes. For the most part, it is the reduced side lobe levels of the vee 
dipole that give it a greater directivity than the straight dipole version (see Fig. 
5-4d). The directivity for the vee dipole of Fig. 5-10 from (5-24) is D = 2.94(0.75) 

2700 1--.oooooHf--+---+--+-~E--+-+---+--+---f90° 

Figure 5-10 Far-field pattern of 
a vee dipole shown in Fig. 5-9 
with arm length h = 0.75.\, 
'Y = 118S, and a = 0.0005.\. 
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+ 1.15 = 3.355 = 5.26 dB. The directivity of a 1.5-\ long straight wire dipole is about 
2.2, or 3.4 dB. 

The input impedance of a vee dipole antenna is generally less than that of a 
straight dipole of the same length. For example, the input impedance of the vee 
dipole in Fig. 5-10 is 106 + j17 n, which is less than for the straight dipole version 
(L = 1.5-\) as found from Figs. 5-5 and 5-6. 

S.2 FOLDED DIPOLE ANTENNAS 

/ 

An extremely practical wire antenna is the folded dipole. It consists of two parallel 
dipoles connected at the ends forming a narrow wire loop, as shown in Fig. 5-11, 
with dimension d much smaller than L and much smaller than a wavelength. The 
feed point is at the center of one side. The folded dipole is essentially an unbalanced 
transmission line with unequal currents. Its operation is analyzed by considering the 
current to be composed of two modes: the transmission line mode and the antenna 
mode. The currents for these modes are illustrated in Fig. 5-12. 

The currents in the transmission line mode have fields that tend to cancel in the 
far field since d is small. The input impedance Zt for this mode is given by the 
equation for a transmission line with a short circuit load 

Zt = jZo tan {3 ~ (5-25) 

where Zo is the characteristic impedance of the transmission line. 
In the antenna mode, the fields from the currents in each vertical section reinforce 

in the far field since they are similarly directed. In this mode the charges "go around 
the comer" at the end, instead of being reflected back toward the input as in an 
ordinary dipole, which leads to a doubling of the input current for resonant lengths. 
The result of this is that the antenna mode has an input current that is half that of 
a dipole of resonant length. 

Suppose a voltage V is applied across the input terminals of a folded dipole. The 
total behavior is determined by the superposition of the equivalent circuits for each 
mode in Fig. 5-13. Note that if the figures for each mode are superimposed and the 
voltages are added, the total on the left is V and on the right is zerO as it should be. 
The transmission line mode current is 

I 
L 

j 

V 
It = 2Z

t 

Figure 5·11 The folded dipole antenna. 

(5-26) 
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(a) Transmission line mode. 
Figure 5-12 The current modes on a 

(b) Antenna mode. folded dipole antenna. 

For the antenna mode, the total current is the sum of each side, or Ia. The excitation 
for this current is V12; thus, the antenna current is 

(5-27) 

where to a first-order approximation Zd is the input impedance for an ordinary 
dipole of the same wire size [11]. The total current on the left is It + ~Ia and the 
total voltage is V, so the input impedance of the folded dipole is 

(5-2S) 

Substituting (5-26) and (5-27) in (5-28) yields 

ZA = 4Z,zd 
Zt + 2Zd 

(5-29) 

As an example, consider the popular half-wave folded dipole. From (5-25) with 
L = Al2, Zt = jZo tan[(21TIA)(Al4)] = jZo tan(1T12) = 00. Then (5-29) gives 

(5-30) .. 

Thus, the half-wave folded dipole provides a four-fold increase in impedance over 
its dipole version. Since the half-wave dipole (at resonance) has a real input imped
ance, the half-wave folded dipole has also. 

The current on the half-wave folded dipole is particularly easy to visualize. We 
will discuss this current and also rederive the impedance. If the vertical wire section 
on the right in Fig. 5-11 were cut directly across from the feed point and the wire 

+ 
Y,.. 
2 

Figure 5-13 Mode excitation and current for 
a voltage V applied to the terminals of a 
folded dipole. Superposition of these modes 

(a) Transmission line mode. (b) Antenna mode. gives the complete folded dipole model. 
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Figure 5-14 Current for the antenna mode of a half-wave folded 
dipole that has been folded out without disturbing the current. 

folded out without disturbing the current, it would appear as shown in Fig. 5c14. 
The current is not zero at the ends because they are actually connected. Perhaps a 
better way to view this is to fold the current back down and note that currents on 
the folded part are now upside down a:s shown in Fig. 5-15a. The same total current 
(and thus the same pattern) is obtained with both the folded and the ordinary 
dipoles in Fig. 5-15. The difference is that the folded dipole has two closely spaced 
currents equal in value, whereas in the ordinary dipole they are combined on one 
wire. From this, it is easy to see that the input currents in the two cases are related 
as 

(5-31) 

The input powers are 

(folded dipole) (5-32) 

and 

(dipole) (5-33) 

Since the total currents are the same in the half-wave case, the radiated powers are 
also. Equating (5-32) and (5-33) and using (5-31) give 

~ZdI~ = ~ZA~I~ 

or 

(5-34) 

This result is an independent confirmation of the result in (5-30). 
The input impedance of a half-wave folded dipole (at resonance) is four times 

(a) Folded dipole. (b) Dipole. Figure 5-15 Currents on half-wave dipoles. 
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0.4 

--- Transmission line model 
Moment method model 
2a = 0.0011.. 
z., =3000 

0.8 1.2 
Folded dipole length LII.. 

(a) Input resistance. 

1.6 

--- Transmission line model 
Moment method model 
2a = 0.0011.. 
Zo=3000 

Folded dipole length LII.. 
(b) Input reactance 

2.0 

Figure 5·16 Input impedance of a folded dipole. The solid curves are calculated from the 
transmission line model. The dashed curves are calculated from more accurate numerical 
methods. The wire radius a is 0.0005'\ and wire spacing d is 12.5a. 
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that of an ordinary dipole. A resonant half-wave dipole has about 70 0 of input 
resistance, so a half-wave folded dipole then has an input impedance of 

Zt = 4(70) = 2800 (half-wave) (5-35) 

This impedance is very close to the 300 0 of common twin-lead transmission line. 
The input impedance curves for a folded dipole of finite wire thickness are 

given in Fig. 5-16 as a function of folded dipole length. The solid curves were 
obtained from the transmission line model. The wire spacing d = 12.5a is such 
that the characteristic impedance corresponds to a 300 0 transmission line [Zo = 
(71l7r) medIa) = 120 In(12.5a/a) """ 300 OJ. The folded dipole input impedance is then 
found from (5-25) and (5-29). As an example, consider a folded dipole of length 
L = 0.8'\, spacing d = 12.5a, and radius a = 0.0005'\. From (5-25), 

Zt = j300 tan 0.81T = - j218 0 (5-36) 

From Figs. 5-5 and 5-6, 

Zd = 950 + j950 (5-37) 

Using these in (5-29) yields 

ZA = 28 - j461 0 (L = 0.8,\) (5-38) 

This result agrees with the values shown in Fig. 5-16. 
Also shown in Fig. 5-16 as dashed curves is the input impedance calculated using 

the more exact methods of Chap. 10. The agreement between the simple transmis
sion line model and the numerical method results is quite good. Both methods show 
that the real part of the input impedance is slightly less than 300 0 at the first 
resonance (L """ 0.48,\) and slightly larger than 300 0 at the second resonance 
(L """ 1.47,\). It is this characteristic of the folded dipole that makes it useful at 
harmonically related frequencies. Note too the very low value of ZA when L """ A, 
2A, .... This can easily be explained from the transmission line model, since then 
tan({3L/2) """ tan 1T = 0 and thus Zt = 0 and ZA from (5-29) is zero. 

The folded dipole is used as an FM broadcast band receiving antenna, and it can 
be simply constructed by cutting a piece of 300-0 twin-lead transmission line about 
a half-wavelength long (1.5 m at 100 MHz). The ends are soldered together such 
that the overall length L is slightly less than a half-wavelength at the desired fre
quency (usually 100 MHz). One wire is then cut in the middle and connected to the 
twin-lead transmission line feeding the receiver. 

Occasionally, two different wire sizes are used for a folded dipole as shown in 
Fig. 5-17. The input impedance for the half-wave case is given by 

(a) Side view (b) End view 

Figure 5·17 Folded dipole antenna 
constructed from two different size 
conductors. 

(5-39) 
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For given values of d, at. and a2, the value of c can be found [11, 12]. As is frequently 
the case, if al and a2 are much less than d, c is approximately given by 

In(d/al) c = ~----''''-
In(d/a2) 

(5-40) 

The folded dipole antenna is a very popular wire antenna. The reasons for this 
are its impedance properties, ease of construction, and structural rigidity. The equal
size conductor half-wave folded dipole has an input impedance very close to that 
of a 300-ohm twin-lead-type transmission line as seen from Fig. 5-16. Also, by chang
ing the conductor radii, the input impedance can be changed. In addition to having 
desirable impedance properties, the half-wave folded dipole has a wider bandwidth 
than an ordinary half-wave dipole [13]. In part for these reasons, a folded dipole is 
frequently used as a feed antenna for Yagi-Uda arrays and other popular antennas. 

S.3 FEEDING WIRE ANTENNAS 

When connecting an antenna to a transmission line, it is important to make effective 
use of all available power from the transmitter in the transmit case and from the 
antenna in the receive case. There are two primary considerations: the impedance 
match between the antenna and transmission line, and the excitation of the current 
distribution on the antenna. In this section, these general topics are discussed along 
with specific applications to wire antennas. 

First, consider impedance matching. A typical transmitter or receiver circuit is 
shown in Fig. 5-18. Usually, the transmitter or receiver has an impedance equal to 
that of the transmission line Zoo However, the antenna impedance ZA is frequently 
quite different from Zoo The question is whether or not this is a problem. The answer 
depends on the application. In some cases, corrective measures such as a matching 
network are necessary. Let us examine the effects created by a mismatch. It is well 
known that maximum power is transferred when there is a conjugate impedance 
match. Also, if the system were operated with a poor match at the antenna, there 
would be reflections set up along the transmission line; that is, the voltage standing 
wave ratio (VSWR) is much greater than one. If the transmission line is of high 
quality (low loss), these reflections represent low-dissipative losses. For many ap
plications, an extremely low VSWR is a luxury and not a necessity. This is dem
onstrated in Table 5-3, which follows from (9-9). For example, a VSWR of 2: 1 leads 
to 89% power transmission. On the other hand, if the VSWR is very high, power 
is traveling back and forth along the transmission line, and if the line is lossy and! 
or of long length, dissipative losses may be significant. 

High VSWR has other undesirable effects on a system. In high-power applica
tions, very high voltages will be developed between the conductors at certain points 

I 
Transmitter Matching 

or Zo Zo ,.-. 
network ~ 

receiver 

I Transmission line 

Zin 

Figure 5·18 Typical transmitter/receiver configuration. 
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Table 5-3 VSWR and Transmitted Power 
for a Mismatched Antenna 

Percent Reflected Power 
= Ifl2 x 100 

= (VSWR - 1)2 X 100 
VSWR + 1 

0.0 
0.2 
0.8 
4.0 

11.1 
25.0 
36.0 
44.4 
50.0 
66.9 

Percent 
Transmited Power 
= q X 100 
= (1 - If12) X 100 

100.0 
99.8 
99.2 
96.0 
88.9 
75.0 
64.0 
55.6 
50.0 
33.1 

along a transmission line. These are called "hot spots" and may cause arcing. Also, 
a high VSWR means that the impedance varies along the transmission line and 
further that the impedance at any point varies as the frequency is changed. This 
may affect transmitter operation. For example, the frequency of the transmitter can 
be changed by severe input impedance mismatch; this is called "frequency pulling." 

If the impedance mismatch is unacceptable, there are several methods for im
proving the performance. Usually, the characteristic impedance Zo is nearly real 
since low-loss transmission lines are used. For a match then, the antenna should 
have an input impedance equal to Zo + jO. Sometimes, it is possible to select an 
antenna that achieves this. If this is not possible, a matching network can be em
ployed as shown in Fig. 5-18. Such matching networks take many forms. One ex
ample is the quarter-wave transformer, which is a quarter-wave-Iength long trans
mission line with characteristic impedance YZoRA' where RA is the antenna input 
resistance. If the antenna impedance has a reactive component, other devices may 
be used. At UHF and microwave frequencies, tuning devices such as stub tuners 
and irises are introduced to transform the real part of the impedance to that of the 
transmission line as well as tuning out the reactive component. At low frequencies, 
reactive tuning is accomplished with variable capacitors and coils because the elec
trical dimensions of these lumped elements are small with respect to the wavelength. 

There are disadvantages to using matching networks. For example, if a matching 
network is designed to obtain a near perfect match, it will usually be narrow-banded. 
If the matching network is designed to be broadbanded, it will usually not yield a 
near perfect match at all frequencies over the band, or perhaps at any frequencies 
over the band. A discussion of matching techniques may be found in [14] and [15]. 

On the other hand, there are several ways to change the input impedance of an 
antenna without using a matching network. For example, the input resistance of a 
dipole can be changed by displacing the feed point off center. If the feed point is a 
distance z, from the center of the dipole, the current at the input terminals is 

(5-41) 
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Figure- 5·19 Half-wave dipole with displaced feed. 

In the case of a half-wave dipole as shown in Fig. 5-19, J3L12 = 'TT/2 and this reduces 
to 

1A = 1m cos J3zf (5-42) 

The input resistance (not including ohmic losses) is found from (5-42) in (5-20), 
giving 

1;' Rrm 
RA = 12 Rrm = 2 Q 

A cos "'Zf 
(5-43) 

As the feed point approaches the end of the wire, this result indicates that the input 
resistance increases toward infinity. In practice, the input resistance becomes very 
large as the feed point moves out. The pattern is essentially unchanged as the feed 
point shifts. For longer dipoles, the pattern and impedance differ significantly from 
the center-fed case as the feed point is displaced. For example, a full-wave dipole 
fed a quarter-wavelength from one end, as shown in Fig. 5-20, will have a current 
distribution that is significantly different from the center-fed full-wave dipole of Fig. 
5-3c and that has a broadside null in the pattern. 

The off-center feed arrangement is unsymmetrical and can lead to undesirable 
phase reversals in the antenna, as shown in Fig. 5-20. A symmetrical feed that 
increases the input resistance with increasing distance from the center point of the 
wire antenna is the shunt feed. A few forms of shunt matching are shown in Fig. 
5-21. We will discuss the operation of the tee match; the remaining shunt matches 
behave in a similar fashion. The center section of the tee match may be viewed as 
being a shorted transmission line in parallel with a dipole of wide feed gap spacing. 
The shorted transmission line is less than a quarter-wavelength long and thus its 
impedance is inductive. Capacitance can be introduced to tune out this inductance 
by either shortening the dipole length or placing variable capacitors in the shunt 
legs. As the distance D is increased, the input impedance increases and peaks for a 
D of about half of the dipole length. As D is increased further, the impedance 
decreases and finally equals the folded dipole value when D equals the dipole length. 
The exact impedance value depends on the distances C and D, and the ratio of the 

t 
IJ4 

t 

1 
L=').. 

j Figure 5·20 Current distribution on a full wave dipole for an 
off-center feed. 
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(a) Delta match. (b) Tee match. 
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Figure 5-21 Shunt matching 
(c) Gamma match. configurations. 

dipole wire diameter to the shunt arm wire diameter (similar to the folded dipole 
behavior). In practice, sliding contacts are made between the shunt arms and the 
dipole for impedance adjustment. Shunt matches will radiate and do so in an un
desirable fashion. 

We now turn our attention to a separate but related problem of balancing currents 
on wire antennas. Many wire antennas are symmetrical in nature and, thus, the 
currents should also be symmetrical (or balanced). An example of balanced and 
unbalanced operation of a half-wave dipole is shown in Fig. 5-22. In the balanced 
case, the currents on the transmission line are equal in magnitude and opposite in 
direction,· which yields very small radiation from the transmission line for closely 
spaced conductors. For unbalanced operation, as illustrated in Fig. 5-22b, the cur
rent II is greater than 12 and there is a net current flow on the transmission line 
leading to uncontrolled radiation that is not in the desired direction or of the desired 
polarization. Also, the unbalanced current on the antenna will change the radiation 
pattern from the balanced case. Thus, it is clear that balanced operation is desirable. 

Transmission lines are referred to as balanced and unbalanced. Parallel wire lines 
are inherently balanced in that if an incident wave (with balanced currents) is 
launched down the line, it will excite balanced currents on a symmetrical antenna. 
On the other hand, a coaxial transmission line is not balanced. A wave traveling 
down the coax may have a balanced current mode, that is, the currents on the inner 
conductor and the inside of the outer conductor are equal in magnitude and opposite 
in direction. However, when this wave reaches a symmetrical antenna, a current 
may flow back on the outside of the outer conductor, which unbalances the antenna 
and transmission line. This is illustrated in Fig. 5-23. Note that the currents on the 
two halves of the dipole are unbalanced. The current 13 flowing on the outside of 
the coax will radiate. The currents II and 12 in the coax are shielded from the external 
world by the thickness of the outer conductor. They could actually be unbalanced 
with no resulting radiation; it is the current on the outside surface of the outer 
conductor that must be suppressed. To suppress this outside surface current, a balun 
(contraction for "balanced to unbalanced transformer") is used. 

The situation in Fig. 5-23 maY' be understood by examining the voltages that exist 

(a) Balanced currents, 11 = 12, (b) Unbalanced currents, 11> Iz. 

Figure 5-22 Balanced and 
unbalanced operation of a center
fed half-wave dipole. 
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Va 

Zo Figure 5·23 Cross section of a coaxial 
transmission line feeding a dipole antenna 
at its center. 

at the terminals of the antenna. These voltages are equal in magnitude but opposite 
in phase (i.e., Va = - Vb). Both voltages act to cause a current to flow on the outside 
of the coaxial line. If the magnitude of the currents on the outside of the coax 
produced by both voltages are equal, the net current would be zero. However, since 
one antenna terminal is directly connected to the outer conductor, its voltage Vb 
produces a much stronger current than the other voltage Va. A balun is used to 
transform the balanced input impedance of the dipole to the unbalanced coaxial 
line such that there is no net current on the outer conductor of the coax. 

To illustrate how a balun works, consider the sleeve (or bazooka) balun in Fig. 
5-24. The sleeve and outer conductor of the coaxial line form another coaxial line 
of characteristic impedance Z~ that is shorted a quarter-wavelength away from its 
input at the antenna terminals. The equivalent circuit for Fig. 5-23 is that of Fig. 
5-25a. The equivalent circuit of Fig. 5-24 is that of Fig. 5-25b, which shows that both 
terminals see a very high impedance to ground. Thus, the situation in Fig. 5-25b is 
equivalent to the balanced condition of Fig. 5-25c wherein the currents 11 and 12 are 
equal. 

An easily constructed balun form is the folded balun shown in Fig. 5-26. The 
quarter-wavelength of coax from the a terminal to the outer conductor of the trans
mission line does not affect the antenna impedance ZA. The extra quarter-wave-

r 
A. 
4 

j 

Figure 5-24 Cross section of a sleeve balun 
feeding a dipole at its center. 
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(a) Equivalent circuit of coax-fed dipole in Fig. 5-23. 

-,..+'-------t 

(b) Equivalent circuit of sleeve balun-fed dipole in Fig. 5-24. 

- )"'+'--------1 

(c) Final equivalent circuit for Fig. 5-24 with quarter-wave 
transmission line removed,I, = h. 
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Figure 5-25 Equivalent circuits for 
a dipole fed from a coaxial 
transmission line of characteristic 
impedance Zo and load impedance 
ZL' 

Figure 5-26 The folded balun. 
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(a) Tapered microstrip balun. (b) Tapered coaxial balun. 

Figure 5-27 Broadband baluns. 

length of coax together with the outer conductor of the main transmission line forms 
another equivalent transmission line, which is a quarter-wavelength long and is 
shorted at C. Therefore, the short circuit at C is (ideally) transformed to an infinite 
impedance at the antenna terminals, which is in parallel with ZA, leaving the input 
impedance unchanged. The quarter-wavelength line induces a cancelling current on 
the outside of the coaxial transmission line, so that the net current on the outside 
of the main coax below point C is zero as shown in Fig. 5-26. The folded and sleeve 
baluns are, of course, not broadband because of the quarter-wavelength involved 
in its construction. 

Broadband baluns can be constructed by tapering a balanced transmission line 
to an unbalanced one over at least several wavelengths of transmission line length 

Balanced 
~--+-~------~line 

(a) Air core transformer 
balun. 

Figure 5-28 Baluns used at lower frequencies. 

Unbalanced Balanced 
line line 
~ 

(b) Ferrite core bifllar 
wound wire balun. 

f. 

\ 
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(a) Half-wave balun. 

720 
Unbalanced --II-e 

(b) ')J2 line puts two 144 0 loads in parallel, 
transforming 288 0 balanced to 72 0 
unbalanced. 
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Figure 5-29 A half-wave balun that provides an impedance setup ratio of 4: 1. 

as indicated in Fig. 5-27. Figure 5-27a shows a balanced transmission line tapering 
to an unbalanced microstrip line and Fig. 5-27b illustrates a balanced line tapering 
to an unbalanced coaxial line. 

The baluns we have considered thus far are useful from microwave frequencies 
down to VHF. From VHF down to lower frequencies, it is impractical in many cases 
to employ these configurations and transformers are used as Fig. 5-28 indicates. 
Figure 5-28a is an air core transformer arrangement useful at lower frequencies. 
Figure 5-28b is bifilar wound ferrite core balun that can be used from VLF through 
UHF. 

Impedance transformation may also be included in a balun for matching purposes. 
For example, the "four-to-one" balun in Fig. 5-29a will transform an unbalanced 
72-0 impedance to one that is 288-0 balanced. Such a balun is useful with a folded 
dipole. To understand how the four-to-one balun works, consider Fig. 5-29b that 
shows the 288-0 balanced impedance split into two 144-0 parts and the connection 
between the 144-0 impedances grounded. The 288-0 impedance is still balanced 
(with respect to ground). Next, the negative terminal is connected via a half-wave
length section of transmission line to the positive terminal as shown in Fig. 5-29b. 
Thus, the unbalanced terminals present a 72-0 impedance, whereas the balanced 
terminals present a 288-0 impedance and the four-to-one balanced transformation 
is complete. A balun that leaves the impedance unchanged is often referred to as a 
"one-to-one" balun. 

5.4 YAGI-UDA ANTENNAS 

We saw in Chapter 3 that array antennas can be used to increase directivity. The 
arrays we examined had all elements active, requiring a direct connection to each 
element by a feed network. Array feed networks are considerably simplified if only 
a few elements are fed directly. Such an array is referred to as a parasitic array. The 
elements that are not directly driven (called parasites) receive their excitation by 
near-field coupling from the driven elements. A parasitic linear array of parallel 
dipoles is called a Yagi-Uda antenna, a Yagi-Uda array, or simply "Yagi." Yagi
Uda antennas are very popular because of their simplicity and relatively high gain. 
In this section, the principles of operation and design data for Yagis will be 
presented [16]. 
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(a) Array configuration. (b) H-plane pattern computed from 
simple array theory. 

Figure 5-30 A two-element array of half-wave resonant dipoles, one a driver and the other 
a parasite. The currents on both are equal in amplitude and opposite in phase. 

The first research done on the Yagi-Uda antenna was performed by Shintaro 
Uda at Tohoku University in Sendai, Japan, in 1926 and was published in Japanese 
in 1926 and 1927. The work of Uda was reviewed in an article written in English by 
Uda's professor, H. Yagi, in 1928 [17]. 

The basic unit of a Yagi consists of three elements. To understand the principles 
of operation for a three-element Yagi, we begin with a driven element (or "driver") 
and add parasites to the array. Consider a driven element that is a resonant half
wave dipole. If a parasitic element is positioned very close to it, it is excited by 
the driven element with roughly equal amplitude, so the field incident on the para
site is 

Eincident = E driver (5-44) 

A current is excited on the parasite and the resulting radiated electric field, also 
tangent to the wire, is equal in amplitude and opposite in phase to the incident 
wave. This is because the electric field arriving at the parasite from the driver is 
tangential to it and the total electric field tangential to a good conductor is zero. 
Thus, the field radiated by the parasite is such that the total tangential field on the 
parasite is zero, or 0 = Eincident + Eparasite' Combining this fact with (5-44) gives 

Eparasite = - Eincident = - E driver (5-45) 

From array theory, we know that two closely spaced, equal amplitude, opposite 
phase elements will have an endfire pattern; for example, see Fig. 3-4. The pattern 
of this simple two-element parasitic array for 0.04.\. spacing is shown in Fig. 5-30b. 
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(a) Array configuration. (b) H-plane pattern computed from 
numerical methods. 

Figure 5-31 Two-element Yagi-Uda antenna consisting of a driver of length 0.4781,\ and a 
reflector of length 0.49A spaced O.04A away. The wire radius for both is 0.001,\. 
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Figure 5-32 Two-element Yagi
Uda antenna consisting of a 
driver of length 0.4781,,\ and a 
director of length 0.45A spaced 

(b) H-pJane pattern computed from 0.04A away. The wire radius for 
numerical methods. both is 0.001,,\. 

The simplistic beauty of the Yagi is revealed by lengthening the parasite. The 
dual endfire beam is changed to a more desirable single endfire beam. This effect 
is illustrated for the two-element parasitic array of Fig. 5-31. The driver is a dipole 
of length 0.478lA, which is a half-wave resonant length when operated in free space. 
The parasite is a straight wire of length 0.49A and spaced a distance 0.04A away 
from the driver. The H-plane pattern in Fig. 5-31b obtained from the numerical 
methods of Chapter 10 demonstrates the general trend of a parasite that is longer 
than the driver: A single main beam occurs in the endfire direction from the parasite 
to the driver along the line of array. Such a parasite is called a reflector because it 
appears to reflect radiation from the driver. 

If the parasite is shorter than the driver, but now placed on the other side of the 
driver, the pattern effect is similar to that when using a reflector in the sense that 
main beam enhancement is in the same direction. The parasite is then referred to 
as a director since it appears to direct radiation in the direction from the driver 
toward the director. The parasitic array in Fig. 5-32a consisting of a driver and a 
director has the pattern shown in Fig. 5-32b. ' 

The single endfire beam created by the use of a reflector or a director alone with 
a driver suggests that even further enhancement could be achieved with a reflector 
and a director on opposite sides of a driver. This is indeed the case. An example of 
a three-element Yagi is shown in Fig. 5-33a, which is a combination of the geome
tries of Figs. 5-31a and 5-32a. The pattern of Fig. 5-33b is improved over that of 
either two-element array. The E-plane pattern for the three-element Yagi is shown 
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(a) Array configuration. (b) H-pJane pattern computed 
from numerical methods. 
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(c) E-pJane pattern computed 
from numerical methods. 

Figure 5-33 Three-element Yagi-Uda antenna consisting of a driver of length 0.4781,,\, a 
reflector of 0.49A, and a director of length 0.45A, each spaced only O.04A apart. The wire 
radius for each is 0.001,,\. 
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Figure 5-34 Configuration for a general 
Yagi-Uda antenna. 

in Fig. 5-33c. It is essentially equal to the H-plane pattern multiplied by the element 
factor for the array, which is that of a half-wave dipole. Again, these patterns were 
obtained by numerical solution for exceptionally small element spacing (O.04A). 

The general Yagi configuration is shown in Fig. 5-34. The maximum directivity 
obtainable from a three-element Yagi is about 9 dBi or 7 dBd [18]. Optimum re
flector spacing SR (for maximum directivity) is between 0.15 and 0.25 wavelengths 
as Fig. 5-35 shows. Note that the gain above an isolated dipole is more than 2.5 
dBd, whereas if a flat plate were used, instead of a simple wire-like element, the 
gain would be 3 dBd. Thus, a single wire-like reflector element is almost as effective 
as a flat plate in enhancing the gain of a dipole. 

Director-to-director spacings are typically 0.2 to 0.35 wavelengths, with the larger 
spacings being more common for long arrays and closer spacings for shorter arrays. 
Typically, th~ reflector length is O.5A and the driver is of resonant length when no 
parasitic elements are present [19]. The director lengths are typically 10 to 20% 
shorter than their resonant length, the exact length being rather sensitive to the 
number of directors ND and the interdirector spacing SD. 

The gain of the Yagi is related to its boom length as our study of uniform line 
sources in the previous chapter suggests, but for a parasitic array such as the Yagi, 
there is a smaller increase in gain per element as directors are added to the array 
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Figure 5-35 Measured gain [21] in 
dBd of a dipole and reflector 
element for different spacings SR. 
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Figure 5-36 Gain of a typical Yagi-Vda antenna 
versus the total number of elements. The element 

2 3 4 5 6 7 8 9 10 11 spacings SR = SD = 0.15..\. The conductor 
Numberofelements,N diameters are 0.0025..\. (From Green [20].) 

(if we assume SD is fixed) since the Yagi is not uniformly excited (see Fig. 5-39). In 
fact, the addition of directors up to about 5 or 6 provides a significant increase in 
gain expressed in dB, whereas the addition of more directors is beyond the "point 
of diminishing returns" as Fig. 5-36 shows. Figure 5-36 plots the gain versus the 
number of elements N in the array (including one reflector and one driver) [20] for 
an interelement spacing for all elements of SR = SD = 0.15'\. Note that adding one 
director to increase N from 3 to 4 gives about a I-dB gain increase, whereas adding 
one director to increase N from 9 to 10 yields only about an additional 0.2-dB gain. 

The addition of more reflector elements results in a fractional dB increase in gain 
and is usually not done. The main effects of the reflector are on the driving point 
impedance at the feed point and on the back lobe of the array. Pattern shape, and 
therefore gain, are mostly controlled by the director elements. The director spacing 
and director length are interrelated, but the more sensitive parameter is the director 
length, which becomes more critical as the boom length increases. 

An extensive decade-long experimental investigation by Viezbicke [21] at the 
National Bureau of Standards (later known as NIST) has produced a wealth of 
information on Yagi-Vda antenna design. An objective of the experimental inves
tigation was to determine optimum designs for a specified boom length. Boom 
lengths from 0.2 to 4.2,\ were included in the study. Some of Viezbicke's work is 
summarized in Table 5-4, which can be used for design purposes. Viezbicke's work 
and its summaries in [22] and [23] show how to correct the free-space parasitic 
element lengths for both the diameter of the conductors used (see Fig. 5-37) and 
for the diameter of a metal boom (see Fig. 5-38), if a metal boom is used. A metal 
boom may be used because the voltage distribution on the parasitic elements goes 
through a zero at the element center. Ideally, an infinitely thin metallic boom down 
the center of the array would not change the voltage distribution. However, metallic 
booms of practical size do have an effect that must be compensated for by increasing 
the parasitic element lengths. Alternatively, the parasitic elements may be insulated 
from the boom, in which case no compensation is required. 

The Yagi-Vda antenna with at least several directors is an end-fire traveling-
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Table 5-4 Optimized Lengths of Parasitic Dipoles for Yagi-Uda Array Antennas 
of Six Different Boom Lengths 

dlA = 0.0085 
Boom length of Yagi-Uda Array, A 

SR = 0.2A 0.4 0.8 1.20 2.2 3.2 4.2 

Length of reflector, LilA 0.482 0.482 0.482 0.482 0.482 0.475 
Dl 0.442 0.428 0.428 0.432 0.428 0.424 
D2 0.424 0.420 0.415 0.420 0.424 ,-., 

-< D3 0.428 0.420 0.407 0.407 0.420 --. Ci D4 0.428 0.398 0.398 0.407 
~ 
'-' Ds 0.390 0.394 0.403 

~ D6 0.390 0.390 0.398 Q .. D7 0.390 0.386 0.394 0 .... Ds 0.390 0.386 0.390 C) 
Q) .. D9 0.398 0.386 0.390 :a .... DlO 0.407 0.386 0.390 0 

..s:: Dn 0.386 0.390 
'SO Dl2 0.386 0.390 s:: 
Q) 

D13 0.386 0.390 ...:l 
Dl4 0.386 
Dls 0.386 

Spacing between 0.20 0.20 0.25 0.20 0.20 0.308 
directors (Sv/A) 

Gain relative to half-wave 7.1 9.2 10.2 12.25 13.4 14.2 
dipole, dBd 

Design curve (Fig. 5-37) (A) (C) (C) (B) (C) (D) 
Front-to-back ratio, dB 8 15 19 23 22 20 

Source: P. P. Viezbicke, "Yagi Antenna Design," NBS Tech. Note 688, National Bureau of Standards, 
Washington, DC, Dec. 1968. 

wave antenna that supports a surface wave of the slow wave type (i.e., C/V > 1) (see 
Prob. 4.4-3). That is, the driver-reflector pair launches a wave onto the directors 
that slows the wave down such that the wave phase velocity v is less than that of 
the velocity of light c in free space. In other words, the phase delay per unit distance 
along the axis of the array in the forward direction is greater than that of the or
dinary endfire condition. One might suspect that the additional phase delay beyond 
ordinary endfire required for maximum gain is that of the Hansen-Woodyard con
dition for uniform arrays (e.g., Sec. 3.2.4). If the boom length is quite long, this is 
approximately true. 

The director currents on a well-designed Yagi are nearly equal as Fig. 5-39 indi
cates [16]. If the partial boom length h, as measured from the driver to the furthest 
director (see Fig. 5-34), is long (h »A), the Hansen-Woodyard condition requires 
that the phase difference between the surface wave and a free-space wave at the 
director furthest from the driver (the terminal director) be approximately 180°. 
Thus, 

h{3g - h{3 = 1T (5-46) 

or, 

>.lAg = c/v = 1 + Al2h (5-47) 
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Figure 5·37 Design curves for Yagis in Table 5-4 [21]. 
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where here {3g is a guided phase constant along the forward axis of the array, Ag 
represents the corresponding guided wavelength, and A is the unguided (free-space) 
wavelength. Note that {3g = -13 cos ()o""" -f3(clv) and recall that clv > 1 implies 
Icos 80 1 > 1. Equation (5-47) is plotted as the upper dashed line in Fig. 5-40. 

Experimental work by Ehrenspeck and Poehler [19] showed that the optimum 
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Figure 5·38 Graph showing effect of supporting metal boom on the length of Yagi 
parasitic elements [21]. 
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Figure 5-39 Relative current amplitudes for a 27-element Yagi array [16]. 

terminal phase difference is about 60° for short Yagis, rismg to about 1200 for 
4A < h < 8A, and then approaching 1800 for h > 20A. This is the solid curve in Fig. 
5-40. Various data for Yagis and other endfire structures indicate that the optimum 
c1v values lie on or just below the solid curve in the shaded area. Other surface 
wave structures, with more efficient surface wave excitation than the Yagi, can have 
optimum C/V values that lie in the shaded region nearer to the dashed lower bound, 
but all of these surface wave structures approach the Hansen-Woodyard condition 
if they are very long. 

Viewing the directors as a reactive surface over which the surface wave travels, 
and noting from Table 5-4 that director lengths tend to be shorter for longer boom 
lengths, lead us to surmise that the surface wave couples less to the reactive surface 
for long boom lengths so that the total phase delay is not excessive and falls on the 
solid curve in Fig. 5-40. Examining Table 5-4 for those arrays with a director spacing 
S D = 0.2A shows that indeed the directors tend to be shorter for longer boom 
lengths. 
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Figure 5-40 Relative phase velocity C/V = )JAg for maximum gain surface wave antennas as 
a function of antenna length hlA. HW = Hansen-Woodyard condition (5-46); EP = 
Ehrenspeck and Poehler experimental values; LB = lower bound (for idealized surface 
wave excitation). (from Antenna Engineering Handbook, 3rd Ed., Richard C. Johnson, Ed. 
New York: McGraw-Hill, Inc., 1993. Used by permission.) 
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The Yagi is one of the more popular antennas used in the HF-VHF-UHF fre
quency range. It provides moderately high gain while offering low weight and low 
cost. It has a relatively narrow bandwidth (e.g., a few percent), which may be im
proved somewhat by using feeds other than a dipole, such as a folded dipole. The 
folded dipole also provides a higher input impedance than a dipole even though the 
driving point impedance of both are usually reduced considerably from their self
impedances by mutual coupling effects. Further, increased gain can be obtained by 
arraying or "stacking" Yagi antennas. Maximum gain results for a separation of 
almost one wavelength (see Fig. 3-20). Thus, for a given application, if a somewhat 
narrow bandwidth can be tolerated, the Yagi-Uda antenna can provide good gain 
(e. g., 9-12 dB) at low cost. 

TV Channel 12 Yagi Antenna Design 

A 12-element Yagi for TV channel 12 at 205.25 Mhz is to be designed using I-em-diameter 
elements insulated from a metallic boom [23]. The boom length is to be 2.2A. Table 5-4 
indicates that 0.2A spacing is required. The wavelength at 205.25 Mhz is 1.46 m. Thus, the 
spacing between all elements is 29.2 em. To obtain the element lengths, the following four 
steps are followed: 

L Plot the element lengths from Table 5-4 on the design curves "B" in Fig. 5-37. The 
design curves are for conductor diameters of 0.OO85A. 

2. Since the I-em conductor to be used is 0.0065A in diameter, the element lengths in the 
table must be increased slightly. This is accomplished by drawing a vertical line at 
0.0065A on the horizontal axis. This line intersects the two applicable design curves, 
which gives the compensated lengths of the reflector and first director: 

LR = 0.483A, LDI = 0.4375A 

Notice the distance along the director "B" curve between the intersection of the vertical 
line at 0.OO65A and the location of the first director length from step 1 above. All the 
directors must be increased in length by an amount that is determined by this distance. 

3. With a pair of dividers, measure the distance on the B director curve between the initial 
length and corrected length of the first director. Slide each of the other director lengths 
to the left by this amount to determine their compensated lengths: 

LD2 = 0.42lA 

LD3 = L D10 = 0.414A 

LD4 = LD9 = 0.405A 

LDs = LD6 = LD7 = LD8 = 0.398A 

4. The fourth step generally is to correct the lengths for the metallic boom using Fig. 5-
38, if one is used. In this case, the boom is metallic, but the elements are insulated from 
it and no correction factor is required. (See Prob. 5.4-5.) 

Calculated patterns for Example 5-1 using numerical methods (e.g., Chap. 10) 
are shown in Fig. 5-41 and the calculated directivity is 11.82 dBd, which agrees well ' 
with the gain value in Table 5-4. The calculated input impedance for a dipole driver 
is 26.5 + j23.7 O. The calculated front-to-back ratio is 38.5 dB, owing to the almost 
total absence of a back lobe in the calculated pattern . . 
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Figure 5-41 Calculated patterns for Example 5-1. 

5.5 CORNER REFLECTOR ANTENNAS 

Another practical antenna that produces a gain of 10 to 12 dB over a half-wave 
dipole is the comer reflector antenna invented by J. D. Kraus in 1938 [4]. His first 
experimental model was a 90° comer reflector. Although other comer angles can 
be used, the 90° comer illustrated in Fig. 5-42 is the most practical and the one that 
will be discussed here. The comer reflector is a gain standard at UHF frequencies. 

The comer reflector antenna can be easily analyzed using the method of images 
and array theory. Consider Fig. 5-43 that shows the source and its three images. The 
array factor contribution from the feed element [#1] and image #4 from (3-4) is 
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Figure 5-42 Right angle comer 
reflector with metal plates in the 
4> = ±45° planes. 
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Figure 5-43 Right angle comer reflector 
with images shown and how they account 
for reflections. 

2 cos[f3s cos(cf»]. The contribution from images #2 and #3 will be the same only 
rotated 90° and of opposite phase, or -2 cos[f3s cos(90° - cf> )]. Thus, if we assume 
that the conducting reflecting sheets are infinite in extent, the array factor in the 
xy-plane (H-plane) valid in the region -45° :::5 cf> :::5 45° is 

AP( 0 = 90°, cf» = 2 cos(f3s cos cf» - 2 cos(f3s sin cf» (5-48) 

It follows that in the xz-plane or E-plane, the array factor may be constructed by a 
somewhat similar reasoning process: 

AP(O, cf> = 0°) = (-2 + 2 cos[f3s cos(90° - O)]}g(O) (5-49) 

where the element factor g(O) is usually that of a half-wave dipole. 
The pattern shape, gain, and feed point impedance will all be a function of 

the feed-to-corner spacing s (see Fig 5-44a). For the 90~corner reflector, the pat
tern will have no minor lobes within -45° :::5 cf> :::5 45° and good directivity if 
0.25A:::5 s:::5 0.7A. The directivity will be greatest at s = O.5A [24] when the conduct
ing plates are of infinite extent, but the input impedance of a dipole feed will be 
high (i.e., around 125 ,0). Adjusting the spacing downward to 0.35A will in theory 
produce a 70-,0 input impedance with a negligible decrease in gain. Often, a bow 

............ s=Al4 

45° -- s = ')J2 
--__ s= 3A14 

~--+---7----r--,¢=O 

(a) H-pJane (b) E-pJane 

. Figure 5-44 Principal plane patterns, IAFI, for a right angle comer reflector composed of 
two (semi-infinite) half-planes and a ill dipole feed. (Only the best directivity spacing is 
used in the E-plane.) 
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tie (see Fig. 6-32) is used for the feed because it has superior impedance bandwidth 
properties compared to an ordinary linear dipole. 

Making the conducting plates of finite extent is, of course, necessary for a practical 
design. It can be shown by ray tracing that a length value of L = 2s is a reasonable 
minimum length so that the main beam is not degraded by the finite extent of the 
conducting plates. The dimension H is usually chosen to be from 1.2 to 1.5 times 
the length of the feed so as to minimize the direct radiation by the dipole feed into 
the back region. The finite extent of the plates will result in a pattern broader than 
that predicted for infinite plates as in, for example, Fig. 5-44. The effect of the finite 
plate size on the feed driving point impedance is usually negligible. 

5.6 WIRE ANTENNAS ABOVE 
AN IMPERFECT GROUND PLANE 

The operation of low-frequency (roughly VHF and below) antennas is affected 
significantly by the presence of typical environmental surroundings, such as the 
earth, buildings, and so forth. In Sec. 2.3, we discussed the principles for analyzing 
antennas above a perfect ground plane. A perfect ground plane in its ideal form is 
an infinite, plane, perfect conductor. It is well approximated in practice by a planar 
good conductor that is large relative to the antenna extent. Image theory from Sec. 
2.3.1 reveals that an antenna above a perfect ground plane, or an approximation of 
it, has an equivalent form that is an array. Array theory can then be used to obtain 
the radiation pattern above the ground plane. 

In this section, we consider ground planes that are not well approximated by a 
perfect ground plane. Since low-frequency antennas are most affected by their sur
roundings and low-frequency antennas are usually wire antennas, the illustrations 
will be for wire antennas above a ground plane. The general principles can, however, 
be applied to many antenna types. 

A ground plane can take many forms, such as radial wires around a monopole, 
the roof of a car, or the real earth. In many situations, the earth is well approximated 
as being infinite and planar, but it is a poor conductor. Good conductors have con
ductivities on the order of 107 S/m. Earth conductivity varies greatly, but is typically 
10-1 to 10-3 Slm with rich soil at the high end and rocky or sandy soil at the low 
end. With these low conductivities, electric fields generated by a nearby antenna 
penetrate into the earth and excite currents that, in turn, give rise to o1E\2 ohmic 
losses. This loss appears as an increase in the input ohmic resistance and thus lowers 
the radiation efficiency of the antenna. 

5.6.1 Pattern Effects of a Real Earth Ground Plane 

The pattern of an antenna over a real earth is different from the pattern when the 
antenna is operated over a perfect ground plane. Approximate patterns can be 
obtained by using image theory. The same principles discussed in Sec. 2.3.1 for 
images in perfect ground planes apply, except that the strength of the image in a 
real ground will be reduced from that of the perfect ground plane case (equal am
plitude and equal phase for vertical elements, and opposite phase for horizontal 
elements). The strength of the image can be approximated by weighting it with the 
plane wave reflection coefficient for the appropriate polarization of the field arriving 
at the ground plane. To illustrate, consider a short vertical dipole a distance h above 
a ground plane, shown in Fig. 5-45 together with its image. There is a direct and a 
reflected ray arriving in the far field. As can be seen, the reflected ray appears to 
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Image 

Figure 5-45 A short vertical dipole of current I above a real earth ground plane, together 
with its image of current r vI. 

be coming from the image antenna. The primary source and its image form an array. 
The electric field above the ground plane for this example, from (1-78) in (1-93), is 

( 

e-j{3Rl e-j{3R2) 

E6 = jW/L sin () lL 47TRl + r vIL 47TR2 (5-50) 

where L is the length of the short dipole and r vI is the current for the image dipole. 
r v is the plane wave reflection coefficient for a planar earth and vertical incident 
polarization, when E is in the plane of incidence defined by a normal to the earth 
and the ray from the source to the normal at the earth. Using parallel rays for far
field calculations gives the far-field distance expressions 

Rl = r - h cos 8 and R2 = r + h cos 8 (5-51) 

Then (5-50) reduces to 

IL e-j{3r. . 
E6 = jW/L - -- sin 8(eJf3h cos 6 + r ve-Jf3h cos 6) 

47T r . 
(5-52) 

where Rl = R2 = r was used in the denominator. This expression is valid above the 
ground plane. It contains an element pattern sin 8 and an array factor, in the brack
ets, for a two-element array with elements spaced 2h apart. 

Similarly for a horizontally oriented short dipole as shown in Fig. 5-46, we have 
(in the xz-plane) 

(5-53) 

where the minus sign appears because the image current is in the opposite direction. 
This expression is valid only in the xz-plane. r v is used because E is in the plane of 
incidence. The field in the yz-plane is given by 

IL e-j /3r . . 
E</> = jW/L 47T-r- (eJf3hcos 6 + rHe-Jf3hcos~ (5-54) 
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~ Image 
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Figure 5-46 A short horizontal dipole of current I above a real earth ground plane 
together with its image of current f vI for the xz-plane. The image current in the yz-plane 
is fHI. 

The element pattern is unity because a dipole has an omnidirectional pattern in the 
plane normal to the dipole axis. The horizontal reflection coeffiCient r H is used in 
this case because the electric field is perpendicular to the plane of incidence. 

There is no minus sign in the second term of (5-54) because of the definition of 
rH , which is [25] 

cos () - v' e~ - sin2 () r H = ----;=::.==::;r= 
cos () + y' e; - sin2 

() 
(5-55) 

This is the plane wave reflection coefficient for an incident electric field perpendic
ular to the plane of polarization (i.e., the plane formed by the surface normal and 
the direction of propagation). Further, for r v we have [25] 

e' cos () - y' e' - sin2 () 
r - r r 
v-

e~ cos () + v' e~ - sin2 () 
(5-56) 

This is the plane wave reflection coefficient for an incident electric field parallel to 
the plane of polarization. e; is the relative complex effective dielectric constant (see 
Sec. 1.4) for the ground and is given by 

e' (T 
e; = - = er - j 

eo weo 
(5-57) 

er and (T are the relative dielectric constant and conductivity of the ground plane. 
The earth has an average value of er = 15. Ground conductivities across the United 
States vary from 10-3 to 3 X 10-2 Slm [25]. 

It is convenient to express the imaginary part of e; as 

..!!.- = 18 x 1<r ~ 
weo fMHz 

(5-58) 

At low frequencies (e.g., 1 MHz and below), the imaginary part or loss-producing 
part of the complex perrnitivity dominates. At high frequencies (e.g., 100 MHz and 
above), the real part dominates. 

The reflection coefficients are shown in Fig. 5-47 for a typical ground con-
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Figure 5·47 Magnitude and phase of r v and r H at four frequencies. Note that the horizon 
is at (J =,90°. u = 12 X 10-3 and Br = 15. 

ductivity u = 12 X 10-3
• There is a great deal of information in these curves. First, 

we note that r H is close to -1 at low elevation angles «() - 90°) for all frequencies 
and ground conductivities. The situation is much different for r v where both the 
magnitude and phase usually vary rapidly at low elevation angles due to the pres· 
ence of the pseudo-Brewster angle when Lr v = -90°. This behavior does not occur 
when either u~ 00 or w ~ 0 since If vi ~ 1 as can be shown from'(5-56) and (5-57). 

The use of plane wave reflection coefficients to obtain the image strength is only 
an approximation since antennas near a ground plane do not form plane waves 
incident on the ground plane. In addition to the radiation we have described above, 
there is a surface wave that propagates along the ground plane surface. For HF and 
VHF frequencies, the surface wave attenuates very rapidly. For grazing angles 
«() near 90°), r v "" -1 and vertical antennas close to a real earth have zero radiation 
for () = 90°; see (5-52). In this case, the surface wave accounts for all propagation, 
as in daylight standard broadcast AM. The effect of neglecting the surface wave, 
and using the procedure given above, has been found not to be critical for vertical 
antennas [26]. For horizontal antennas, the antenna should be at least 0.2,,\ above 
the earth for the plane wave reflection coefficient method to be valid [27]. 

The elevation pattern for a short vertical dipole at the surface of various ground 
planes is shown in Fig. 5-48. When the ground plane is perfect (u = 00), the pattern 
above the ground plane is the same as that of a short dipole in free space, sin (). 
Thus, in the perfect ground plane case, radiation is maximum along the ground 
plane, whereas for a real earth ground plane, the radiation maximum is tilted up 
away from the ground plane and is reduced in intensity, for the same input power, 
due to reduced efficiency. This is a general trend. The effect of a lossy earth on 
vertical antennas is to tilt the radiation pattern upward. A good radial ground system 
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Figure S-48 Elevation plane patterns of 
a vertical short dipole at the surface of 
the flat earth (sr = 15, U = 1.2 x 10-2) 

for three frequencies compared to the 
perfect ground plane (u = 00) case. 

(to be discussed in Sec. 5.6.2) makes the pattern behave more nearly like that for a 
perfect ground plane, that is, increase the low angle radiation (along the ground 
plane). Low angle radiation is particularly important for long-distance communi
cation links that rely on ionospheric reflection (skip). 

A short vertical dipole that is Al4 above the ground plane forms a Al2 spaced 
array with its image. For the perfect ground plane, e; = 00 and r v from (5-56) is 

o 0.25 

(a) Short dipole IJ4 above the ground, 2h = IJ2. 

--- (1=00 
................ /= 100kHz 
- - - /=IMHz 
--- /=I00MHz 
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--- /= 100 MHz 
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(b) Short dipole IJ2 above the ground, 2h = A. 

Figure 5-49 Elevation plane patterns of a vertical short dipole at three frequencies 
compared to the perfect ground plane (u == 00) case. 
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+ 1. The array is then a Al2 spaced, equally excited, in-phase collinear array. The 
pattern for this is given in Fig. 3-17.and is also plotted in Fig. 5-49a (u = co). For a 
real earth ground plane, r v "'" -1 at grazing angles «() near 90°). The array contri
butions thus cancel, giving a null along the ground plane as shown in Fig. 5-49a. As 
the height h is increased to Al2, the equivalent array of Fig. 5-45 has a A spacing 
and multiple lobes appear in addition to the effects described for h = Al4. The 
elevation patterns for h = Al2 are plotted in Fig. 5-49b. 

For a horizontal short dipole as shown in Fig. 5-46, the radiation is not the same 
for all planes through the z-axis, as for vertical antennas. In the yz-plane (perpen
dicular to the axis of the dipole), the radiation electric field is given by (5-54). The 
reflection coefficient r H is exactly -1 for a perfect ground plane and approximately 
-1 for real earth ground planes at all angles () if the frequency is low. The ele
ment pattern is isotropic since the elements are seen in end view in the H-plane 
(yz-plane). Thus, the array factor completely determines the pattern. The low ele
vation pattern effects of finite conductivity are much less pronounced for horizontal 
antennas than for vertical antennas. 

The field expressions of (5-52) to (5-54) for short dipoles above a ground plane 
can be used for other antenna types by using the appropriate element pattern. In 
particular, sin () in (5-52) and cos () in (5-54) are replaced by the free-space pattern 
of the antenna considered. 

5.6.2 Ground Plane Construction 

An excellent ground plane can be constructed by using a metallic sheet that is much 
larger than the antenna extent. Such ground planes become impractical at low fre
quencies because of the size required. In this section, various techniques are dis
cussed for increasing the apparent conductivity of a real earth ground. 

Consider a vertical monopole antenna with its base at ground level. (See Sec. 
2.3.2 for a discussion of monopoles over a perfect ground plane.) Currents flowing 
up the antenna leave the antenna and form displacement currents in air. Upon 
entering the earth, conduction currents are formed that converge toward the base 
of the antenna. Losses in an earth ground can be reduced by providing a highly 
conductive return path. This is commonly achieved with a radial ground system. The 
size of the wires used is not critical and is determined by the mechanical strength 
required. Number 8 A WG wire is typical. They need not be buried, but it is usually 
convenient to do so. However, they should not be buried too deep in order to 
minimize the extent of earth through which the fields must pass. Sometimes, the 
radial wires are linked together at the base of the monopole by a ring-shaped ground 
strap. Occasionally, ·one or more stakes are driven into the ground near the base of 
the monopole. 

The ohmic resistance of the radial system and earth ground adds to the ohmic 
resistance of the monopole structure to determine the total ohmic resistance com
ponents of the input impedance. The efficiency of the antenna system depends on 
the proportion of radiation resistance and ohmic resistance; see (1-173). For high
power transmitting antennas, it is important to have a well-designed radial system 
to achieve high efficiency. On the other hand, for simple monopole structures, three 
equally spaced radial wires form the radial system. 

The most sophisticated ground system such as used with a standard broadcast 
AM-transmitting antenna is 120 radial wires spaced equally, 3° apart, around the 
tower out to a distance of about a quarter-wavelength from the tower. In general, 
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the length of the radials is roughly equal to the height of the monopole antenna. 
The value of the total ohmic resistance of a ground system with 120 radials for 
typical soils is plotted in Fig. 5-50 for a few frequencies as a function of radial length 
[28]. Note that at 3 MHz a ground system with 120 radials that are about a quarter
wavelength long (25 m) gives a ground system resistance of 1 fi. Since the surface 
resistance of the earth varies as the square root of frequency [see (1-176)], the 
ground system resistance will be constant for lower frequencies if the length of the 
radials is increased in proportion to the square root of wavelength. For frequencies 
above 3 MHz, the curve for radial length in Fig. 5-50 is only slightly to the right of 
the 3-MHz curve. This is because after the radials reach a length of about a quarter
wavelength, most of the large current densities occur within the region of the radials 
and further length increase is of no major consequence. 

The construction principles for a radial wire ground system on top of or in the 
earth can be summarized rather simply. The function of a radial system is to prevent 
the electromagnetic fields from the antenna from penetrating into the ground and 
exciting currents that, in turn, lead to ulEI2 ohmic loss. As can be seen from the 
above discussion, if 120 quarter-wavelength long radials are employed, the ohmic 
resistance introduced by the ground system will be at most a few ohms and usually 
well under an ohm. In most applications, it is impractical to install as many as 120 
radials. Generally speaking, 50 radials about a quarter-wavelength long will reduce 
earth losses to a few ohms. When only a few radials are used, the added resistance 
of the ground can be several ohms. Also if the radial lengths (almost independent 
of the number used) are reduced below a tenth of a wavelength, the ground system 

10.-----.---.--.-.-r,-rr.------r---.--.-.-.-rT~ 

j 
.S 

.1 
'" 2:l 

8 

6 
5 

4 

3 

2 

~ 1 
~ 
-6 0.8 

~ o 0.6 

0.4 

0.3 

0.2 ~ ____ ...L_ __ ...L___L--1._'_...l.-1-l...l...-____ _'_ __ __L __ .l...-...L_.L..JL..L~ 

0.01 0.02 0.03 0.04 0.06 0.080.1 0.2 0.3 0.4 0.6 0.8 1.0 

Length of radials in wavelengths 

Figure 5-50 Typical resistance of radial ground systems using 120 radials in average soil. 
(From Griffith [28]. © 1962 McGraw-Hill. Used with permission of McGraw-Hill Book 
Company.) 
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resistance will increase significantly.l The radial wires can be laid on top of the 
ground or buried slightly (but never deeply buried). Wire selection is largely deter
mined by mechanical considerations. As the number of radials is increased, the less 
current each one will have to carry and thus the smaller the wire diameter required. 
At the base of the antenna, the radials should be connected together and to one or 
more ground stakes. . 

At high frequencies (VHF and above), antennas are often mounted over metallic 
(solid, mesh, or radial wire) ground planes of relatively small extent. Then the di
mensions and shape of the ground plane are important. In general, the radiation is 
greatest in the direction of the largest portion of the ground plane. For example, 
consider a monopole antenna mounted on an automobile. If it is placed on the right 
rear bumper, a pattern maximum occurs off of the left front of the car. When the 
antenna is mounted in the center of the car roof, there is some slight pattern en
hancement in the forward and rear directions. 

5.7 LARGE LOOP ANTENNAS 

We found in Sec. 2.4 that the pattern and radiation resistance of electrically small 
loop antennas, which have a perimeter much less than a wavelength, are insensitive 
to loop shape and depend only on the loop area. Also, the radiation from a small 
loop is maximum in the plane of the loop and is zero along the axis normal to the 
loop. These facts are a consequence of the current amplitude and phase being con
stant around the loop, which holds if the loop perimeter length L is electrically 
small. For loop perimeters that are a sizable fraction of a wavelength or greater, 
the current amplitude and phase vary with position around the loop, causing per
formance variations with changing size. Equivalently, a fixed physical size large loop 
displays performance changes with varying frequency, which is characteristic of a 
resonant antenna. 

Although commonly employed to avoid mathematical difficulties, the analysis of 
large loop antennas by assuming uniform current amplitude and phase (as in Prob. 
5.7-1) yields inaccurate results in practice. As we show in this section, the current 
distribution is close to sinusoidal for resonant loops. For construction reasons, large 
loops usually have either a circular or square perimeter. Circular and square loops 
are usually operated near the first resonance point, which occurs for a perimeter 
length of slightly greater than one wavelength. The circular loop has been studied 
more extensively. Rigorous analysis techniques giving the fields from circular loop 
antennas [30] and approximate formulas for the directivity and radiation resistance 
of circular loop antennas [31] are available. A good summary of analysis and mea
surements of circular loops is found in [32]. In this section, we treat the large square 
loop in detail. Its performance is very similar to that of the circular loop; see Prob. 
5.7-4. The one-wavelength square loop can be analyzed using the same techniques 
that we used for other resonant wire antennas. The approach, based on an assumed 
sinusoidal current distribution, is presented first. Next, accurate numerical method 
results are presented to support the approximate analysis. Finally, computed per
formance is given for the square loop with varying perimeter length. 

The one-wavelength square loop antenna as shown in Fig. 5-51 has one-quarter 
wavelength sides. For a one-wavelength perimeter, it is reasonable to assume that 

iMore details and references for ground system design are available in [29]. 
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Figure 5-51 The one-wavelength square loop 
antenna. Each side is of length Al4. The solid 
curve is the sinusoidal current distribution of 
(5-59). The dashed curve is the current magnitude 
obtained from more exact numerical methods. 

the current distribution is sinusoidal. Then the current distribution is continuous 
around the loop as shown in Fig. 5-51 (solid curve). With the feed point in the center 
of a side parallel to the x-axis, this sinusoidal current is expressed as 

~ = -13 = y10 sin(f3y'), 

A 
Ix'i :5 8 

Iy'l :5 ~ 
8 

(5-59) 

The solution for the radiation properties proceeds in the usual manner. First, the 
vector potential from (1-101) is 

-if3r 1 e " • , 
A = I-L -- le1f3r-r dl 

4'7TT loop 
(5-60) 

To find the phase function, the expressions for vectors from the origin to arbitrary 
positions on each side must be written. They are 

, 

'

A A A 

rl = x x - - y 
8 

'
A A ,A 

r3 = -- x + Y Y 
8 

'

A A A 

r2 = x'x + - y 
8 

'
A A ,A 

r4 = - x + y y 
8 

(5-61) 

where the numbered subscripts indicate the corresponding loop side. Using the 
expansion of r from (C-4) and (5-61) in (5-60) with the loop integral broken into 
integrals over each side gives 

A "= I-L e-
if3r Io[-i JAiB cos(f3x')eifilx'sin /Jcos 4>(e-i(1r14) sin /Jsin 4> + ei(1r14) sin /Jsin 4» dx' 

41fr -AlB 

+ Y JAiB sin(f3y ')eif3Y' sin /J sin 4>( _e-i(1r14) sin /Jcos 4> + ei(1r14) sin /J cos 4» dy' ] 
-AlB 

= I-L e-
if3r Io[-i2 cos(~ sin 6 sin </I) J}"18 cos(f3x')eifilx'sin/Jcos4> dx' 

41fr 4 -AlB 

+ Y 2j sin (~ sin 6 cos 4» J}"18 sin(f3y , )eifilx' sin /J sin 4> dy' ] 
4 -AlB 

(5-62) 
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The first factors in each of the above two terms in brackets are the array factors for 
the pairs of sides 1, 2 and 3, 4, respectively. Evaluation of the integrals and subse
quent simplification lead to 

e-i/3r2V2Io{ cos[(1T14) cosO] [ (1T) (1T )] 
A = J.L 4'1T1' -(3- x sin2 'Y cos 'Y sin '4 cos 'Y - cos '4 cos 'Y 

A sin[( 1T14) cos 'Y] [ (1T). (1T )]} - y sin2 0 cos 0 cos '4 cos 0 - sm '4 cos 0 (5-63) 

where 

cos 'Y = sin 0 cos c/J and cos 0 = sin 0 sin c/J (5-64) 

The angles 'Y and 0 have a geometrical interpretation; they are the spherical polar 
angles (similar to 0) for the x- and y-axes; see (C-4). 

The far-zone electric field components are 

Ee = -jwAe = -jwA • 0 = -jw(Axx· 0 + AyY· 0) 
= - jw(Ax cos 0 cos c/J + Ay cos 0 sin c/J) 

Eq, = -jwA. <I» = -jw( -Ax sin c/J + Ay cos c/J) 

Substituting Ax and Ay from (5-63) gives 

E - jlo"qe-i/3r o{sin c/J sin[( 1T14) sin 0 cos c/J] 
e - V2'1T1' cos 1 - sin2 0 sin2 c/J 

· [sin 0 sin c/J cos( ~ sin 0 sin c/J) - sin( ~ sin 0 sin c/J ) ] 

cos c/J cos[( 1T14) sin 0 sin c/J] 
1 - sin2 0 cos2 c/J 

· [Sin 0 cos </J sin ( ~ sin (J cos </J) - cos ( ~ sin (J cos </J) J} 
E = jlo"qe-i/3r {cos c/J sin[(1T14) sin 0 cos c/J] 

q, V2'1T1' 1 - sin2 0 sin2 c/J 

· [sin 0 sin c/J cos( ~ sin 0 sin c/J) - sin ( ~ sin 0 sin c/J ) ] 

+ sin c/J cos[(~/4) sin 0 sin c/J] 
1 - sm2 0 cos2 c/J 

· [sin 0 cos c/J sin( ~ sin 0 cos c/J) - cos ( ~ sin 0 cos c/J) J} 

(5-65a) 

(5-65b) 

(5-66a) 

(5-66b) 

These expressions are rather involved but were derived in a straightforward fashion 
using the principles set forth in Sec. 1.7. 

The far-field expressions simplify somewhat in the principal planes. In the 
xy-plane, which is the plane ofthe loop (an E-plane), () = 90° and then (5-66) reduces 
to 

(5-67a) 
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E (() =~) =jl0'l1e-if3T'Tt'{Sin[('Tt'/4)COSCP] [ . .1.. (~'.I..) _ . (~ . .1..)] 
</> 2 V27TT 4 ('Tt'/4) cos cP sm 'I' cos 4 sm'l' sm 4 sm 'I' 

cos[('Tt'/4) sin cp] [ . ('Tt' ) ('Tt' )]} + ('Tt'/4) sin cp cos cp sm "4 cos cp - cos "4 cos cp 

(5-67b) 

The E</> expression is plotted in Fig. 5-52a (solid curve) in normalized form. Along 
the x-axis (cp = 0° and 180°), E</> = O. This is true because the sides 3 and 4 alone 
each have patterns that are zero in the broadside direction since the current distri
butions on these sides are odd about their midpoints. Along the y-axis, (5-67b) 
reduces to 

(5-68) 

In the xz-plane, which is an E-plane, (5-66) yields 

E</>(cp = 0) = 0 (5-69a) 

E (.I.. = 0) = jlo~-Jf3T sin () sin[( 'Tt'/4) sin ()] - cos[( 'Tt'/4) sin ()] 
8'1' V27TT ~() ~~ 

The normalized form of this E8 expression is plotted in Fig. 5-52b (solid curve). It 
can be shown that (5-69b) goes to zero for () = 90°, as it should by (5-67a). 

In the yz-plane, which is the H-plane, (5-66) reduces to 

(5-70a) 

(5-70b) 

Figure 5-52c (solid curve) gives the plot of the normalized form of this E</> expres
sion. The cos[( 'Tt'/4) sin ()] pattern is the array factor for two point sources at the 
midpoints of sides 1 and 2. Note that in the z-direction, (5-69) and (5-70) give the 
same result (for () = 0°): an electric field parallel to the x-axis given by 

(5-71) 

which is a factor of V2 greater than Ex in the y-direction given in (5-68). This is 
also seen in Fig. 5-52c. Comparing (5-71) to (5-68) shows that the level of Ex in the 
y-axis direction is 0.707 of that along the z-axis. Thus, the peak of the normalized 
xy-plane pattern in Fig. 5-52a along the y-axis multiplied by 0.707 matches up with 
the y-axis value in Fig. 5-52c. 

From the patterns in Fig. 5-52, we can make some general conclusions about the 
radiation properties of the one-wavelength square loop antenna. Radiation is max
imum normal to the plane of the loop (along the z-axis) and in that direction is 
polarized parallel to the loop side containing the feed. In the plane of the loop, 
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Figure 5-52 Principal plane patterns for one-wavelength square loop antenna. The solid 
curves are the patterns based on a sinusoidal current distribution of Fig. 5-51. The dashed 
curves are the patterns arising from the current distribution obtained by the more exact 
numerical methods. 

there is a null in the direction parallel to the side containing the feed point (along 
the x-axis), and there is a lobe in a direction perpendicular to the side containing 
the feed (along the y-axis). These results are quite different from the small loop 
antenna, which has a null on-axis and maximum (uniform) radiation in the plane of 
the loop. 

The accuracy of our results can be investigated by solving the square loop problem 
without assuming the current distribution to be sinusoidal. The numerical methods 
of Chap. 10 applied to the one-wavelength loop antenna for a wire radius of O.OOlA 
renders the current magnitude shown in Fig. 5-51 (dashed curve). Note that the 
agreement is actually very good. The impact of the slight differences in these current 
distributions is revealed in Fig. 5-52. The dashed curves are the patterns correspond
ing to the exact current distribution and calculated by a radiation integral procedure 
similar to that detailed above for the assumed current. The agreement between the 
patterns arising from the simple current assumption and that of more exact methods 
is very good. In fact, in the xz-plane the agreement is nearly exact. This detailed 
comparison of the approximate antenna analysis methods employed thus far in the 
book to that of more exact (but more difficult) numerical methods serves to provide 
confidence that good engineering results can be obtained from reasonable assump
tions about the operation of antennas. 

The impedance of a square loop antenna with a wire radius of O.OOlA is plotted 
in Fig. 5-53 as a function of the perimeter. Note that for a one-wavelength perimeter, 
the input reactance is relatively small, and also note that resonance occurs for a 
1.09A perimeter. The input resistance for a one-wavelength perimeter is about 100 
0.. Other perimeter values give rather awkward input impedances. Similar results 
are obtained for circular loops. 

The gain of the one-wavelength square loop is 3.09 dB, which is less than the 
3.82-dB gain of a straight wire one-wavelength dipole. This is to be expected from 
the obviously less directive pattern of the loop in Fig. 5-52 compared to that of the 
one-wavelength dipole in Fig. 5-4. 
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Figure 5-53 Input impedance of a square loop antenna as a function of the loop perimeter 
in wavelengths. The loop is fed in the center of one side and has a wire radius of a = 
O.OOlA. Numerical calculation methods were used. 

5.8 MICROSTRIP ANTENNAS 

Printed antennas are constructed using printed circuit fabrication techniques such 
that a portion of the metallization layer is responsible for radiation. Microstrip 
antenna patch elements, and arrays of patches, are the most common form of 
printed antenna and were conceived in the 1950s. Extensive investigations of patch 
antennas began in the 1970s [33, 34] and resulted in many useful design configura
tions [35]. Printed antennas are popular with antenna engineers for their low profile, 
for the ease with which they can be configured to specialized geometries, and be
cause of their low cost when produced in large quantities. This section explains the 
basic operating principles of microstrip elements and arrays. Simple formulas are 
given that produce approximate results. Lengthy formulas that are more general 
and more accurate are available [36, 37]. 

5.8.1 Microstrip Patch Antennas 

A microstrip device in its simplest form is a layered structure with two parallel 
conductors separated by a thin dielectric substrate and the lower conductor acting 
as a ground plane. If the upper metallization is a long narrow strip, a microstrip 
transmission line is formed. If the upper conductor is a patch that is an appreciable 
fraction of a wavelength in extent, the device becomes a microstrip antenna, as 
illustrated in Fig. 5-54. The patch antenna belongs to the class of resonant antennas 
and its resonant behavior is responsible for the main challenge in microstrip antenna 
design-achieving adequate bandwidth. Conventional patch designs yield band
widths as low as a few percent. The resonant nature of microstrip antennas also 
means that at frequencies below UHF they become excessively large. They are 
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(a) Geometry for analyzing the edge-fed microstrip patch antenna. 
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Figure 5·54 The half-wavelength rectangular patch microstrip antenna; L = 0.49Ad' 

typically used at frequencies from 1 to 100 GHz. The tradeoff in microstrip antennas 
is to design a patch with loosely bound fields extending into space while keeping 
the fields tightly bound to the feeding circuitry. This is to be accomplished with high 
radiation efficiency and with the desired polarization, impedance, and bandwidth. 

The Rectangular Patch Antenna. Figure 5-54 shows the most commonly used 
microstrip antenna, a rectangular patch being fed from a microstrip transmission 
line. The substrate thickness t is much less than a wavelength. The rectangular patch 
is usually operated near resonance in order to obtain a real-valued input impedance. 
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Models are available for determining the resonant frequency, with the cavity model 
usually yielding accurate results; see [33]. The fringing fields act to extend the ef
fective length of the patch. Thus, the length of a half-wave patch is slightly less than 
a half wavelength in the dielectric substrate material. This is similar to foreshort
ening a half-wave dipole to achieve resonance. The amount of length reduction 
depends on e" t, and W. Formulas are available to estimate the resonant length [33, 
36, 37], but empirical adjustments are often necessary in practice. An approximate 
value for the length of a resonant half-wavelength patch is [34] 

A 
L = 0.49Ad = 0.49 ~ ~ half-wave patch (5-72) 

ver 

where A is the free-space wavelength, Ad the wavelength in the dielectric, and e r the 
substrate dielectric constant. We focus our attention here on the half-wave patch 
antenna. 

The region between the conductors acts as a half-wavelength transmission-line 
cavity that is open-circuited at its ends. Figure 5-54b shows the electric fields asso
ciated with the standing wave mode in the dielectric. The electric field lines are 
perpendicular to the conductors as required by boundary conditions and look much 
like those in a parallel plate capacitor. The fringing fields at the ends are exposed 
to the upper half-space (z > 0) and are responsible for the radiation. The standing 
wave mode with a half-wavelength separation between ends leads to electric fields 
that are of opposite phase on the left and right halves (i.e., positive and negative 
x). Therefore, the total fringing fields at the edges are 1800 out of phase and equal 
in magnitude. Viewed from the top (see Fig. 5-54c), the x-components of the fringing 
fields are actually in-phase, leading to a broadside radiation pattern; that is, the 
peak radiation is in the +z-direction.This model suggests an "apertute field" anal
ysis approach where the patch has two radiating slot apertures with electric fields 
in the plane of the patch. For the half-wave patch case, the slots are equal in mag
nitude and phase. The fields along the edges associated with slots 1 and 2 are con
stant, whereas those along the other edges, seen in side view in Fig. 5-54b, have odd 
symmetry and their radiation cancels in the broadside direction and is usually ne
glected. The width of the slots is often taken to be equal to the substrate thickness, 
that is, s = t. The patch radiation is linearly polarized in the xz-plane, that is, parallel 
to the electric fields in the slots. 

The pattern of a rectangular patch antenna is rather broad with a maximum 
direction normal to the plane of the antenna. Pattern computation for the rectan
gular patch is easily performed by first creating equivalent magnetic surface cur
rents, as shown in Fig. 5-54c, from the fringe electric fields using Ms = 2Ea x n, 
where Ea is the fringe electric field in each of the edge slots; this follows from (1-23) 
or (7-2). The factor of 2 comes from the image of the magnetic current in the electric 
ground plane (see Fig. 7-4c) if we assume t is small. The far-field components ~ollow 
from (7-26) (see Prob. 7.1-7) as 

where 

Eo = Eo cos cP f(8, cP) 

Elf> = -Eo cos 8 sin cP f(8, cP) 

sin[f3:' sin 8 sin cPJ . 
f(8, cP) = f3W. . cos(f3~ sin 8 cos cP ) 

20sm 8sm cP 

(5-73a) 

(5-73b) 

(5-73c) 
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and f3 is the usual free-space phase constant. The first factor is the pattern factor 
for a uniform line source of width W in the y-direction. The second factor is the 
array factor for a two-element array along the x-axis corresponding to the edge 
slots; see (3-8). The patch length L for resonance is given by (5-72). The patch width 
W is selected to give the proper radiation resistance at the input, often 50 O. The 
principal plane patterns follow from (5-73) as 

FE(e) = cos(f3~ sin e) E-plane, l/J = 0° (5-74a) 

sin [ ~ sin eJ 
Fn(e) = cos e f3W. 

2sm e 
H-plane, l/J = 90° (5-74b) 

This simple pattern expression neglects substrate effects and slot width (Le., 
fringing). 

Typical input impedances at the edge of a resonant rectangular patch range from 
100 to 400 O. An approximate expression for the input impedance (reactance is 
zero at resonance) of a resonant edge-fed patch is [36] 

ZA = 90 ~ (L)2 0 half-wave patch (5-75) 
s, - 1 W 

Thus, the input impedance (resistance) is reduced by widening the patch. For ex
ample, for a dielectric of s, = 2.2, a width-to-length ratio of WIL = 2.7 gives a 50-0 
input impedance. 

Techniques for feeding patches are summarized in Fig. 5-55. They can be classified 
into three groups: directly coupled, electromagnetically coupled, or aperture cou
pled. Direct coupling methods are the oldest and most popular, but only provide 
one degree of freedom to adjust impedance. The microstrip feed line exciting the 
patch edge and the coaxial probe are examples of direct feeds. The rectangular 
patch is normally fed along a patch centerline in the E-plane as shown in Fig. 5-55. 
This avoids excitation of a second resonant mode orthogonal to the desired mode, 
which would lead to excessive cross polarization. 

The direct coaxial probe feed illustrated in Fig. 5-55a is simple to implement by 
extending the center conductor of the connector attached to the ground plane up 
to the patch. Impedance can be adjusted by proper placement of the probe feed. 
As the probe distance from the patch edge, tl.xp in Fig. 5-55a, is increased, the input 

. 7T" !l.x 
resistance of (5-75) is reduced by the factor cos2 -T [36]. A disadvantage of t4e 

probe feed is that it introduces an inductance that prevents the patch from being 
resonant if t is O.lA or greater. Also, probe radiation can be a source of cross po
larization. 

The microstrip feed of Fig. 5-54 is planar, permitting the patch and feed to be . 
printed on a single metallization layer. This feed approach is especially well suited' 
to arrays where the feed network can be printed with the elements. Changing the 
patch width, as determined with (5-75), to control impedance is often not conve
nient. However, the impedance of the edge-fed patch can be transformed by using 
a quarter-wave matching section of microstrip transmission line as shown in Fig. 
5-55b. That is, the antenna input impedance ZA can be matched to a transmission 

. line of characteristic impedance Zo (often 50 0) with a section of transmission line 



214 Chapter 5 Resonant Antennas: Wires and Patches 

(a) Probe feed. (b) Microstrip edge feed with (c) Microstrip edge feed with inset. 
quarter-wave transfonner. 

(d) Probe feed with a gap. (e) Microstrip edge feed with gap. if> Two-layer feed. 

(g) Aperture coupled feed. 

Figure 5-55 Techniques for feeding microstrip patch antennas. 

that is a quarter-wavelength long based on the wavelength in the transmission line. 
This characteristic impedance of the matching section is given by 

Z~ = YZAZo quarter-wave transformer (5-76) 

In general, the characteristic impedance of a microstrip line is decreased by increas
ing the strip width, much as loss resistance is inversely proportional to wire diameter; 
see (1-175). That is, the wider the strip, the lower the characteristic impedance. 

Another type of microstrip feed is the inset feed shown in Fig. 5-55c, which offers 
the advantage of being planar and easily etched as well as providing adjustable input 
impedance through inset geometry changes. The input resistance of (5-75) is mul-

tiplied by the factor of cos2 
'IT ::i [33]. However, large input impedance changes 

that are required for high-permittivity substrates demand significant inset depths, 
which affects cross polarization and radiation pattern shape. 

The direct feeds of Figs. 5-55a through 5-55c have a narrow bandwidth that can 
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only be increased by increasing the substrate thickness, which has the drawback of 
increasing the power in the waves trapped along the surface, which are called surface 
waves. Electromagnetic coupled feeds (also called proximity, noncontacting, or gap 
feeds). do not contact the patch and have at least two design parameters. They also 
have the advantage of being less sensitive to etching errors. For each direct feed in 
Figs. 5-55a through 5-55c, there is gap feed counterpart shown in Figs. 5-55d through 
5-55f The probe feed with a gap in Fig. 5-55d has the advantages of coaxial feeds. 
Also, the gap capacitance partially cancels the probe inductance, permitting thicker 
substates. The microstrip feed with a gap in Fig. 5-55e is entirely planar and easy to 
etch. Howev~r, in high-permittivity designs, the gap distance may become small. 
The two-layer feed of Fig. 5-55f is a recent technique that is especially useful in 
microstrip arrays with a top layer for the patches and a second layer for the micro
strip feed network. 

The aperture-coupled feed of Fig. 5-55g is increasing in popularity. The upper 
substrate can be of low dielectric constant to promote radiation and a lower sub
strate containing the feed can be of high dielectric constant to enhance binding of 
the fields to the feed lines. This leads to increased bandwidth. Another advantage 
is that the central ground plane acts to isolate the feed system from the patches. 

Materials such as PTFE composites and alumina are available for the dielectric 
substrate with Br ranging from 1 to about 25, with around 2.5 being most popular 
[33; 38, Chap. 3]. The selection of dielectric type is based on its loss, temperature 
and dimensional stability, uniformity of manufacturing (especially Br variations), 
and available sheet sizes and thicknesses. 

The bandwidth and efficiency of a patch are increased by increasing substrate 
thickness t and by lowering Br • The associated penalty in array applications is an 
increase in side lobes and cross polarization as a result of surface waves across an 
array of patches. This is a fundamental design tradeoff. Bandwidth is often the 
ultimate limiting performance parameter and can be found from the following sim
ple empirical formula for impedance bandwidth [36]: 

B = 3.77 Br - 1 W !.. 
B~ LA 

t -« 1 
A 

(5-77) 

where bandwidth is defined as fractional bandwidth relative to the center frequency 
for a VSWR less than 2: 1. For example, at an operating frequency of 3.78 GHz, a 
square patch on a substrate of Br = 2.2 with t = 1116 in. (1.59 mm) = 0.02A, the 
bandwidth from (5-77) is 1.9%. The bandwidth dependence on thickness tis evident 
in (5-77). 

Another rectangular patch antenna encountered in practice is the quarter-wave 
element that has L = Adl4 and is formed by placing shorting bins from the patch to 
the ground plane at x = 0 in Fig. 5-54a and eliminating the patch metalization for 
x> O. The current peak (electric field nUll) is then in the same position as the half
wave patch. 

Half-Wave, Square Microstrip Patch Antenna 

A square, half-wave patch was designed to resonant at 3.03 GHz (A = 9.9 cm) on a t = 0.114 
em (45 mils) thick substrate with Br = 2.35. From (5-72), 

L = W = 0.49 ~ = 0.49 ~ = 3.16 em (5-78) 
Ve,. V2.35 
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--- Calculated 

(a) E-plane (b)H-plane 

Figure 5-56 Radiation patterns for the square microstrip patch of Example 5-2 calculated 
(curves) using (5-74) and measured (points). 

From (5-75), the input impedance is ZA = 368 n, which compares to a measured value of 
316 n at resonance. The measured resonant frequency of 3.01 GHz compares very well with 
the design frequency of 3.03 GHz. The radiation patterns in the principal planes are given 
by (5-74). These patterns are plotted in Fig. 5-56 together with data measured at Virginia 
Tech. The agreement is very good for the simple theory employed. 

Other Patch Shapes. There are many patch shapes for special purposes [35]. Im
portant among these are patches for creating circular polarization. Circular polar
ization can be achieved by feeding the comer of a square patch, by feeding adjacent 
orthogonal edges of a square patch 90° out-of-phase, or by using a pentagonal 
shaped patch. A number of software packages are available for analyzing the cur
rents, impedance, and radiation from microstrip elements of most any shape as well 
as small arrays of patches with the feed network. 

5.8.2 Microstrip Arrays 

Arrays of microstrip antennas offer the advantage that the feed network as well as 
the radiating elements can be printed, often by fabrication on the same single layer 
printed circuit board. More sophisticated implementations are finding wide use in 
many system applications that fully integrate microstrip radiating elements and feed 
lines along with the transmitting and receiving circuitry. In fact, antenna technology 
is following an evolutionary path similar to that of electronics, moving from discrete 
devices that are individually connected to an antenna element toward full integra
tion where chips are integrated with the feed lines and radiators. 

Microstrip antennas are often used in one of many possible array configurations. 
Microstrip arrays are very popular for fixed-beam applications because the radiating 
elements and feed network can be fabricated on a single-layer printed circuit board 
using low-cost lithographic techniques. Interelement spacings for fixed-beam appli
cations are usually chosen to be less than free-space wavelength (.\.) to avoid grating 
lobes and greater than Al2 to provide sufficient room for the feed lines, to achieve 
higher gain for a given number of elements, and to reduce mutual coupling. The 
active element patterns shown in Fig. 3-30 are very similar, indicating that mutual 
coupling effects are not significant for those microstrip patches that are spaced 0.57.\. 
apart. 

Largely as the result of pioneering work for sophisticated military radar, phase
scanned micros trip arrays can be produced with monolithic microwave integrated 
circuit (MMIC) techniques that fabricate amplifiers, phase shifters, and other de-
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vices on the same substrate. As with any array, the array geometry can be linear, 
planar, or conformal and the feed system can be parallel, series, or hybrid. Parallel
fed, planar microstrip arrays are examined here. 

We illustrate microstrip array design using a broadside-beam planar array of N = 
4n elements, where n is a positive integer. The goal is to achieve maximum gain, so 
uniform amplitude and phase to each element are required. This design problem 
illustrates impedance- and phase-matching techniques using a microstrip feed net
work. Figure 5-57a shows the fundamental 2 X 2 subarray unit that can be used to 
build up very large arrays. Four patches are fed at their edges by microstrip lines 
that are of equal length from the subarray center (point C) to preserve equal ex
citation phase. The operatin....8 frequency is 10 GHz (A = 3 cm) and the substrate 
has Sr = 2.2, so Ad = Alv'sr = 2.02 cm. The element spacing in both principal 
directions is d = O.BA = 2.4 cm. The length of each half-wave patch from (5-72) is 
L = 0.49Ad = 0.99 cm. The desired input impedance is 200 0, so (5-75) can be used 
to solve for the patch width: 

e: ' 
90 B .' 1 t 3 

~A L = 200' 0.99 = 1.33 cm (5-79) W= 

Impedance matching is accomplished by connecting a 200-0 characteristic im
pedance microstrip line to a patch. The parallel feed network shown in Fig. 5-57a 
uses two divide-by-two operations to reach each element, yielding the desired 
50-0 input impedance at point C. For example, for the upper two elements, since 
ZA = 200 0 is matched to the lines with Zol = 200 0, the left and right lines present 
impedances of 200 0 at point B. Their parallel combination yields 100 0, which is 
matched to the line Zo2 = 100 O. This line impedance at point C is still 100 O. 
Combining this in parallel with the lower two elements gives 50 O. A probe could 
be connected from the ground plane backing the subarray at point C. Or, as shown 
in Fig. 5-57b, another microstrip line can be used to connect to other similar subar
rays to build up a large array. A quarter-wave transformer of Z~3 = YZCZ04 = 
V50' 100 = 70.7 0 is used for impedance matching; this, of course, introduces 
bandwidth limitations. 

Arrays similar to the one shown in Fig: 5-57 have been constructed and measured 
for N = 16, 64, 256, and 1024 elements [39]. The gain of the array with spacings of 
d = O.BA is easily computed using 

47T 47T 47T (~r;;; (~ r;;; 47T 2 
G = Sap A2 Ap = Sap A2 LxLy = Sap A2 V N d) V N d) = Sap A2 N d 

47T ( )2 = Sap A2 N O.BA = B.04Nsap (5-BO) 

Since the array is uniformly excited, if there were no losses, sap would be close to 
100%. However, there are losses due to radiation from the transmission lines, sur
face waves, and dissipation in the lines that reduce the aperture efficiency. Measured 
gain was close to that computed using (5-BO) with sap = 0.5 for arrays up to 1024 
elements [39]. This is competitive with a conventional aperture antenna such as a 
reflector of the same area. However, arrays with many more than 1024 elements 
experience significant dissipative loss in the feed network, resulting in efficiencies 
less than 50%. 
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I 
d 

1 
(a) The four-element subarray. (b) A 16-element array formed from subarrays. 

Figure 5-57 A planar microstrip array with a feed network that produces equal amplitude 
and phase element excitations. 
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PROBLEMS 

5.1-1 Use the integral from (F-ll) in (5-3) to prove (5-4). 
5.1-2 Starting with (5-6), show that for L « A, the radiation pattern of a dipole reduces to 
that of a short dipole, sin O. 
5.1-3 a. The outputs from two collinear, closely spaced, half-wave dipoles are added together 
as indicated by a summing device in the figure below. The transmission lines from the an
tennas to the summer are of equal length. Write the pattern Fa( 0) of this antenna system 
using array techniques. 

~E~ ____ ~A ______ ~ ~ ______ ,A ____ ~ 
_-+-_-i2 ...-__ __--,2i---__ --t 

b. Now consider a center-fed, full-wave dipole that is along the z-aXis. Write its pattern 
expression Fb ( 8). 

c. Now draw the current distributions Ia(z) and Ib(z) for both antennas. From these cur
rent distributions, can you make a statement about the patterns from the two antennas? 
Return to the pattern expressions and prove your statement mathematically. 
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5.1-4 The center-fed, full-wave dipole is rarely used because it has a current minimum at the 
feed point. If it is instead fed as shown below, sketch the current distribution. Also, rough 
sketch how you think the pattern should look, and explain how you obtained it. 

~~~ """'( ____ 31.. ____ :> 

4 4 

! ! --z 

5.1-5 a. The array of Prob. 5.1-3(a) is parallel fed, in-phase array. Show how the parallel 
wire transmission lines are connected to perform the summing function. Also put current 
arrows on each wire. 

b. Consider an array similar to that of part (a) except now the array elements (half-wave 
dipoles) are fed 1800 out-of-phase. Show how the transmission lines are arranged to accom
plish this subtraction function. Again, show the currents on each wire. 
5.1-6 Use the results of the cosine-tapered current distribution in Sec. 4.2 to derive the 
pattern of a half-wave dipole in (5-7). 
5.1-7 Verify that the normalization constant in (5-9) is 0.7148 for the pattern of a 3M2 dipole. 
What are the angles 80 in degrees for maximum radiation? 
5.1-8 A resonant half-wave dipole is to be made for receiving TV Channel 7 of frequency 
177 MHz. If ~-in.-diameter tubular aluminum is used, how long (in centimeters) should the 
antenna be? 
5.1-9 A four-element collinear array of half-wavelength spaced, half-wave dipoles is placed 
along the z-axis. All elements are fed with equal amplitude and phase. 

a. Determine the complete radiation pattern F( 8) for the array. 
b. Plot a sketch of the pattern in linear, polar form using array concepts. 

5.1-10 Repeat Prob. 5.1-9 except now the half-wave dipole elements are parallel to each 
other and the x-axis, and are phased for ordinary endfire. The centers of the four elements 
are located on the z-axis and spaced a half-wavelength apart. 
5.1-11 Use (5-1) and (5-4) to calculate and plot the current distribution and far-field pattern 
for dipoles of length 2.0 and 2.5A. Compare with Figs. 5-3 and 5-4. 
5.1-12 a. Show that the power radiated by a center-fed dipole of arbitrary length L with a 
sinusoidal current is 

p = ~: {0.5772 + In(f3L) - Ci(f3L) + ~ sin(f3L)[Si(2f3L) - 2 Si(f3L)] 

+ ~ COS(f3L{ 0.5772 + In(f3~) + Ci(2f3L) - 2 Ci(f3L)]} 

b. Derive an expression for the directivity and then plot directivity as a function of dipole 
length for L from 0 to 3A. 
5.1-13 Use the length reduction procedure for half-wave resonance in Table 5-2 to calculate 
the resonant frequencies of the two dipoles in Fig. 5-7. 
5.1-14 Design an optimum directivity vee dipole to have a directivity of 6 dB. 
5.1-15 To show that the vee dipole results of (5-23) and (5-24) give roughly the correct results 
for a full-wave straight wire dipole, use D = 2.41 and determine 'Y. 
5.2-1 a. It is desired to have a simple formula for the length of a thin-wire half-wave folded 
dipole antenna. Show that it is L(cm) = 14,250If(MHz). 

b. Determine the length in centimeters of half-wave folded dipoles for practical appli
cation as receiving antennas for each VHF TV channel and the FM broadcast band 
(100 MHz). Tabulate results. 
5.2-2 Calculate the input impedance of a folded dipole of length L = 0.4A, wire size 2a = 
O.OOlA, and wire spacing d = 12.5a using the transmission line model. Compare your results 
to values from Fig. 5-16. 
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5.3-1 A receiving antenna with a real impedance RL attached to its terminals has the equiv
alent circuit shown. Prove that maximum power transfer to the load for a fixed real antenna 
impedance RA occurs for RL = RA. 

5.3-2 A transmitter with a real impedance of R, is connected to a lossless transmission line 
of real characteristic impedance Ro and then to an antenna of real input impedance Ro. 

a. Derive an expression for the transmit efficiency, that is, power delivered to antenna! 
total power dissipated. Neglect any mismatch effects. 

b. Find the percent efficiency for R, = Ro, R, = O.5Ro, and R, = O.lRo. 
5.3-3 The antenna shown is operated over a perfect ground plane. Its purpose is to enhance 
radiation in the xy-plane over that of a single quarter-wave monopole. 

z 
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a. Determine and sketch the current distribution. Assume b « A. 
b. What is the purpose of the quarter-wavelength "stubs"? 
c. Use array concepts to obtain a linear polar plot of the radiation pattern in a plane 

containing the z-axis. 
d. Give a rough estimate of the input impedance for matching purposes. 

5.4-1 Use array theory to analyze the array of Fig. 5-30a where the pattern of each element 
is that of a half-wave dipole. 

a. Plot the H-plane pattern and compare to Fig. 5-30b. 
b. Plot the E-plane pattern. 

5.4-2 Numerical methods reveal that the currents on the elements of the two-element par
asitic array of Fig. 5-30a are nearly sinusoidal and the current amplitudes and phases at each 
element center are 1.0L-88° for the driver and O.994L81.1° for the parasite. Use simple 
array theory to obtain and plot the H-plane pattern in linear, polar form. 
5.4-3 Phasor diagrams are often helpful in obtaining a rough idea about how arrays perform. 
To illustrate, use phasor diagrams to obtain the relative far-zone field values in the endftre 
directions of the two-element parasitic array of Prob. 5.4-2 (i.e., find the front-to-back ratio). 
To do this, find the total phasor at each element location including the spatial phase delay 
due to the element separation. Assume the amplitudes of each element are unity and the 
phases are -880 for the driver and 81.10 for the parasite. 
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5.~ Design a 10.2-dBd gain Yagi for operation at 50.1 MHz. The parasitic elements are 
insulated from the metal boom. The diameter of the elements is 0.002L\. 
5.4-5 Design a 14.2-dBd gain Yagi for operation at 432 MHz. The parasitic elements are 
mounted through a metal boom making electrical contact with it. The diameter of the ele
ments is 0.00343'\. The boom diameter is 0.0275'\. 
5.4-6 Construction project-a lO¢ Yagi. This project is designed to demonstrate how a high 
gain antenna can be built for under 1O¢! Locate a channel on your (or a cooperating friend's) 
TV receiver that has marginal reception, such as a snowy picture when a modest antenna 
(like rabbit ears) is used. If it happens to be Channel 13, you can use the design values from 
Prob. 5.4-5. If not, repeat the calculations for the channel you have chosen. The construction 
phase proceeds as follows. Find a large rigid piece of corrugated cardboard and trim it so 
that it is several centimeters longer than the total array length and about 5 em narrower than 
the director length. Now locate several thick coat hangers. Straighten them as much as pos
sible and cut them to the lengths required for the reflector and directors. The feed element 
is a folded dipole constructed from a piece of twin-lead transmission line. Cut it to a length 
that is a little longer than the driver dimension. Strip the ends and solder the two wires at 
each end together such that the overall length is equal to the driver dimension. Next cut one 
wire of the driver at the center of the folded dipole and solder the ends to a long piece of 
twin-lead that serves as a transmission line for the antenna. Layout all element positions on 
the cardboard by marking appropriately. Tape the folded dipole onto the cardboard at the 
driver location. The coat hanger parasitic elements are positioned by merely inserting them 
into the corrugations in the cardboard. Now connect the transmission line to the receiver. 
Rotate the antenna and note the effect on the reception. Large performance differences 
should be observed. Note that it may be necessary to elevate the antenna by placing it in the 
attic, for example. With this construction, it is very easy to change the element spacings by 
placing the coat hanger elements into difference corrugations. Very little difference will be 
observed for small distance changes. Normally, the best performance is achieved for hori
zontal polarization, that is, elements parallel to the ground. 
5.4-7 Construction project-a slightly more expensive Yagi. A fairly rugged Yagi antenna can 
be constructed using the following technique. Select a TV channel with marginal reception 
and design a Yagi for that frequency. The materials required for this project are a 1 X 2 in. 
board of length slightly greater than the overall length of the array and a few meters of 
aluminum wire (usually No.8 AWG). Trim and straighten wires for the reflector and direc
tors. Drill holes in the wooden mast at the appropriate positions for the reflector and the 
directors. The holes should be just slightly greater than the wire diameter. Be sure all holes 
are along a straight line. The driver is a folded dipole oriented such that the plane of the 
dipole is perpendicular to the line of the array. Drill one hole in the mast about 2 em above 
the array line. At the same distance below the array line, drill in from each side of the mast 
about 0.5 em. Cut a piece of wire more than twice the length of the driver. Push it through 
the top hole and center it. Bend the wire at the required length at each end and fold it back 
to the mast. Now carefully trim away any excess wire such that the wire ends can just be 
forced into the shallow holes and still form a symmetric folded dipole. Now wrap the bared 
ends of a twin-lead transmission line to the ends of the folded dipole close to the mast (at 
the feed point). Be sure to get a good mechanical contact. Also leave a tab of polyethylene 
where you stripped the twin lead. Small wire brads can be wedged between the wire ends at 
the feed point and the mast, and at the same time pinch the twin-lead connection between 
the antenna wire and the brad. Solder the feed point connections. Tack the polyethylene tab 
to the bottom of the mast to provide strain relief. Insert the remaining elements into their 
holes, center them, and nail brads into the hole alongside the wires to secure their positions. 
The construction is now complete and you can connect the transmission line to the receiver 
and test the reception. Try several antenna locations and orientations. 
5.4-8 A two-element Yagi has a current on the driven element of 1Ll64° and a current on 
the parasitic element of 0.5L238°. The spacing between the elements is 0.2'\. Does the par
asitic element act like a director or reflector element? Use a phasor diagram to show why. 
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5.4-9 The input impedance of a driven element in the presence of a short-circuited parasitic 
element is 4OL45° and is 60L30° when the terminals of the parasitic element are open
circuited. What is the approximate self-impedance ofthe driven element? Why is your answer 
only approximate? 
5.4-10 A two-element Yagi has a current on the driven element of lL254° and a current on 
the parasitic element of 0.6L - 32°. Does the parasitic element act like a director or reflector 
element? Why? 
5.5-1 a. Calculate and plot the magnitude of the array factor in (5-48) and verify that the 
maximum value of IAF(6 = 90°, cf> = 0°)1 is obtained when s = O.5A. 

b. Reason that this must be the case, using Fig. 5-43. 
5.6-1 A resonant, half-wave, thin, vertical dipole is operated a half-wavelength above a per
fect ground plane. Calculate the input impedance. Use the results in Sec. 3.6. 
5.6-2 Derive an expression for the directivity of an ideal (infinitesimal) dipole as a function 
of its height h above a perfect ground plane. The dipole is oriented perpendicular to the 
ground plane. Make use of the results in Secs. 2.3 and 3.4. 
5.6-3 A short dipole is a quarter-wavelength above a perfect ground plane. Use simple array 
theory for the dipole and its image to obtain polar plot sketches of the E- and H-plane 
patterns when the dipole is oriented (a) vertically and (b) horizontally. 
5.6-4 Repeat Prob. 5.6-3 for a short dipole a half-wavelength above a perfect ground plane. 
5.6-5 A horizontal short dipole is a quarter-wavelength above a planar real earth and is 
operating at 1 MHz. The conductivity of the earth is u = 12 X 10-3 Slm and the relative 
dielectric constant is e, = 15. For this frequency, u, and e" we can approximate Ir HI by 0.9 
and the phase of r H by -190° for all 6. 

a. Calculate and plot the H-plane elevation pattern in polar form in the upper half-space. 
b. Compare the pattern with that of the short dipole over a perfectly conducting ground 

plane (i.e., the results of Prob. 5.6-3b). 
5.6-6 A quarter-wave resonant monopole is to be used as a transmitting antenna at 1 MHz. 
A radial system of 120 radials is to be used. If 97% efficiency is to be achieved, how long 
must the radial wires be? Neglect any tower ohmic resistance. 
5.7-1 The uniform circular loop antenna. A circular loop in the xy-plane with its center at 
the origin and a radius b carries a uniform amplitude, uniform phase current given by 

a. Due to symmetry, the pattern will not be a functiofl. of cf> and A will have only a 
cf>-component. Using these facts, show that 

in the far field. Use symmetry to reason that cf> = 0 can be assumed and only a cf>-component 
exists. 

b. Find an expression for E</>. Hint: Use (F-7). 
c. Show that this result reduces to that for a small loop antenna in (2-53). Hint: J1(x) = 

xl2 for x » 1. 
5.7·2 Show that (5-62) yields (5-63). To perform the integrations, decompose the functions 
cos(J3x') and sin(f3y'} into sums of exponential functions using (E-6) and (E-7). 
5.7·3 Compute the input reactance of a square loop antenna with a 0.2A perimeter using 
small loop analysis and compare to the value from Fig. 5-53b. 
5.7-4 This problem compares circular and square large loop antennas. 

a. For the geometry of Fig. 5-51, use a moment method code (see Chap. 1O) to evaluate 
directivity and input impedance for L = 1, 1.5, and 2A. 

b. Run the code to determine the resonant value of L that is close to lA. Give the direc
tivity and input impedance, and plot the principal plane patterns. 
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c. Repeat (a) and (b) for a circular loop with the same perimeter-length values and 
oriented in a similar fashion with respect to the coordinate axes. Use the same wire radius. 

d. Tabulate performance values for all L values for both antennas. Comment on similar
ities. 
5.7·5 In a communication link, a half-wavelength folded dipole parallel to the z-axis is used 
to transmit and a square, one-wavelength loop is used to receive. Sketch a perspective view 
of the antennas in a common coordinate system for maximum power transfer; include the 
orientations of the antennas and their feed points. 
5.7-6 UHF TV antenna. Use a moment method code (see Chap. 10 and Appendix G) to 
evaluate a popular UHF TV antenna that is a circular loop with an I8-cm diameter and is 
made of 2-mm-diameter aluminum wire. Give the following performance measures in the 
center of TV channel 37: input impedance, gain, and radiation patterns. 
5.8·1 Show how the normalized principal plane patterns of (5-74) follow from (5-73). Discuss 
the electric field polarization in each plane. 
5.8·2 A square microstrip patch with L = W = 4.02 em is printed on an 0.159-cm-thick 
substrate with 8 r = 2.55. Find the resonant frequency, input impedance at resonance for an 
edge feed, and bandwidth. 
5.8·3 A probe-fed square microstrip patch antenna on a O.3-em-thick substrate of 8 r = 4.53 
is to be designed to operate at 3.72 GHz. Find the patch length at resonance. Find the probe 
location for a 50-0 input impedance. 
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Broadband Antennas 

In many applications, an antenna must operate effectively over a wide range of 
frequencies. An antenna with wide bandwidth is referred to as a broadband antenna. 
The term "broadband" is a relative measure of bandwidth and varies with the cir
cumstances. We shall be specific in our definition of broadband. Bandwidth is com
puted in one of two ways. Let fu and h be the upper and lower frequencies of 
operation for which satisfactory performance is obtained. The center (or sometimes 
the design frequency) is denoted as fe. Then bandwidth as a percent of the center 
frequency Bp is 

Bp = fu ic h X 100% 

Bandwidth is also defined as a ratio Br by 

B = fu 
r h 

(6-1) 

(6-2) 

The bandwidth of narrow band antennas is usually expressed as a percent using 
(6-1), whereas wideband antennas are quoted as a ratio using (6-2). 

In the previous chapter, we saw that resonant antennas have small bandwidths. 
For example, the half-wave dipoles in Fig. 5-7 have bandwidths of 8 and 16% 
(fu and h were determined by the VSWR = 2.0 points). On the other hand, an
tennas that have traveling waves on them (Sec. 6.1) rather than standing waves (as 
in resonant antennas) operate over wider frequency ranges. The definition of a 
broadband antenna is somewhat arbitrary and depends on the particular antenna, 
but we shall adopt a working definition. If the impedance and the pattern of an 
antenna do not change significantly over about an octave (fu1h = 2) or more, we 
will classify it as a broadband antenna. 

As we will see in this chapter, broadband antennas usually require structures that 
do not emphasize abrupt changes in the physical dimensions involved, but instead 
utilize materials with smooth boundaries. Smooth physical structures tend to pro
duce patterns and input impedances that also change smoothly with frequency. This 
simple concept is very prominent in broadband antennas. 

6.1 TRAVELING-WAVE WIRE ANTENNAS 

The wire antennas we have discussed thus far have been resonant structures. The 
wave traveling outward from the feed point to the end of the wire is reflected, setting 
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up a standing-wave-type current distribution. This can be seen by examining the 
expression for the current in (5-1) for the top half of the dipole that can be written 
as 

1m sin[/3(~ ...,. z)] = ~j ei «(3L12)(e-i (3Z - ei (3Z) (6-3) 

The first term in brackets can be taken to represent an outward traveling wave and 
the second term a reflected wave. The minus sign is the current reflection coefficient 
at an open circuit. 

If the reflected wave is not strongly present on an antenna, it is referred to as a 
traveling-wave antenna. A traveling-wave antenna acts as a guiding structure for 
traveling waves, whereas a resonant antenna supports standing waves. Traveling 
waves can be created by using matched loads at the ends to prevent reflections. 
Also, very long antennas may dissipate most of the power, leading to small reflected 
waves by virtue of the fact that very little power is incident on the ends. In this 
section, several wire forms of traveling-wave antennas will be discussed. Some of 
the antennas in this section are essentially the traveling-wave counterparts of res
onant wire antennas presented in Chap. 5. They tend to be broadband with band
widths of as much as 2: 1. 

The simplest traveling-wave wire antenna is a straight wire carrying a pure trav
eling wave, referred to as the traveling-wave long wire antenna. A long wire is one 
that is greater than one-half wavelength long. The traveling-wave long wire is shown 
in Fig. 6-1 with a matched load RL to prevent reflections from the wire end. Exact 
analysis of this structure, as well as others to be presented in this section, is formi
dable. We shall make several simplifying assumptions that permit pattern calcula
tions that do not differ greatly from real performance. First, the ground plane effects 
will be ignored and we will assume that the antenna operates in free space. A 
traveling-wave long wire operated in the presence of an imperfect ground plane is 
called a Beverage antenna, or wave antenna. The ground plane may be accounted 
for in certain cases by using the techniques of the previous chapter. Second, the 
details of the feed are assumed to be unimportant. In Fig. 6-1, the long wire is shown 
being fed from a coaxial transmission line as one practical method. The vertical 
section of length d is assumed not to radiate, which is approximately true for d« 
L. Finally, we assume that the radiative and ohmic losses along the wire are small. 
When attenuation is neglected, the current amplitude is constant and the phase 
velocity is that of free space [1]. We can then write 

(6-4) 

which represents an unattenuated traveling wave propagating in the +z-direction 
with the phase constant /3 of free space. 

The current of (6-4) is that of a uniform line source with a linear phase constant 
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Figure 6-1 Traveling-wave long wire 
antenna. 
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Figure 6-2 Pattern of a traveling
wave long wire antenna. L = 6'\ 
and Om = 20°. 

of f30 = -f3. From (4-6), f30 = -f3 cos 00, so the pattern factor maximum radiation 
angle (not including element factor effects) is 00 = 0°, which implies an endfire 
pattern. The complete radiation pattern from (4-8) is 

F(O) = K sin 0 sin[(f3L12)(1 - cos 8)] 
(f3L12)(1 - cos 0) 

(6-5) 

where K is a normalization constant that depends on the length L. The polar pattern 
for L = 6A is shown in Fig. 6-2. The length L = nA results in n forward lobes in the 
angular range 0 < 8m < 90°. In this example, n = 6. The element factor sin 8 forces 
a null in the endfire direction. Hence, instead of having a single endfire lobe (which 
the pattern factor produces), the "main beam" is a rotationally symmetric cone 
about the z-axis. The maximum radiation angle in this case is 8m(L = 6A) = 20.1°. 
In general, it is a function of L. Solving (6-5) for Om as a function L produces the 
plot of Fig. 6-3. An approximate expression for the angie of maximum radiation 
is [2] 

-1( 0.371) Om = cos 1 - LI A (6-6) 

0° Figure 6-3 Pattern maximum angle for a 
o 21.. 41.. 61.. 81.. 101.. traveling-wave long wire antenna of length L 

Length, L operating in free space. See (6-5). 
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The beam direction values from Fig. 6-3 or (6-6) for a traveling-wave long wire 
of length L may be used to calculate an approximate beam direction for a standing
wave straight wire antenna (i.e., dipole). For example, Om for L = 3M2 from Fig. 
6-3 is 40° and Om for the dipole of Fig. 5-4d is 42.6°. As L increases, the traveling
wave and standing-wave antenna main beam maximum angles approach each other 
[3]. The standing-wave wire antenna is distinguished from its traveling-wave coun
terpart by the presence of a second major lobe in the reverse direction; see Fig. 
5-4d. This can be seen by noting that the traveling-wave current of (6-4) corresponds 
to the first term of the standing-wave current of (6-3). The second term of (6-3), 
which is the reflected wave, produces a pattern similar in shape but oppositely di
rected. Thus, a traveling-wave antenna has a beam with a maximum in the 0 = Om 
direction and a standing-wave antenna of the same length has an additional beam 
in the 0 = 180° - Om direction. 

The input impedance of a traveling-wave antenna is always predominantly real. 
This can be understood by recalling that the impedance of a pure traveling wave 
on a low-loss transmission line is equal to the (real) characteristic impedance of the 
transmission line. Antennas that support traveling waves operate in a similar man
ner. The radiation resistance of a traveling-wave long wire antenna is 200 to 300 n 
(see Prob. 6.1-5). The termination resistance should equal the value of the radiation 
resistance. 

The resonant vee antenna discussed in Sec. 5.1.2 can be made into a traveling
wave antenna by terminating the wire ends with matched loads. The traveling-wave 
vee antenna is shown in Fig. 6-4. The pattern due to each arm separately is expressed 
by (6-3), an example of which is shown in Fig. 6-2. From Fig. 6-4, it is seen that 
when a .,.. Om, the beam maxima from each arm of the vee will line up in the forward 
direction. A more accurate analysis of vee (see Prob. 6.1-8) includes the spatial 
separation effects of the arms. Pattern calculations as a function of a reveal that a 
good vee pattern is obtained when 

a"" 0.80m (6-7) 

where Om is found from Fig. 6-3 or (6-4). For L = 6A, Om = 20° from Fig. 6-3 and 
(6-5) yields a .,.. 16°; the pattern for a vee with this geometry is shown in Fig. 6-4. 
The large side lobes arise from portions of the beams from each half of the vee that 

Resultant 
pattern 

Figure 6-4 The traveling-wave vee antenna. In this case, L = 6A and a = O.88m = 16°. 
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do not line up along axis. The pattern of the vee out of the plane of the vee is rather 
complicated due to the merging of the conical beams for each half of the vee. The 
traveling-wave vee provides relatively high gain for a bent wire structure. 

By extending the ideas of a traveling-wave vee antenna, we obtain a rhombic 
antenna as shown in Fig. 6-5. The operation of this antenna is visualized most easily 
by viewing it as a transmission line that has been spread apart and consequently the 
characteristic impedance is increased. The load resistor RL is of such a value as to 
match the transmission line. The antenna carries outward traveling waves that are 
absorbed in the matched load. Since the separation between the lines is large rel
ative to a wavelength, the structure will radiate. If designed properly, a directive 
pattern with a single beam in the z-direction can be obtained. 

A rhombic antenna operating in free space can be modeled as two traveling-wave 
vee antennas put together. If we choose a = 0.80m as for the vee, the beams of the 
rhombic in-Fig. 6-5 numbered 2, 3, 5, and 8 will be aligned. Again, Om follows from 
Fig. 6-3. Due to the spatial separation of the two vees, the rhombic pattern will not 
be the same as that of a single vee [3]. (See Prob. 6.1-9.) 

The effects of a rhombic operating above a real earth ground can be included by 
the techniques of the previous section. For a rhombic that is oriented horizontally, 
the reflection coefficient r H is approximately -1 and the real earth may be modeled 
as a perfect conductor; Fig. 5-47 illustrates that this assumption has a minor effect 
for horizontal antennas. The array factor of a rhombic a distance h above a perfect 
ground plane produces a null along the ground plane. There are several designs for 
rhombics above a ground plane in the literature [2-5]. One such design is for the 
alignment of the major lobe at a specific elevation angle. Then the rhombus angle 
a and the elevation angle of the main beam are equal, and the height above ground 
is given by 

and the length of each leg is 

A 
h=--

4 sin a 

L = 0.371A 
sin2 a 

(6-8) 

(6-9) 

For example, if a = 14.4°, then L = 6A and h = lA. Rhombic impedances are 
typically on the order of 600 to 800 fl. 

Resultant 
pattern 

Figure 6-5 The rhombic antenna. Each side is of length L. Component beams 2 and 3, and 
5 and 8 line up to form the main beam of the resultant pattern. In this case, L = 6'\ and 
a = 16°. 
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Wavefront 

~I<------L--------~ 

Figure 6·6 Beverage receiving 
antenna on an imperfect ground 
plane. 

The efficiency of the rhombic antenna is decreased significantly because of the 
matched termination. The power that is not radiated is absorbed in the load RL • 

However, this loss of power is essentially that which would have appeared in a large 
back lobe as a result of reflected current if the matched load were not present. The 
traveling wave feature not only improves the pattern but also produces wider im
pedance bandwidth. Well-designed traveling-wave antennas have input impedances 
that have little reactance since there is little or no reflected power. 

The traveling-wave antennas discussed above have been examined in free space. 
One traveling-wave antenna that requires the imperfectly conducting properties of 
real earth is the Beverage antenna shown in Fig. 6-6. The height h is a small fraction 
of a wavelength, and the length L is usually between 2 and 10 wavelengths. The 
incoming vertically polarized plane wave in Fig. 6-6 produces a horizontal compo
nent of the electric field that is not totally shorted out by the imperfectly conducting 
earth. It is this horizontal component that is responsible for inducing a current on 
the antenna conductor of length L. Alternatively, the Beverage and its image in the 
lossy earth may be viewed as an unbalanced transmission line. As was noted in the 
folded dipole discussion in Sec. 5.2, unbalanced transmission lines can radiate. 

Figure 6-7 shows the current on a Beverage antenna of length 2.18A. The curve 
was calculated by the rigorous Sommerfeld theory for antennas in proximity to the 
imperfectly conducting earth [6,7]. Because there are large dissipative losses in the 
earth as well as radiative losses, the current shows a definite decay from the feed 

M.-------------------------------, 

o 

L=65.5m 

/= 10 MHz 
h=2m 
Z,=4520 
E =25 
;=3 x 10-2 

1 V excitation 

Position, m Termination 65.5 m 

Figure 6·7 Current 
distribution on a Beverage 
antenna, L = 2.18.\, h = 
0.067.\. 
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Frequency, / 900 Frequency, 2/ 900 

Figure 6-8 Generic elevation patterns for a Beverage antenna. 

end to the load end. This portion of the current distribution can be accounted for 
by a modification of (6-4): 

(6-10) 

The current also shows a standing wave superimposed on the major portion of the 
current distribution. This is evidence of a small reflected wave from the load end. 
The reflected wave also appears to diminish in strength as it moves toward the feed 
end. The reflected wave can be represented by a relationship similar to (6-10). The 
approximate theory presented in Sec. 5.5 cannot be used to obtain the current dis
tribution in Fig. 6-7 because the Beverage interacts too strongly with the earth due 
to its close proximity to the ground and its long horizontal length. Instead, the 
rigorous but complicated Sommerfeld theory [6] must be used. 

Figure 6-8 shows some generic elevation plane patterns for a Beverage antenna 
used by the military as a tactical field antenna. The antenna is particularly well
suited for this purpose because it does not need to be elevated much above the 
ground. Note several things about the patterns. The higher-frequency pattern has 
a narrower beamwidth in both the elevation and azimuthal planes, and has a lower 
angle of radiation as expected. Further, the back lobe radiation is low, particularly 
in the higher-frequency case where the antenna is electrically twice as long and 
there is more opportunity for dissipative loss. 

Often, the feed end of the Beverage is higher than the load end to achieve as low 
a radiation angle relative to the ground (take-off angle) as possible. The Beverage 
antenna is usually used in the LF and lower HF portions of the frequency spectrum. 
It is believed to have been first used on Long Island in the early days of radiotele
phone for trans-Atlantic communication between the United States and London 
at 50 and 60 kHz. The Beverage was the first antenna to use the traveling-wave 
principle. 

6.2 HELICAL ANTENNAS 

If a conductor is wound into a helical shape and fed properly, it is referred to as a 
helical antenna, or simply as a helix. The typical geometry for a helix is shown in 
Fig. 6-9. If one turn of the helix is uncoiled, the relationships among the various 

(J 

----~ 
Axis 
of 

helix Figure 6-9 Geometry and 
dimensions of a helical antenna. 
This is a left-hand wound helix. 
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C=nD 

Figure 6-10 One uncoiled turn of a helix. 

helix parameters are revealed, as shown in Fig. 6-10. The symbols used to describe 
the helix are defined as follows: 

D = diameter of helix (between centers of coil material) 

C = circumference of helix = 7TD 

S = spacing between turns = C tan a 

a = pitch angle = tan-1 ~ 

L = length of one tum = V C2 + S2 

N = number of turns 

Lw = length of helix coil = NL 

h = height = axial length = NS 

d = diameter of helix conductor 

Note that when S = 0 (a = 0°), the helix reduces to a loop antenna, and when 
D = 0 (a = 90°), it reduces to a linear antenna. 

The helix can be operated in two modes: the normal mode and the axial mode. 
The normal mode yields radiation that is most intense normal to the axis of the 
helix. This occurs when the helix diameter is small compared to a wavelength. The 
axial mode provides a radiation maximum along the axis of the helix. When the 
helix circumference is on the order of a wavelength, the axial mode will result. We 
introduce both the normal mode and axial mode helices in this section. See [8] and 
[9] for more details. 

6.2.1 Normal Mode Helix Antenna 

In the normal mode of operation, the radiated field is maximum in a direction 
normal to the helix axis and for certain geometries, in theory, will emit circularly 
polarized waves. For normal mode operation, the dimensions of the helix must be 
small compared to a wavelength, that is, D « A and usually L « A as well. The 
normal mode helix is electrically small and thus its efficiency is low. 

Since the helix is small, the current is assumed to be constant in magnitude and 
phase over its length. The far-field pattern is independent of the number of turns 
and may be obtained by examining one tum. One turn can be approximated as a 
small loop and ideal dipole as shown in Fig. 6-11. The far-zone electric field of the 
ideal dipole from (l-72a) is 

-jf3r 

ED = jwpJS ~4 sin 0 9 
7TT 

(6-11) 
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z 

Figure 6-11 One tum of a normal mode helix approximated 
as a small loop and an ideal dipole. 

where S, the spacing between helical turns, is the length of the ideal dipole in Fig. 
6-11. The far-zone electric field of the small loop from (2-53) is 

(6-12) 

where 'TT'D2/4 is the area of the loop. The total radiation field for one tum, as mod
eled in Fig. 6-11, is the vector sum of the fields in (6-11) and (6-12). Note that both 
components have a sin (J pattern (see Fig. 6-12) and they are 900 out-of-phase. The 
ratio of the electric field components is 

(6-13) 

This equals the axial ratio of the polarization ellipse when greater than unity and 
the inverse of axial ratio when less than unity; see Sec. 1.10. Limiting cases are 0 
(with S = 0) corresponding to a small loop with horizontal polarization and 00 (with 
D = 0) corresponding to a short dipole with vertical polarization. 

Since the (perpendicular) linear components are 900 out-of-phase, circular polar
ization is obtained if the axial ratio is unity. This occurs for 

(6-14) 

z 

k 
z 

sine 

(a) Geometry. (b) Radiation pattern of both IEel and IE"I. 

Figure 6-12 The normal mode helix and its radiation pattern. 



234 Chapter 6 Broadband Antennas 

which was found by setting (6-13) equal to unity. This circular polarization is ob
tained in all directions, except of course where the pattern is zero (along the axis 
of the helix). From Fig. 6-10, it is seen that 

Lsina=S or 

and 

• -1 S a=sln -
L 

(6-15) 

(6-16) 

For circular polarization in the normal mode, the circumference of the helix given 
by (6-14) used in (6-16) gives 

S~p + 2ScpA - L 2 = 0 

This is a quadratic equation that may be solved for S as 

Scp = -2A ± V;A2 + 4U = A[-l ± )1 + (~r] 

(6-17) 

(6-18) 

Choosing the plus sign to keep the physical length S positive and substituting into 
(6-15) yields the pitch angle required for circular polarization: 

_ . _1[-1 + Vi + (LlA)2] 
acp - sm LIA (6-19) 

Usually, the normal mode helix is oriented vertically and operated such that the 
ratio in (6-13) is greater than unity, leading to predominantly vertically polarized 
radiation. This antenna is very popular in small transceivers such as handheld per
sonal radios. For these applications, the wire length Lw is about a quarter-wave
length and the antenna is operated as a monopole fed against a ground plane. In 
this context, it is often referred to as a normal mode helix antenna (NMHA), or 
resonant (quarter-wave) stub helix antenna. The pattern is, of course, nearly om
nidirectional. The advantages of the stub helix over a conventional straight-wire 
monopole of the same height is that the helix acts as an inductor, tending to cancel 
the capacitance inherent in electrically short antennas. The current along the wire 
of the helix is approximately sinusoidal. The radiation resistance of a resonant stub 
helix above a perfect ground plane for heights under Al8 is [9] 

Rr = 640(~) 
2 

fi resonant, stub helix (6-20) 

The counterpart short monopole from (2-19) has Rr = 395(hl A)2 fi. Since electrically 
short antennas suffer from low radiation resistance, the higher radiation resistance 
of the stub helix is another improvement over the conventional short (straight wire) 
monopole. Antennas on handheld radios often have a center section that telescopes 
up, operating as a 112 or 5/8 wavelength antenna. The stub helix is activated when 
the telescoping section is retracted. An impedance-matching network is usually 
included. 

A Stub Helix Antenna for Handheld Cellular Radios 

Consider a stub helix operating in the cellular telephone band at 883 MHz (A = 34 em). The 
four-turn helix is 2.25 in. (5.7 em) high, or h = 0.168.\, and 0.2 in. (0.5 em) in diameter, giving 
a circumference of C = 0.046.\. The tum spacing is S = hlN = 5.7 cm!4 = 1.43 cm = 0.042.\. 
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The helix length is Lw = [(NC)2 + h2]112 = 0.25A, which is of resonant length. 
The axial ratio from (6-13) is 

2(~) 2(0.042) 

iARl ~ (¥)' ~ (0.046)' ~ 38 

This confirms the nearly vertical linear nature of the polarization.· The radiation resistance 
from (6-20) is Rr = 640(0.168? = 18 n. A straight monopole of the same height would have 
Rr = 395 (0.168)2 = 11 n. 

Another popular resonant compact helix antenna, that is smaller than an axial 
mode helix, uses four half-wavelength long windings and produces a single, broad 
endfire beam with circular polarization. This resonant quadrafilar helix antenna, or 
volute antenna, is fed at the open end such that the two orthogonal pairs of helices 
are 90° out-of-phase. The windings are shorted to the ground plane at the other 
end. This antenna does not qualify as broadband since it has only a few percent 
bandwidth [9]. 

6.2.2 Axial Mode Helix Antenna 

Axial mode helices are used when a moderate gain of up to about 15 dB and circular 
polarization are required. The relatively small cross section of the helix makes it 
popular at UHF frequencies, where it is widely used for satellite communications. 
In this section, we consider the axial mode, monofilar (single winding) helix antenna 
in detail with emphasis on design considerations. In the axial mode, the helix ra
diates as an endfire antenna with a single main beam along the axis of the helix (the 
+ z-direction in Fig. 6-9). The radiation is close to circularly polarized near the axis. 
Further, the main beam narrows as turns are added to the helix. The axial mode 
occurs when the helix circumference C is on the order of one wavelength. Helices 
with a few turns perform well over the frequency range corresponding to 

3 4 
-A:5C:5-A 
4 3 

(6-21) 

This gives a bandwidth ratio of 

Br = fu = clAu = 4/3 = 16 = 1.78 
h clAL 3/4 9 

(6-22) 

This is close to the conventional definition of a 2: 1 bandwidth ratio for a wideband 
antenna. For long helices, the upper operating frequency is lower than 4M3, reduc
ing the bandwidth below 1.78. 

Kraus [8] performed the pioneering work on the axial mode helix and provided· 
a simple explanation of its operation as well as empirical formulas for pattern, gain, 
polarization, and impedance. Subsequent experiments [10, 11] produced more ac-
. curate models for helix antenna performance. The development that follows is 
based on these works. 

An approximate model for the axial mode helix that offers a simple explanation 
for its operation assumes that the helix carries a pure traveling wave that travels 
outward from the feed. The electric field associated with this traveling wave rotates 
in a circle, producing radiation that is nearly circularly polarized off the end of the 
helix. 



236 Chapter 6 Broadband Antennas 

In contrast to the normal mode helix, which has a current that is nearly uniform 
in phase over the helix winding, the phase of the axial mode helix current shifts 
continuously along the helix, which is characteristic of a traveling wave. Since the 
circumference is close to one wavelength, the current at opposite points On a tum 
are about 1800 out-of-phase. This cancels the current direction reversal introduced 
by the half-tum. Thus, the radiation from opposite points on the helix is nearly 
in-phase, leading to reinforcement along the axis in the far field. This radiation 
mechanism closely parallels that of the one-wavelength loop discussed in Sec. 5.7. 

The radiation pattern of the axial mode helix can be modeled using array theory, 
with each tum being an element of the array. The element pattern is cos 0, approx
imating the pattern of a one-wavelength loop; see Fig. 5-52b. The array factor is 
that of N equally spaced elements with spacing S and progressive phase ah. The 
current magnitudes On the turns are taken as uniform in this simple model. Then 
the array factor is given by (3-33) and the total pattern is 

sin(NrjlI2) 
F(O) = K cos 0 N sin(rjlI2) 

where K is a normalization constant. (See Fig. 9-18 for a measured pattern.) 

(6-23) 

(6-24) 

The traveling wave along the helix produces an endfire beam along the helix axis 
(z-axis). Suppose initially that the helix can be modeled as an ordinary endfire array. 
Then a main beam maximum occurs in the 0 = 0 direction for rjI = 0, which yields 
ah = -f3S from (6-24); also see (3-36). The -f3S phase is phase delay due to axial 
propagation corresponding to the distance S along the axis for one tum. However, 
the current wave follows the helix. This introduces another -2'77" of phase shift since 
the circumference is about a wavelength. Thus for ordinary endfire, ah = - f3S -
2'77". Interestingly, it turns out that the traveling-wave mode on the axial mode helix 
corresponds to nearly a naturally occurring Hansen-Woodyard increased directiv
ity-type endfire array. This effect is accounted for with an additional -'77"IN phase 
delay over the ordinary endfire case; see (3-49). Thus, the element-to-element phase 
shift is 

ah = -(f3S + 2'77" + ~) (6-25) 

This phase shift leads to a value for the phase velocity of the traveling wave. To see 
this, we write the phase shift of the wave in one transit around a tum of length L 
as 

(6-26) 

where f3h is the phase constant associated with wave propagation along the helical 
conductor. Equating this to (6-25) gives 

. f3h = ± (f3S + 2'77" + ~) (6-27) 

The velocity factor (phase velocity relative to the free-space velocity of light) is 

v wlc f3 
p=-=-=-

c wlv f3h 
(6-28) 
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where v is the phase velocity of the tr~veling wave along the helical conductor. 
Using (6-27) in (6-28) yields 

LlA 
(6-29) 

P = S/A + (2N + 1)/2N 

A typical configuration is C = A, a = 12°, and N = 12. Then S = C tan a = 0.213A, 
L = vi C2 + S2 = 1.022A, and p = 0.815. Therefore, the traveling wave has a phase 
velocity less than that if it were a plane wave in free space. Such a wave is referred 
to as a slow wave. Another remarkable feature of the helix is that as the helix 
parameters vary over rather large ranges (5° < ah < 20° and ~A < C < ~A), the 
phase velocity adjusts automatically to maintain increased directivity. 

Returning to the pattern calculation, we see that the main beam maximum occurs 
for () = 0 and from (6-24) and (6-25), 1/1 = -21T - 1TIN. Then (6-23) is 

sin(-N1T - 1T/2) K(-l)N+l 
F( () = 0) = K = -'---:-''---,-

N sin( -1T - 1T/2N) N sin( 1T/2N) 
(6-30) 

Normalizing such that the maximum is unity yields K = (-l)N+IN sin(1T/2N), and 
the final pattern function is 

where 

D«() = (_l)N+l ...!!.... () sin(NI/I/2) 
rl sm 2N cos sin( 1/1/2) 

1T 
1/1 = (3S(cos () - 1) - 21T - -

N 

This pattern expression applies to both E8 and E</>. 

(6-31) 

(6-32) 

The electrical performance of the axial mode helix is, of course, influenced by its 
geometric parameter values. The helix operates well over a wide range of pitch 
angles, but is optimum for 12° < a < 14° and helices are usually constructed with 
a = 13°. As more turns are added, gain increases and the polarization axial ratio 
decreases. A series of empirical formulas based on extensive measured data were 
initially proposed by Kraus [8] and later modified by King and Wong [11] for the 
prediction of electrical performance from the helix geometry parameters. The ap
proximate formulas presented here are based on these results and are useful in the 
design of axial mode helix antennas with 3/4 < CIA < 4/3, 12° < a < 15°, and 
N>3. 

The half-power beamwidth in degrees is given by 

HP = 65° 

~JN~ A A 

(6-33) 

This applies to all planes since the main beam is nearly symmetric. The gain formula 
then follows from (7-95) as 

G = 26,000 = 62(~)2N ~ (6-34) 
Hp2 . A A 

This formula indicates that gain is proportional to f3. Experiments show this to be 
most accurate for N = 10 [11]. Gain based on (6-34) increases linearly with the 
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number of turns; that is, doubling N will increase gain by 3 dB. This result is slightly 
optimistic. Although (6-34) indicates that gain is a strong function of the circum
ference, it must be remembered that the helix is constructed to maintain C ~ A. 
Experiments show that gain is peak for C = lolA [11]. 

The classical formula for axial ratio is [8] 

IARI = 2N + 1 
2N 

(6-35) 

indicating that the quality of circular polarization increases with the number of 
turns. This formula is approximate at best. Measured data give IARI < 1.2 for 
0.8 < CIA < 1.2, corresponding to N > 2.5 from (6-35) [11]. The axial ratio can be 
improved by tapering the last few turns at the end of the helix [12]. The sense of 
polarization is determined by the sense of the helix windings as shown in Fig. 6-13. 
A left- (right-) hand wound helix is left- (right-) hand sensed polarized. 

The classical formula for input resistance is 

C 
RA = 140 A.o. (6-36) 

The input impedance is real-valued due to the nearly pure traveling-wave behavior 
of a properly designed helix. This simple formula must be regarded as only an 
approximation since the input impedance of actual helix antennas is affected by 
details of the feed. However, the input impedance does remain nearly resistive over 
a wide bandwidth. 

An axial mode helix performs well and is represented approximately by the fore
going empirical relations when the increased directivity condition is satisfied. This 
occurs over the bandwidth of (6-22) for helices of a few turns. However, long helices 
have a reduced upper operating frequency; for example, fu corresponds to about 
C = A for N = 50 [10]. 

If only a pure traveling wave exists on the helix, the ground plane would have 
little effect. However, other modes are present, including a wave reflected from the 
end of the helix that returns to the feed region. This makes the ground plane ge
ometry important. An approximate guideline is that the ground plane should be at 
least 3A/4 in diameter. Ground structures such as cups or cones are often used in 
place of a larger ground plane [13]. The inner conductor of the coaxial connector 
is attached to the helix and the outer conductor is connected to the ground structure 
as indicated in Fig. 6-13. The conductor diameter is frequently selected to provide 
a rigid, self-supporting structure. Helix winding conductor diameter d usually is 
between O.OOSA and O.OSA. A 50-.0. input impedance can be achieved by including 
an impedance transformer in the feed or by adjusting the location of the wire from 
the coax to the helix winding. 

There are many variations of the helix antenna. For example, tapering the helix 
by gradually reducing the diameter near the end of the helix improves impedance, 

(a) Left-hand sensed helix 

Figure 6-13 Left- and right-hand 
wound helices. For the axial mode 
helix, the sense of the windings 
determines the sense of 

(b) Right-hand sensed helix polarization of the antenna. 
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pattern, and polarization [9, 14]. A compact volume can be achieved at the sacrifice 
of bandwidth with a helix that conforms to a spherical surface rather than a cylinder 
[15]. 

A lO-Tum Axial Mode Helix Antenna 

The helix antenna is rather easy to construct and will perform approximately as predicted 
by the simple theory presented in this section, as will be demonstrated in this example. 
Calculations are compared to experimental results for a lO-turn helix constructed for a center 
frequency of 8 GHz (A = 3.75 cm), where the helix was designed to have a circumference of 
C = O.92A = 3.45 cm. The helix was built with a pitch angle of a = 13°. The spacing between 
turns is then S = C tan a = 3.45 tan 13° ,= 0.796 em. The measured radiation patterns for 
the two principal planes are shown in Figs. 6-14a and 6-14b [10]. These patterns are nearly 
alike and compare well to the pattern computed from simple theory with (6-31), which is 
plotted in Fig. 6-14c. The beamwidth of the measured patterns is about 44°. For comparison, 
the computed pattern of Fig. 6-14c has HP = 39°, and the approximate empirical formula of 
(6-33) gives a beamwidth of 

HP = 65° = 65° = 48° (6-37) 
~ J N ~. 0.92VlO(0.212) 
A A 

The gain predicted by (6-34) is 

G = 6.2(~) 2N ~ = 6.2(0.92)210(0.212) = 11.1 = 10.5 dB (6-38) 

(a) Measured E9 pattern at 8 GHz [ 10 ]. (b) Measured ~ pattern at 8 GHz [ 10 ]. 

t-t-t-+-t:E:---+-+-+--i -- Z 

(c) Pattern computed from (6-31). 

Figure 6-14 Radiation patterns of a lO-turn axial mode helix with C = A and a = 13° 
(Example 6-2). 



240 Chapter 6 Broadband Antennas 

6.3 BICONICAL ANTENNAS 

The bandwidth of a simple dipole antenna can be increased by using thicker wire 
as indicated in Fig. 5-7. This concept can be extended to further increase bandwidth 
if the conductors are flared to form a biconical structure. Then the fixed wire di
ameter is replaced by a smoothly varying diameter and a fixed angle (of the conical 
surfaces). In this section, the idealized biconical antenna is considered first, followed 
by two practical forms-the finite biconical antenna and the discone. 

6.3.1 Infinite Biconical Antenna 

If the conducting halves of an antenna are two infinite conical conducting surfaces 
end-to-end, but with a finite gap at the feed point, the infinite biconical antenna of 
Fig. 6-15 results. Since the structure is infinite, it can be analyzed as a transmission 
line. With a time-varying voltage applied across the gap, currents will flow radially 
out from the gap along the surface of the conductors. These currents, in turn, create 
an encirculating magnetic field H q,' If we assume a TEM transmission line mode (all 
fields transverse to direction of propagation), the electric field will be perpendicular 
to the magnetic field and be 8-directed. When the potential on the top cone is 
positive and the bottom cone is negative, the electric field lines extend from the top 
to the bottom cone as indicated in Fig. 6-15. 

In the region between the cones, J = 0, H = H",4>, and E = Eil. Then Ampere's 
law, V x H = jweE + J, reduces to 

~(J a(J (sin (J Hq,) = jweEr = 0 
rsm a 

for the r-component and 

(6-39) 

(6-40) 

Figure 6-15 Infinite biconical antenna. The field 
. components and current are shown. 
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for the o-component. From (6-39), we see that a/aO(sin OH",) = 0 so 

1 H ex:--
'" sin 0 

(6-41) 

Since the structure acts as a guide for spherical waves, we can write (6-41) as 

e-j (3r 1 
H", = Ho 41Tr sin 0 

Then, substituting this into (6-40), we obtain 

E = -=!. ! Ho !... (e- j /31') = f3Ho ! e-
j

/31' _1_ 
(J jwe r 41T sin 0 ar we r 41T sin 0 

e-j/31' 1 
= TJHo 41Tr sin 0 

(6-42) 

(6-43) 

This equation is simply E(J = TJH"" which confirms our statement that the wave is 
TEM. The field components vary as lIsin 0, so the radiation pattern is 

F(O) = si~ Oh, 
sm 0 

(6-44) 

which is normalized to unity at its maxima on the conductor surfaces. This pattern 
is plotted in Fig. 6-16. 

In order to determine the input impedance, we first find the terminal voltage and 
current. Referring to Fig. 6-15, we see the voltage is found by integrating along a 
constant radius r and it is 

(6-45) 

z 

I 

Figure 6-16 Radiation pattern of an infinite biconical antenna. 
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This can be performed for any r since the cones are equipotential surfaces. Substi
tuting (6-43) into the above equation yields 

(6-46) 

The boundary condition on H </> at the conductor surface is ls = H</>. The total current 
on one cone is found by integrating the current density ls around the cone as shown 
in Fig. 6-15, so 

(21T 
I(r) = Jo Hct>r sin (J dlfJ = 2'TTrHct> sin (J 

Substituting (6-42) in the above gives 

I(r) = Ho e-jfjr 

2 

The characteristic impedance at any point r, from (6-46) and (6-48), is 

(6-47) 

(6-48) 

(6-49) 

Since this is not a function of r, it must be also the impedance at the input (r = 0). 
Thus, using 'T1 = 120'TT in (6-49) gives the input impedance 

ZA = Zo = 120 In( cot ~ ) 0 (6-50) 

For (Jh less than 20°, 

(6-51) 

where (Jh is in radians. The input impedance is real because there is only a pure 
traveling wave. Since the structure is infinite, there are no discontinuities present 
to cause reflections setting up standing waves, which would show up as a reactive 
component in the impedance (except at a few resonance points). If (Jh = e, ZA = 
568 + jO O. If (Jh = 50°, ZA = 91 + jO O. 

If one cone is flared all the way out to form a perfect ground plane, a single 
infinite cone above a ground plane results. This monopole version of the infinite 
bicone then has an input impedance which is half that of the infinite bicone. 

6.3.2 Finite Biconical Antenna 

A practical biconical antenna is made by ending the two cones of the infinite bicone. 
This finite biconical antenna is shown in Fig. 6-17. Inside an imaginary sphere of 
radius h just enclosing the antenna, TEM waves exist together with higher-order 
modes created at the ends of the cones. These higher-order modes are the major 
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Figure 6·17 Finite biconical antenna. 

contributors to the antenna reactance. The ends of the cones cause reflections that 
set up standing waves that lead to a complex input impedance. 

The reactive part of the input impedance can be held to a minimum over a pro
gressively wider bandwidth by increasing the angle (Jh in Fig. 6-17. At the same time, 
the real part of the input impedance becomes less sensitive to changing frequency 
(or changing h in Fig. 6-17). This is illustrated by measured data in Fig. 6-18 [3] for 
a conical monopole where the antenna impedance is plotted versus the height of 
the monopole L h • These data clearly show that one can achieve the 2: 1 impedance 
bandwidth necessary for one part of our definition of a broadband antenna. This is 
our first example of an antenna that can be more dependent on an angle in its 
geometry description than on its length. Frequency-independent antennas, consid
ered later in this chapter, exploit this property. Another property that we will ob
serve in many broadband and frequency-independent antennas is that some impor
tant dimension must be at least A/4. Careful examination of Fig. 6-18 reveals that 
the impedance bandwidth starts when the height of the conical monopole is about 
A/4 and extends upward beyond A/2. The pattern of a conical monopole or finite 
biconical for small cone angles is very similar to that of an ordinary monopole or 
dipole of the same length. 

A much simpler alternative to the finite biconical antenna is the common 
"bow·tie" antenna (shown later in Fig. 6-32). It offers less weight and less cost to 
build, but will have a somewhat more sensitive input impedance to changing fre
quency than the finite biconical. 

6.3.3 Discone Antenna 

If one cone of the finite biconical antenna is replaced with a disk-shaped ground 
plane, the structure becomes a disk-cone, or discone, antenna (see Fig. 6-19). The 
discone antenna was developed by Kandoian [16] in 1945, followed several years 
later by experimental design studies [17, 18]. It is used (like a vertical dipole) for 
vertical polarization and nearly uniform azimuth coverage (i.e., ~ omnidirectional 
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Figure 6-18 Measured input impedance of a conical monopole with flare angle 28h :s 900 
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Figure 6-19 Discone antenna. Typical 
dimensions are H ~ o.n, B ~ 0.6'\, D ~ 0.4,\, 
and8«D. 

pattern). The discone offers satisfactory operation over a wide frequency range 
(several octaves) while maintaining acceptable pattern and impedance properties. 

The discone is constructed as shown in Fig. 6-19. The outer conductor of the 
coaxial transmission line is connected to the cone and the inner conductor is at
tached to the disk ground plane. The cone and disk can be either solid metal or 
radial wires. Ideally, the pattern between the ground plane and the cone is that of 
the infinite bicone. This omnidirectional pattern is well suited to broadcast appli
cations. 

The discone antenna can be designed for broadband impedance performance 
(typically 50 0), while maintaining acceptable pattern behavior with frequency [18]. 
Typical center frequency dimensions are H = o.n, B = 0.6A, D = O.4A, Ok = 25°, 
and 8 « D. For example, the discone with the patterns of Fig. 6-20 has a center 
frequency of 1 GHz (A = 30 cm). So at 1 GHz, H = 21.3 em = O.71A, B = 19.3 cm 
= 0.64'\, and Oh "'" sin-l[(B/2)/H] = 27°. Nail [17] has given optimum design formulas 
of D = 0.7B and 8 = 0.3B2' independent of H and Ok' 

The pattern performance over a 3: 1 bandwidth is revealed in Fig. 6-20. At low 
frequencies, the structure is small relative to a wavelength, and the pattern is not 
too different from that of a short dipole (see Fig. 6-20a). As frequency increases, 
the electrical size of the ground plane increases and the pattern is confined more to 
the lower half-space (see Fig. 6-20b). For further increases in frequency, the antenna 
behavior approaches that of an infinite structure. For example, at 1500 MHz, the 
pattern (of Fig. 6-20c) is very close to that of the monopole version of the infinite 
biconical antenna in Fig. 6-15. Measurements with several disk parameters D and 
spacings between the cone 8 showed that the patterns are insensitive to these pa
rameters [18]. 

Nail's optimum design formulas [17] are for B2 "'" Aun5 at the highest operating 
frequency of the antenna and 8« D. For larger values of B2 and 8"'" 0.5B2, it has 
been found that Nail's equations need to be altered when an N-connector is used 
between the skirt and the disk [19]. In this case, 8 = 0.5B2' 2a = 0.33B2, D = 0.75Bh 
L = 1.15AL based on experimental measurements. It has been reported in [19] 
that a VSWR below 1.5: 1 over an octave bandwidth is easily achievable and 
45° < 20k < 75° yields the best results. 
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Figure 6·20 Measured patterns of a diseone antenna for H = 21.3 em, B = 19.3 em, and 
8h = 25°. 

6.4 SLEEVE ANTENNAS 

In Sec. 5.1, we saw that the dipole antenna is very frequency-sensitive and its band
width is much less than the octave bandwidth provided by the antennas studied 
previously in this chapter. However, the addition of a sleeve to a dipole or monopole 
can increase the bandwidth to more than an octave. In this section, we will briefly 
examine a few forms of the sleeve antenna, which incorporates a tubular conductor 
sleeve around an internal radiating element. Emphasis will be placed on practical 
configurations. 

6.4.1 Sleeve Monopoles 

A sleeve monopole configuration is shown in Fig. 6-21a fed from a coaxial trans
mission line. The sleeve exterior acts as a radiating element and the interior of the 
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Figure 6-21 Sleeve monopole configurations: Arrows in (a) indicate polarity when e + 
L :5 Al2. Different current distributions on the center conductor are shown in (b) and (c). 

sleeve acts as the outer conductor of the feed coaxial transmission line. In principle, 
the length of the sleeve may be any portion of the total length of the monopole 
from zero (no sleeve) to where the sleeve constitutes the entire radiating portion 
of the antenna. However, in practice, the sleeve is usually about l to! the height of 
the monopole. The reason for this is apparent from Figs. 6-21b and 6-21c, which 
suggest that the current at the virtual feed point changes only slightly as the overall 
monopole height varies from Al4 to A12. Thus, the impedance remains somewhat 
constant over at least an octave. As for an ordinary monopole with no sleeve, the 
antenna dimensions affect the impedance more than the pattern. 

Consider Fig. 6-21d. The first sleeve monopole resonance occurs at a frequency 
where the monopole length e + L is approximately Al4. Design proceeds by locating 
this first resonance near the lower end of the frequency band, thereby fixing the 
total physical length e + L. The remaining design variable is fI L. It has been found 
experimentally that a value of elL = 2.25 yields optimum (nearly constant with 
frequency) radiation patterns over a 4: 1 band [20]. The value of fI L has little effect 
for e + L :5 Al2 since the current on the outside of the sleeve will have approxi
mately the same phase as that on the top portion of the monopole itself, as suggested 
by the arrows of Fig. 6-21a. However, for longer electrical lengths the ratio elL 
becomes very important and has a marked effect on the radiation pattern, since the 
current on the outside of the sleeve will not necessarily be in-phase with that on the 
top portion of the monopole. Some typical specifications for optimum performance 
are given in Table 6-1. In some applications, the VSWR may be too high, requiring 
a matching network. 

Table 6-1 Specifications for Optimum Pattern 
Design of a Sleeve Monopole 

Pattern bandwidth 4: 1 
e + L Al4 at low end of band 
flL 2.25 
DId 3.0 
VSWR less than 8: 1 
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Figure 6-22 Sleeve dipole configuration and approximate equivalents [21]. 

6.4.2 Sleeve Dipoles 

The sleeve monopole has a counterpart in the sleeve dipole antenna that is shown 
'- -~i,iri Fig. 6-22a. An approximate impedance analysis of the sleeve dipole can be carried 

ohi ~according to Figs. 6-22b and 6-22c where the doubly driven structure of Fig. 
6~22a is replaced by the pair of asymmetrically driven structures in Fig. 6-22b. The 
change in diameters on the longer arms is neglected, resulting in Fig. 6-22c. The 
current at the input to the sleeve (virtual feed) IA(Zf) is then approximately the sum 
of the currents at the point Z = zf from the two configurations in Fig. 6-22c. For 
the left half of Fig. 6-22c, the current at the virtual feed in that asymmetrical struc
ture is Ias(Zf). The current at the same point due to the excitation in the lower half 
of the sleeve dipole (i.e., the right half of Fig. 6-22c) is identical to the current at 
the point -zf when the excitation is at the point zf since the two structures are 
physically equivalent. Thus, 

(6-52) 

The input admittance to the sleeve is then 

Y
A 

= Ias(zj) + Ias(-zj) = Y [1 + Ias(Zf)] 
VA as Ias(-Zj) 

(6-53) . 

where 

(6-54) 

and where Zl is the impedance of a symmetrical antenna of half-length Ll and Z2 
is the impedance of a symmetrical antenna with half-length L2 [21]. Equation (6-54) 
is useful for estimating the impedance of asymmetrical dipoles such as that in Prob. 
5.1-4. 

The sleeve dipole of Fig. 6-22a can be approximated with an open-sleeve dipole 
in which the tubular sleeve is replaced by two conductors close to either side of the 
driven element as shown in Fig. 6-23. The length of the parasites (simulated sleeve) 
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Figure 6-23 The open-sleeve 
dipole antenna with a flat 
reflector shown in front, top, and 

~ .. 
Coaxtal mput side views. 

is approximately one-half that of the center-fed dipole. The open-sleeve dipole, 
which we will describe from an experimental viewpoint, is operated in front of a 
flat reflector, or ground plane [22]. The results are also applicable to sleeve dipoles 
without a flat reflector present. 

The antenna was designed for the 225- to 400-MHz frequency band. The dipole 
to reflector spacing Sd was chosen to be 0.29'\ at 400 MHz to avoid the deterioration 
of the radiation pattern that occurs for larger spacings. All the dimensions required 
for the design of the open-sleeve dipole are given in Table 6-2. These design values 
yield low VSWR over a wide bandwidth. This is illustrated in Fig. 6-24 by a com
parison of the VSWR characteristics of a conventional (unsleeved) dipole and an 
open-sleeve dipole with a diameter D of 2.9 cm. Although these results do not 
represent exhaustive design data for the open-sleeve dipole, they do serve as a 
starting point in the design of open-sleeve dipoles with or without a reflector 
present. 

Table 6-2 Electrical Dimensions of an Open-Sleeve Dipole 
with a Reflector for Lowest VSWR 

Parameter 
(see Fig. 6-23) 

Electrical Dimension 
at Lowest Frequency 

(225 MHz) 

0.026'\ 
0.385,\ 
0.216,\ 
0.0381,\ 
0.163'\ 

Electrical Dimension 
at Highest Frequency 

(400 MHz) 

0.047,\ 
0.684'\ 
0.385,\ 
0.0677,\ 
0.29'\ 
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Frequency (MHz) 

Figure 6-24 Comparison between 
the VSWR response of a 
conventional (unsleeved) 
cylindrical dipole and an open
sleeve dipole both with a diameter 
D of 2.9 em [10]. 

6.S PRINCIPLES OF FREQUENCY-INDEPENDENT ANTENNAS 

Aperture antennas, to be discussed in the next chapter, are capable of bandwidths 
of 2: 1 or more, but the main beam narrows as frequency is increased. Often, it is 
desirable to have the pattern of an antenna remain constant over a very wide range 
of frequencies. An antenna with a bandwidth of about 10: 1 or more is referred to 
as a frequency-independent antenna. The purest form of a frequency-independent 
antenna has constant pattern, iinpedance, polarization, and phase center with fre
quency. Few antennas meet these criteria. The axial mode helix has constant im
pedance and phase center location over a bandwidth of about 2:1, but the main 
beam narrows with increasing frequency. The principles of frequency independence 
are discussed in this section and antennas capable of 10: 1 bandwidth are introduced 
in the next two sections. 

The biconical antenna represents the emergence of frequency-independent be
havior. In Sec. 6.3, we found that the input impedance and pattern of the infinite 
biconical antenna were independent of frequency. TIlls is precisely the behavior we 
desire. The feature of the biconical structure that is responsible for frequency in
dependence is the emphasis on angles and the complete avoidance of finite lengths. 
This is verified by the observation that when the bicone is truncated to form the 
finite biconical anterina of Fig. 6-17, its bandwidth is limited. Of course, in general, 
if no finite lengths are present on an antenna, the structure would have to be infinite. 
Rumsey [23] noted that, in practice, frequency-independent antennas are designed 
to minimize finite lengths and maximize angular dependence. The concept of 
angle emphasis has been exploited to produce a family of frequency-independent 
antennas. 

There is another property in addition to angle emphasis that leads to fre
quency-independent behavior, that of self-complementarity. Consider a metal an
tenna with input impedance Zmetal' A dual structure can be formed by replacing the 
metal with air and replacing air with metal. The resulting complementary antenna 
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has input impedance Zair' Complementary antennas are similar to a positive and 
negative in photography. An example is a ribbon dipole and its complement, the 
slot antenna, shown in Fig. 6-25. 

Babinet's principle can be used to find the impedance of complementary anten
nas. Babinet's principle for optics states that a source of light behind complementary 
thin conducting sheets produces lit regions on the source-free side that when su
perposed give a completely lit region, just as would exist without the sheets present. 
Extending this to electromagnetics leads to the following important relationship for 
the input impedances of complementary antennas [24, p. 16]: 

-rf (376.7)2 
ZmetalZair = "4 = 4 = 35,475.7 n (6-55) 

This assumes that no dielectric or magnetic materials are present; if so, the proper 
TI must be used in place of the free-space value. If the dipole of Fig. 6-25a is reso
nated by reducing its length slightly below a half-wavelength, its impedance is 
Zmetal = Zdipole = 70 n. Then from (6-55), the impedance for the slot antenna of 
Fig. 6-25b, Zain is 

Z - -rf = 35,475.7 = 5068 n 
slot - -4Z--'-- 4(70) . dipole 

half-wave slot antenna (6-56) 

Problem 6.5-2 addresses the slot that is complementary to the ideal dipole. 
The product of the impedances of two complementary antennas is the constant 

-rf/4. If the antenna is its own complement, frequency-independent impedance be
havior is achieved. This is the self-complementary property, in which the antenna 
and its complement are identical. A self-complementary structure can be made to 
exactly overlay its complement through translation and/or rotation. The value of 
impedance follows directly from (6-56), as noted by Mushiake [24]: 

TI 
Zmetal = Zair = 2" = 188.5 n self-complementary antenna (6-57) 

The frequency-independent impedance of (6-57) is the second design principle for 
frequency-independent antennas; that is, self-complementary antennas tend to be 
frequency-independent. It turns out, however, that many antennas that are not self
complementary still have small impedance variations with frequency. 

(a) Ribbon dipole (b) Slot antenna Figure 6·25 Complementary dipole and slot antennas. 
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Our study of the antennas in this chapter has led to a number of characteristics 
that are likely to produce broadband behavior. Before moving on to antenna types 
that yield extremely wide bandwidth in the following sections, we summarize these 
properties. The characteristics that yield broadband behavior are: 

1. Emphasis on angles rather than lengths. Examples are the helix in Sec. 6.2 
and the spiral in Sec. 6.6, which both avoid fixed physical length elements and 
produce wide bandwidth. 

2. Self-complementary structures. The equiangular spiral of Fig. 6-27 is an ex
ample. 

3. Thick metal-',/atter is better." Increasing the wire diameter of even resonant 
antennas such as a dipole widens its bandwidth; see Fig. 5-7. The biconical 
antenna is the ultimate fat dipole and has wide bandwidth; the biconical an
tenna also emphasizes angles. The bow-tie antenna of Fig. 6-32 is another 
example. 

Ideally, frequency-independent antennas should display all three of these prop
erties. It is found in practice that successful wide bandwidth designs emphasize these 
properties, but in many cases strict adherence is not required. For example, we will 
see in Sec. 6.7 that some log-periodic antennas deviate from the self-complementary 
principle and still have wide bandwidth. The usual penalty for doing this is that the 
impedance will vary with frequency and not be constant as predicted with (6-57). 
This may not be a serious problem in many applications. 

A distinguishing feature of frequency-independent antennas is their self-scaling 
behavior. Most radiation takes place from that portion of the frequency-indepen
dent antenna where its width is a half-wavelength or the circumference is one wave
length-the so-called active region. Radiation is maximum perpendicular to the 
plane of the structure and can be explained in a fashion similar to the one-wave
length loop discussed Sec. 5.7. As frequency decreases, the active region moves to 
a larger portion of the antenna, where the width is a half-wavelength. The charac
teristics of angle emphasis and using thick metal yield structures that provide regions 
where the current can adjust as the frequency changes. 

Frequency-independent antennas can be divided into two types: spiral antennas 
and log-periodic antennas. Spirals are discussed in the next section and log-periodics 
are treated in the following section. 

6.6 SPIRAL ANTENNAS 

Spiral antennas and their variations are usually constructed to be either exactly or 
nearly self-complementary. This yields extremely wide bandwidth, up to 40: 1. His
torically, the equiangular spiral was invented first, so we begin our discussions with 
it [25,26]. 

6.6.1 Equiangular Spiral Antenna 

The equiangular spiral curve shown in Fig. 6-26 is represented by the generating 
equation 

(6-58) 

where ro is the radius for cf> = 0 and a is a constant controlling the flare rate of the 
spiral. The spiral of Fig. 6-26 is right-handed. Left-handed spirals can be generated 
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Figure 6-26 Equiangular spiral curve with, = 

'oe'''' and '0 = 0.311 em and a = 0.221. 

using negative values of a, or by simply turning over the spiral of Fig. 6-26. The 
equiangular spiral curve is used to create the antenna of Fig. 6-27, which is referred 
to as the planar equiangular spiral antenna. The four edges of the metallic region 
each have an equation for their curves of the form in (6-58). In particular, edge no. 
1 is exactly that of Fig. 6-26, so r1 = roea</>. Edge no. 2 has the same spiral curve but . 
rotated through the angle 8, so r2 = roea(</>-6). The other half of the antenna has 
edges that make the structure symmetric; that is, rotating one spiral arm by one
half tum brings it into congruence with the other arm. So, r3 = roea(</>-'lT) and r4 = 
roea(</>-'lT-6). The structure of Fig. 6-27 is self-complementary, so 8 = 1T/2. It does 
not have to be constructed this way, but pattern symmetry is best for the self
complementary case. 

The impedance, pattern, and polarization of the planar equiangular spiral antenna 
remain nearly constant over a wide range of frequencies. The feed point at the 
center, the overall radius, and the flare rate affect the performance. The flare rate 
a is more conveniently represented through expansion ratio e, which is the increase 
factor of the radius for one tum of the spiral: 

r(l/J + 21T) roea(</>+2'IT) 
e = = = ea2'IT (6-59) 

r( l/J) roea</> 

A typical value for e is 4, and then from (6-59), a = 0.221. The frequency at the 
upper end of the operating band fu is determined by the feed structure. The min-

Figure 6-27 Planar equiangular spiral 
antenna for the self-complementary case 
with 8 = 90°. 
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imum radius ro is about a quarter-wavelength at iu for an expansion ratio 8 of 4 
[23]. A nearly equivalent criterion is a circumference in the feed region of 2'1Tro = 
Au = diu. Of course, the spiral terminates at this point and is connected to the feed 
transmission line. The low-frequency limit is set by overall radius R, which is roughly 
a quarter-wavelength at h. Alternatively, the circumference of a circle just enclos
ing the spiral can be used to set the low-frequency limit through C = 2'1TR = AL • 

Spirals with one-half to three turns have been found experim~ntally to be rela
tively insensitive to the parameters a and 8 [25]. One and one-half turns is about 
optimum. For example, again consider a one and one-half tum spiral with a = 0.221 
as shown in Fig. 6-27. Each edge curve is of the form in (6-59), so the maximum 
radius is R = r(4) = 3'1T) = roeO.221

(3'IT) = 8.03ro. This equals AL I4, where AL is the 
wavelength at the lower band edge frequency. At the feed point, r = r( 4> = 0) = 
roeo = ro, and this equals Aul4 where Au is the wavelength at the upper band edge. 
The bandwidth is then iu1h = AL1Au 0= ALI4/Aul4 = 8.03. This 8:1 bandwidth is 
typical; however, bandwidths of 40: 1 can be obtained. 

Based on (6-57), the self-complementary equiangular spiral should have an input 
impedance value of 188.5 + jO!l. In practice, the measured impedance values tend 
to be lower than this (about 120 + jO 0.), due to the finite thickness of the metal
lization and the presence of the coaxial feed line that is wound along one arm toward 
the feed at the center [25]. A feed of this type is referred to as an infinite balun. 
The balance function arises because any currents that are excited on the outside of 
the coax travel out from the feed point at the center, acting essentially like the 
currents on the arm and radiating upon reaching the active region. To maintain 
symmetry, a dummy coax is often attached to the second arm. 

The radiation pattern of the self-complementary planar equiangular spiral an
tenna is bidirectional with two wide beams broadside to the plane of the spiral. The . 
field pattern is approximately cos () when the z-axis is normal to the plane of the 
spiral. The half-power beamwidth is, thus, approximately 90°. The polarization of 
the radiation is close to circular over wide angles, out to as far as 70° from broadside. 
The sense of the polarization is determined by the sense of the flare of the spiral. 
For example, the spiral of Fig. 6-27 radiates in the right-hand sense for directions 
out of the page and left-hand sense for directions into the page. 

6.6.2 Arcbimedean Spiral Antenna 

Another form of the planar spiral is the Archimedean spiral antenna shown in Fig. 
6-28. This antenna, as are many spiral antennas, is easily constructed using printed 
circuit techniques. The equation of the two spirals in Fig. 6-28 are 

r = ro4> and (6-60) 

The Archimedean spiral is linearly proportional to the polar angle rather than an 
exponential for the equiangular spiral, and thus flares much more slowly. 

The simple geometry of the Archimedean spiral antenna affords an opportunity 
to explain an important operating principle in frequency-independent antennas. 
This is the "band" description of radiation that is characterized by an acti~ region 
responsible for radiation. Between the feed point of a frequency-independent an
tenna and the active region, currents exist in a transmission line mode and fields 
arising from them cancel in the far field. The active region occurs on that portion 
of the antenna that is one wavelength in circumference for curved structures or has 
half-wavelength-long elements in antennas with straight wires or edges. Beyond the 
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Figure 6-28 .The Archimedean spiral 
antenna. The outside circumference in this 
case is one-wavelength and, thus, is the 
active region. The inset is a vector 
diagram for the radiated electric fields, 
showing that the outward radiation is left
hand circularly polarized. 

active region, currents are small, having lost power to radiation in the active region. 
The antenna effectively behaves as if it is infinite in extent. Of course, the active 
region moves around the antenna with frequency. Since the geometry of a spiral is 
smooth, as frequency is reduced and the active region shifts to locations farther out 
on the spiral, the electrical performance remains unchanged. Hence, self-scaling 
occurs and frequency-independent behavior results. 

We now give a physical explanation of how spiral antennas operate using Fig. 
6-28. The arms are fed 180° out-of-phase at points FI and Fz. This is represented 
with oppositely directed current arrows. The current is inward for arm no. 1 (-) 
and outward for arm no. 2 (+). The lengths of the arms out to A, FIAI and FzAz, 
are equal so the phase shifts from the feed to A are identical, preserving the current 
directions as shown in Fig. 6-28. The active region where the circumference is one 
wavelength contains points labeled with an A or B. It can be assumed that the 
current magnitudes over this region are nearly the same. The phase, however, shifts 
as the traveling waves progress along the arms. Since the circumference is electri
cally large in the active region, phase must be accounted for. The phase shifts 180° 
between Al and Ai and between A z and Ai, because of the Al2 differential path 
length. Adjacent points on different arms (AI> Ai, and A z, AD are now in-phase 
because the 180° phase shift counters the direction reversal introduced by the 
half-turn. In addition, the points opposite these pairs are in-phase; that is, AI> A2 
are in-phase with A z, A i. This in-phase condition leads to reinforcement of electric 
fields in the broadside direction, giving a radiation maximum. Interior to the active 
region, the electrical distance along different arms to adjacent points is not electri
cally large, preserving the antiphase condition due to the excitation. This is a trans
mission line mode and radiation is low. Often, resistive loads are added to the ends 
of the spiral to prevent reflection of the remaining traveling waves. 

The final aspect that requires explanation is the circular polarization property. In 
the active region, points that are one-quarter turn around the spiral are 90° out
of-phase. For example, the phase at point Cllags that at point Bl by 90°. In addition, 
the currents are orthogonal in space. The current magnitudes are also nearly equal. 
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Thus, all conditions are satisfied for circular polarized radiation: The radiated fields 
(created by the currents) are orthogonal, equal in magnitude, and 90° out-of-phase. 
As indicated by the vector diagram insert in Fig. 6-28, the wave is left-hand circular 
polarized. The left-hand sense results from the left-hand winding of the spiral. This 
is for radiation out of the page. Viewed from the other side of the page, the spiral 
is right-hand wound and thus produces RHCP. 

Based on the above discussion, it is apparent that the spiral produces a broad 
main beam perpendicular to the plane of the spiral. Most applications require a 
unidirectional beam. This is created by backing the spiral with a ground plane. The 
most common construction approach is to use a metallic cavity behind the spiral, 
forming a cavity-backed Arcbimedean spiral antenna. This introduces a fixed phys
icallength (the distance to the ground plane), thereby altering the true frequency
independent behavior. This is corrected in most commercial units by loading the 
cavity with absorbing material to reduce resonance effects; this, however, introduces 
loss. Typical performance parameter values for the cavity-backed Archimedean spi
ral are HP = 75°, IARI = 1 dB, G = 5 dB over a 10:1 bandwidth or more. The 
input impedance is about 120 n, and is nearly real. The performance of the equi
angular spiral is similar to that for the Archimedean spiral. 

Very wideband antennas such as spirals are balanced structures. They are nor
mally connected to a coaxial cable, which is an unbalanced structure. Therefore, a 
balun must be included with the spiral feed; see Sec. 5.3 for discussions of balun 

(a) The spiral (reduced in size). 

(b) Radiation patterns: measured (dashed curve) and 
computed (solid curve) using coss.8(O.53 6). 

Figure 6-29 A 4: 1 bandwidth cavity-backed Archimedean spiral antenna. 
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principles. One such wideband balun is the tapered-coax wideband balun that is 
formed by gradually cutting away the outer conductor of the coaxial cable, leaving 
a parallel wire line to attach to the spiral arms [27] as shown in Fig. 5-27b. 

The pattern of the cavity-backed Archimedean spiral can be modeled by the 
following empirically derived function [28]: 

F(fJ) = coss.8(0.53 fJ) (6-61) 

This pattern model has HP = 74°. Figure 6-29a shows an experimental model that 
has a diameter of 5.4 cm. This corresponds to a low-frequency cutoff of h = ciA = 
clTrD = 3011r5.4 = 1.77 GHz. The measured patterns are shown in Fig. 6-29b for 
three frequencies: 2.5 (slightly above cutoff), 5, and 10 GHz. Also plotted is the 
pattern model of (6-61). Note that the pattern remains nearly constant over a 4:1 
bandwidth, characteristic of frequency-independent antennas. The test antenna pat
terns in Fig. 9-15 are for an Archimedian spiral. 

6.6.3 Conical Equiangular Spiral Antenna 

Nonplanar forms of spiral antennas are used to produce a single main beam, thereby 
avoiding a backing cavity. For example, the planar equiangular spiral antenna con
formed to a conical surface forms the conical equiangular spiral antenna shown in 
Fig. 6-30. The equation for a conical equiangular spiral curve is 

(6-62) 

The planar spiral is a special case of this with fJh = 90°. The equations for the edges 
of one spiral of metal are that of (6-62) for rI' and r2 = e(asin8h)(~-/l), and 8 = 1T12 
for the self-complementary case. The other spiral arm is produced by a 180° rotation. 
The edges of the arms maintain a constant angle a with a radial line for any cone 
half-angle fJh [23]: 

a = cot a (6-63) 

The conical equiangular spiral antenna has a single main beam that is directed 
off the cone tip in the - z-direction. A self-complementary shape yields the best 

z Figure 6-30 The conical equiangular spiral antenna. 
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radiation patterns. Typical patterns for ()h :S 15° and a about 70° have a broad main 
beam with a maximum in the () = 180° direction and a half-power beamwidth of 
about 80°. Since the structure is rotationally symmetric, the pattern is also nearly 
rotationally symmetric. The polarization of the radiated field is very close to circular 
in all directions, with the sense determined by the sense of the spiral winding. How
ever, the polarization ellipticity increases with the off-axis angle. 

The impedance [23] can be approximated by the relation 

Zo "" 300 - 1.55(degrees) 0. (6-64) 

where 5(degrees) is the angle 5 of Fig. 6-30 in degrees. For the self-complementary 
case, 5 is 90° and from (6-61) Zo "" 1650., which is close to the 188.5-0. theoretical 
value of (6-57). The impedance is not affected significantly by ()h or a. 

The design of the conical equiangular spiral antenna is rather simple and proceeds 
as follows [29]. The upper frequency Iv of the operating band occurs when the 
truncated apex diameter is a quarter-wavelength; that is, AJ4. The lower band edge 
frequency I L is determined by the base diameter B and occurs for B = 3Ad8. ()h is 
usually less than 15° and a about 70°. For ()h = 10° and a = 73°, the front-to-back 
ratio is 15 dB and the polarization axial ratio on the axis is below 3 dB. 

6.6.4 Related Configurations 

Spiral antennas can be operated in other than the fundamental odd mode described 
above, where the feed point terminals are excited in antiphase. Higher-order modes 
are possible and have an active region where the circumference is an odd multiple 
(3,5, ... ) of a wavelength. Even modes can be created by feeding the arms in-phase, 
leading to a null broadside to the spiral. This pattern is useful in direction finding 
(DF) [30]. 

Square versions of the planar Archimedean spiral offer size reduction of 22%. 
This is based on the increase in perimeter from '1TD to 4D. See [31] for discussions 
of square spirals as well as other variations of the spiral antenna. 

A broadband antenna that is related to the spiral is the sinuous antenna [32]. As 
can be seen from Fig. 6-31, the sinuous antenna is more complicated than the spiral 
antenna. However, it offers more flexible polarization uses. Two opposite arm pairs 
produce orthogonal linear polarizations. These pairs can be used separately for 
polarization diversity or for transmit/receive operation. Or, the two-arm-pair out-

Figure 6-31 The sinuous antenna. _ 
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puts can be combined to produce simultaneous LHCP and RHCP. The operating 
principles are very similar to those for the planar spirals. 

6.7 LOG·PERIODIC ANTENNAS 

The spiral antennas of the previous section illustrate the principle that emphasis on 
angles will lead to a broadband antenna. Although spiral antennas are not complex 
structures, construction would be simplified if simple geometries, involving circular 
or straight edges, could be utilized. Antennas of this type are discussed in this sec
tion. To see how the ideas develop, first consider the bow-tie antenna (also called 
the bifin antenna) of Fig. 6-32. It is the planar version of the finite biconical antenna 
(see Fig. 6-17). It has a bidirectional pattern with broad main beams perpendicular 
to the plane of the antenna. It is also linearly polarized. The bow-tie antenna is used 
as a receiving antenna for UHF TV channels, frequently with a wire grid ground 
plane behind it to reduce the back lobe. Since currents are abruptly terminated at 
the ends of the fins, the antenna has limited bandwidth. As we shall see shortly, by 
modifying the simple bow-tie antenna as shown in Fig. 6-33, the currents will then 
die off more rapidly with distance from the feed point. The introduction of peri
odically positioned teeth distinguishes this antenna as one of a broad class of log
periodic antennas. A log-periodic antenna is an antenna having a structural geom
etry such that its impedance and radiation characteristics repeat periodically as the 
logarithm of frequency. In practice, the variations over the frequency band of op
eration are minor, and log-periodic antennas are usually considered to be frequency
independent antennas. 

Most of the work on frequency-independent antennas took place at the University 
of Illinois in the late 1950s and the 1960s [33]. A series of antennas were developed 
through many experiments. (For an excellent historical discussion of this evolution, 
see [34].) Several geometries were examined, and those that produced broadband 
behavior led to the determination of the properties necessary for wide bandwidth. 

Frequency-independent spiral antennas were discussed in the previous section. 
In this section, we outline the development of the log-periodic antenna family. The 
metamorphosis of the log-periodic produced the log-periodic dipole antenna, which 
is made up of only straight wire segments. 

One of the first log-periodic antennas was the log-periodic toothed planar antenna 
shown in Fig. 6-33. It is similar to the bow-tie antenna except for the teeth. The 
teeth act to disturb the currents that would flow if the antenna were of bow-tie-type 
construction. Currents flow out along the teeth and, except at the frequency limits, 

Figure 6-32 The bow-tie antenna. 
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I 
I 

I 

Figure 6·33 Log-periodic toothed planar antenna (self-complementary). Midband currents 
shown on top half only. 

are not significant at the ends of the antenna. The rather unusual shape of this 
antenna is explained by examining the planar equiangular spiral antenna. Along a 
radial line from the center of the spiral, the positions of the far (or near) edges of 
a conductor from (6-45) are 

r n = r( cf> + n2?T) = roea(<I>+n27T) 

The ratio of the n + lth position to the nth position is 

(6-65) 

(6-66) 

which is the expansion ratio of (6-59). This is a constant, and thus the distances (or 
period) of the edges are of constant ratio for the planar spiral. For the structure of 
Fig. 6-33, the ratio of edge distances is also a constant and is given by the following 
scale factor: 

(6-67) 

The slot width is expressed by 

(6-68) 

These relations are true for any n. The parameter T gives the period of the structure. 
We would thus expect periodic pattern and impedance behavior with the same 
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period. In other words, if frequencies fn+1 and fn from adjacent periods lead to 
identical performance, then 

fn -- = 'T 
fn+1 ' 

fn < fn+1 (6-69) 

Forming f n +1 = f niT from this equation and taking the logarithm of both sides, we 
have 

log fn+1 = log fn + log(l/T) (6-70) 

Thus, the performance is periodic in a logarithmic fashion and, hence, the name 
log-periodic antenna. All log-periodic antennas have this property. 

If the teeth sizes of the log-periodic toothed planar antenna are adjusted properly, 
the structure can be made self-complementary. From Fig. 6-33, we see that in gen
eral (whether self-complementary or not) 

y + /3 = 1800 and /3 + 28 = a (6-71) 
-
If t1!e structure is self-complementary (as shown), 

a=y and /3=8 (6-72) 

Substituting (6-72) into (6-71) yields a + /3 = 1800 and /3 + 2/3 = a. Solving these 
two equations gives 

and (6-73) 

for a self-complementary log-periodic toothed planar antenna. As we saw in the 
previous section, an antenna that is self-complementary tends to be broadband and 
has an input impedance of 188.5 O. 

If the widths of the teeth and gaps are equalized, u = anlRn = Rn +1/an. Using 
(6.-67) and solving for u give 

(6-74) 

This relationship and the self-complementary feature are popular in practice. 
The properties of the log-periodic toothed planar antenna depend on T. It has 

been found experimentally that the half-power beamwidth increases with increasing 
values of T [23], increasing from about 300 at T = 0;2 to about 750 at T = 0.9. The 
pattern has two lobes with maxima in each normal direction to the plane of the 
anteima. The radiation is linearly polarized parallel to the teeth edges. This is per
pendicular to what it would be if there were no teeth (8 = 0), in which case the 
antenna would be a bow tie. The fact that transverse current flow dominates over 
radial current flow is significant. Most of the current appears on teeth that are about 
a quarter-wavelength long (the active region). This, we have seen, is key to achieving 
wide bandwidths. The frequency limits of operation are set by the frequencies where 
the largest and smallest teeth are a quarter-wavelength long. 

The log-periodic toothed planar antenna should have a performance (impedance 
and pattern) that repeats periodically with frequency with period T given by (6-67). 
The self-complementary version of the antenna, although not producing frequency
independent operation, does lead to performance that does not vary greatly for 
frequencies between periods, that is, for f n < f < f n + 1. In fact, measurements have 
produced nearly identical patterns over a 10: 1 bandwidth [23]. 
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The log-periodic toothed wedge antenna of Fig. 6-34 is a unidirectional pattern 
form of its planar version in Fig. 6-33, in which the included angle rjI is 180°. A single 
broad main beam exists in the +z-direction. The patterns are nearly frequency
independent for 30° < rjI < 60°. The polarization is linear and y-directed for an 
on-axis radiation, as indicated in Fig. 6-34. There is a small cross-polarized com
ponent (x-directed) arising from the radial current mode, as found in a biconical 
antenna. Typically, this cross-polarized component is 18 dB down from the copo
larized (y-directed) component on-axis, indicating a strong excitation of the trans
verse current mode associated with frequency-independent behavior. The band
width of the wedge version is similar to the sheet version, but the input impedance 
is reduced for decreasing rjI. For the planar case (rjI = 180°), the self-complementary 
antenna, which should have an impedance of 188.5 n, has an impedance of about 
165 n, whereas the wedge form with rjI = 30° has a 70-n impedance. As rjI is de
creased, the impedance variation over a period of the structure (frequency ratio of 
T) increases. For example, a 3: 1 variation occurs for rjI = 60° relative to the geo
metric mean [23]. 

From a construction standpoint, it would be desirable if the toothed antennas 
could be made with straight edges. This simplification of the structure turns out to 
be of little consequence in the performance of the antenna. This is another major 
step in the development of the log-periodic antenna. As an example, if the tooth 
edges of the log-periodic toothed planar antenna in Fig. 6-33 are replaced by straight 
edges, the log-periodic toothed trapezoid antenna of Fig. 6-35 results. The perfor
mance of this antenna is similar to its curved edge version in Fig. 6-33. A log-periodic 
toothed trapezoid wedge antenna can be formed by bending the planar version into 
a wedge, creating an antenna similar to that of Fig. 6-34. In fact, the patterns of the 
two wedge forms (curved edge and trapezoid) are similar, but the trapezoid version 
has better impedance performance with only about a 1.6: 1 variation over a period 
for rjI = 60° [23]. 

The solid metal (or sheet) antennas we have described are practical for short 
wavelengths, but for low frequencies the required structures can become rather 
impractical. It turns out that the sheet antennas can be replaced by a wire version 
in which thin wires are shaped to follow the edges of the sheet antenna. An example 
of this major structural simplification is that of Fig. 6-360, which is the wire version 
of Fig. 6-35. This log-periodic trapezoid wire antenna can also be bent at the apex 
to form a wedge that produces a unidirectional pattern. The log-periodic trapezoid 

x 

i!IIJ!f1}----+---z 

y 
Figure 6-34 Log-periodic toothed wedge 
antenna. 
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Figure 6-35 Log-periodic toothed trapezoid antenna. 

wedge wire antenna has a performance similar to its sheet version. Measurements 
for a wedge angle'" = 45° have yielded E- and H-plane half-power beamwidths of 
66°, a gain of 9.2 dB, and a front-to-back ratio of 12.3 dB. The average input im
pedance has been measured as 110 n with a VSWR of 1.45 over a 10:1 band [35]. 
As with other wedge log-periodics, the main beam maximum is straight off the apex 
and the radiation is linearly polarized. 

Other even simpler log-periodic wire antennas exist in both planar and wedge 
shapes. The log-periodic zig-zag wire antenna of Fig. 6-36b is an example. 

The final phase in this metamorphosis of log-periodic antennas is the use of only 
parallel wire segments. This is the log-periodic dipole array of Fig. 6-37 [36, 37]. 
The log-periodic dipole array (LPDA) is a series-fed array of parallel wire dipoles 
of successively increasing lengths outward from the feed point at the apex. Note 
that the interconnecting feed lines cross over between adjacent elements. This can 
be explained by noting that the LPDA of Fig. 6-37 resembles the toothed trapezoid 
of Fig. 6-35 when folded on itself, making a wedge with zero included angle. The 
two center fins of metal then form a parallel transmission line with the teeth coming 
out from them on alternate sides of the fins. This alternate arm geometry occurs for 
all wedge log-periodic antennas. 

A particularly successful method of constructing an LPDA is shown in Fig. 6-38. 
A coaxial transmission line is run through the inside of one of the feed conductors. 

Figure 6-36 Log-periodic wire antenna 
(a) Trapezoid (b) Zig-zag configurations. 
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-- ----r 

--1 ---- Figure 6-37 Log-periodic dipole 
array geometry. 

The outer conductor of the coax is attached to that conductor and the inner con
ductor of the coax is connected to the other conductor of the LPDA transmission 
line. 

As shown in Fig. 6-37, a wedge of enclosed angle a bounds the dipole lengths. 
The scale factor T for the LPDA is 

T = Rn+1 < 1 
Rn 

Right triangles of enclosed angle al2 reveal that 

a Lnl2 Ln+1/2 tan- = -- = ---
2 Rn Rn+l 

Thus, 

Ll Ln Ln+l LN -= ... =-=--= ... =-
Rl 

Using this result in (6-75) gives 

Rn+l Ln+l T=--=--
Rn Ln 

(6-75) 

(6-76) 

(6-77) 

(6-78) 

Thus, the ratio of successive element positions equals the ratio of successive dipole 
lengths. 

Feed point 

Figure 6·38 Construction details of the log-periodic 
dipole array. 
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The spacing factor for the LPDA is defined as 

dn 
u= 2L 

n 

where the element spacings as shown in Fig. 6-37 are given by 

But Rn+l = TRn, so 

dn = Rn - TRn = (1 - T)Rn 

From (6-76), Rn = Ln/2 tan(a/2). Using this in (6-81) yields 

dn = (1 - T) 2 ta~(a/2) 
Substituting this in (6-79) gives 

dn 1 - T 
u=-= 

2Ln 4 tan(a/2) 

or, 

(
1 - T) a = 2 tan-l ~ 

Combining (6-83) with (6-78), we note that all dimensions are scaled by 

Rn+l Ln+l dn+1 T=--=--=--
Rn Ln dn 

(6-79) 

(6-80) 

(6-81) 
\ 

(6-82) 

(6-83) 

(6-84) 

(6-85) 

As we have seen with other log-periodic antennas, there is also an active region 
for the LPDA, where the few dipoles near the one that is a half-wavelength long 
support much more current than do the other radiating elements. It is convenient 

. to view the LPDA operation as being similar to that of a Yagi-Uda antenna. The 
longer dipole behind the most active dipole (with largest current) behaves as a 
reflector and the adjacent shorter dipole in front acts as a director. The radiation is 
then off of the apex. The wedge enclosing the antenna forms an arrow pointing in 
the direction of the main beam maximum. 

As the operating frequency changes, the active region shifts to a different portion 
of the antenna. The frequency limits of the operational band are roughly determined 
by the frequencies at which the longest and shortest dipoles are half-wave resonant, 
that is, 

and L "'" Au 
N 2 (6-86) 

where AL and Au are the wavelengths corresponding to the lower and upper fre
quency limits. Since the active region is not confined completely to one dipole, often 
dipoles are added to each end of the array to ensure adequate performance over 
the band. The number of additional dipoles required is a function of 'T and u [38,39]. 
But for noncritical applications, (6-86) is sufficient. 

The pattern, gain, and impedance of an LPDA depend on the design parameters 
T and u. Since the LPDA is a very popular broadband antenna of simple construc
tion, low cost, and light weight, we will give the design details and illustrate them 
by examples. Gain contours are plotted in Fig. 6-39 as a function of 'T and u [37]. 
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Figure 6·39 Gain of a log-periodic dipole array. {Contours (top) adapted from Carrel [37]. 
Maximum gain curve (bottom) derived from data in [38]}. 

Note that high gain requires a large value of T, which means a very slow expansion, 
that is, a LPDA of large overall length. Gain is only slightly affected by the dipole 
thickness. It increases about 0.2 dB for a doubling of the thickness [23]. Gain is also 
affected by the feeder impedance [38] and tends to decrease as the feeder impedance 
is increased above 100 n. 

Figure 6-39 (top portion) shows the variation in gain of an LPDA with u and T. 

The curves are a modification of those originally presented by Carrel [37] that have 
been found to have a gain that is erroneously high [38,40,41]. In [42], Carrel's 
curves are reduced uniformly by 1 dB and in [43] uniformly by 1.5 dB: Based on 
data in [38,41, 44], it appears that Carrel's original curves were more in error (for 
gain) for lower values of Tthan for higher values. Thus, the ll-dB and 6-dB contours 
in Fig. 6-39 are 1 dB and 2 dB lower, respectively, than those in Carrel. 

The bottom portion of Fig. 6-39 shows a gain curve that is derived from data in 
[38] where N, the number of dipoles, varies from 12 to 47 (unlike Carrel's modified 
contours above for which N = 8). Notice that the value of Gmax is greater than the 
value of the gain contour at the optimum u line in the top portion of Fig. 6-39. The 
Gmax vs. T curve probably represents an upper bound on the LPDA gain that can 
be achieved in practice for feeder impedances of 100 n or greater. 

Further details on the design and calculations for the LPDA are available in the 
literature [38-41,43]. Also, the LPDA can be constructed in a size-reduced form 
or by using printed circuit techniques [46-49]: 

Optimum Design of a 54· to 216·MHz Log-Periodic Dipole Antenna 

It is desired to have an antenna that operates over the entire VHF-TV and PM broadcast 
bands, which span the 54- to 216-MHz frequency range for a 4:1 bandwidth. Suppose the 
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design gain is chosen to be 6.5 dB. The corresponding values of 'T and u for optimum design 
from Fig. 6-39 are 

'T = 0.822 and u = 0.149 (6-87) 

Then from (6-84), we have 

_ _1[1 - 0.822J _ ° 
a - 2 tan 4(0.149) - 33.3 (6-88) 

The length of the longest dipole is determined first. At the lowest frequency of operation 
(54 MHz), the dipole length from (6-86) should be near a half-wavelength, so 

L1 = O.5AL = 0.5(5.55) = 2.78 m (6-89) 

The shortest dipole length should be on the order of Lu = 0.5Au = 0.694 m at 216 MHz. 
The LPDA element lengths are computed until a length on the order of 0.694 m is reached. 
To be specific, element lengths are found from L1 using Ln+l = 'TLn. For example, 

L2 = 'TL1 = (0.822)(2.78) = 2.29 m 

and 

L3 = 'TL2 = (0.822)(2.29) = 1.88 m 

Completing this process leads to 

L1 = 2.78 m, 

Ls = 1.27 m, 

L9 = 0.579 m 

L2 = 2.29 m, 

L6 = 1.04 m, 

L3 = 1.88 m, 

L7 = 0.858 m, 

L4 = 1.54 m 

Ls = 0.705 m (6-90) 

The array was terminated with nine elements since L9 = 0.579 m is less than the 0.694 m 
length for the highest operating frequency. Elements could be added to either end to improve 
performance at the band edges. 

The element spacings for this example are found from (6-83) as 

dn = 2uLn = 2(0.149)Ln = 0.298Ln 

Using the element lengths of (6-90) gives 

d1 = 0.828 m, d2 = 0.682 m, d3 = 0.560 m, 

ds = 0.378 m, d6 = 0.310 m, d7 = 0.256 m, 

d4 = 0.459 m 

ds = 0.210 m 

(6-91) 

(6-92) 

These dipole lengths and spacings completely specify the LPDA, as shown in Fig. 6-37. The 
total length of the array is the sum of the spacings in (6-92), which gives a 3.683 m. The 
outline of the antenna fits into an angular sector of angle a = 33.3°. 

Characteristics of a 200- to 600-MHz LPDA 

In this example, we examine the gain, pattern, impedance, and current distribution of a 
LPDA as a function of frequency. Suppose it is to be constructed for operation over the 200-
to 6oo-MHz band. For optimum performance and a design goal of 9 dB gain, we see from 
Fig. 6-39 that 'T = 0.917 and u = 0.169. The lowest frequency of operation (200 MHz) has a 
wavelength of AL = 1.5 m, so the first element has a length of L1 = Ad2 = 0.75 m. The length 
of the shortest element should be on the order of a half-wavelength at 600 MHz, and 
Aul2 = 0.500 ml2 = 0.250 m. Using the design techniques illustrated in the previous example 
and four extra elements at the narrow end gives the 18-element LPDA shown in Fig. 6-40. 
(The antenna geometry details are left as a problem.) 

The LPDA of Fig. 6-40 was modeled using the computer techniques of Sec. 10.10.2. The 
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Figure 6-40 An optimum log-periodic dipole antenna for operation in the 200- to 600-MHz 
band (Example 6-3). (Top) Voltage distribution on the 83-0 transmission line. (Middle) 
The geometry. (Bottom) Relative dipole terminal current amplitudes. 

resulting dipole terminal currents at the band edges and one midway frequency are shown 
in Fig. 6-40. Also shown are the voltage amplitude distributions on the transmission line. 
These currents and voltages illustrate the active region behavior we have mentioned several 
times. For example, at 200 MHz there are three dipoles with strong currents on them and a 
total of five with significant currents. This is also true for other frequencies in the operating 
band, with the active region shifted to some other portion of the antenna as seen in Fig. 6-40. 
At the high-frequency limit, element 14 is about a half-wavelength long and the extra four 
elements provide support for the active region at 600 MHz. 

The gain, pattern, and impedance behavior as a function of frequency are shown in Fig. 
6-41. At 150 MHz, the gain is considerably less than the 9-dB design value due to the large 
back lobe. Also, the input impedance has a substantial imaginary part. This inferior perfor
mance is, of course, caused by insufficient antenna length required for proper support of the 
active region at that frequency. At the lower band edge of 200 MHz, however, the pattern 
has little back radiation, the gain is approaching the design goal, and the input impedance 



6.7 Log-periodic Antennas 269 

has a small imaginary part. Similarly, at 650 MHz the performance is only slightly inferior to 
that at the upper band edge of 600 MHz because of the added elements. At intermediate 
frequencies between the band edges, the gain, pattern, and impedance remain reasonably 
constant, indicating frequency-independent behavior. Figures 6-41c and 6-41d are typical of 
intermediate frequencies. The fact that the calculated gain exceeds the 9 dB value indicated 
by the contour is due to a combination of at least three factors: 1) a different feeder imped
ance (below 100 ohms) is used; 2) the ratio of L/2a being different than 125; 3) the estimated 
gain reduction applied here to Carrel's original contours being, perhaps, slightly excessive. 
Each of these three factors could conceivably account for 0.1-0.2 dB. 

The termination used in this example is purely resistive and equal to the characteristic 
impedance of the transmission line, but reactive terminations can also be used. The use of a 
reactive termination can lead to unwanted resonances on the LPDA caused by energy being 
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Figure 6·41 Radiation patterns at several frequencies for the log-periodic dipole antenna 
of Example 6-3. The gain and impedance values are also given. (a) 150 MHz. (b) 200 MHz. 
(c) 300 MHz. (d) 450 MHz. (e) 600 MHz. (f) 650 MHz. 
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trapped between the termination and the stop region on the termination side of the active 
region. These high Q resonances can be eliminated by using a termination that is at least 
slightly resistive or by using a relatively high value for the LPDA transmission line impedance 
(e.g., Zo ~ 1500) since this will cause the dipole elements to more heavily load the line. 
This makes the active region more efficient [49], with the result that there is relatively little 
energy left to propagate past the active region and cause a strong resonance effect on the 
radiation pattern. 
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PROBLEMS 

6.1·1 Verify that the maximum of the radiation from a traveling-wave long wire antenna that 
is 6A long occurs at an angle of 20.10 from the wire. 
6.1·2 Compare the approximate beam maximum angle formula of (6-6) for a traveling-wave 
long wire with the values of Fig. 6.3 for LlA = 1,3,6,10. 
6.1·3 Show that the power radiated from a traveling-wave long wire antenna is 

P = 301;'[2.108 + In(~) - Ci(2f3L) + sin2~~L)] 
Use (4-8), (6-5), and (1-130). 
6.1·4 Use the radiated power expression from Prob. 6.1-3 for a traveling-wave long wire to: 

a. Derive the directivity expression 

2[1 -1( 0.371)] 1.69 cot 2 cos 1 - L/A 

D =---------------------------
2108 + In(~) -Ci(2f3L) + sin(2f3L) 
• A 2f3L 

b. Evaluate the directivity for LlA = 2,5,10,20. Ci(2f3L) is approximately zero for these 
values of L. 
6.1·5 Use the radiated power expression from Prob. 6.1-3 for a traveling-wave long wire to: 

a. Find an expression for the radiation resistance. 
b. Evaluate the radiation resistance for LlA = 2,5,10,20. Ci(2f3L) is approximately zero 

for these values of L. 
6.1·6 Plot the linear, polar plot of a traveling-wave long wire antenna that is eight wave
lengths long. 
6.1·' To be completely general, the traveling-wave long wire antenna has a current distri
bution given by 

1,(z) = Ime-aze-i(3oz 

where a is the attenuation coefficient representing radiation and ohmic losses. f30 is the phase 
constant and is related to the velocity factor p = vIc as f3o= f3lp. 

a. Derive the pattern function 

b. Show that this reduces to (6-5) for a = 0 and p = 1. 
c. Plot the polar pattern for a = 0 and L = 6A, for p = 1.0, 0.75, 0.5. 

6.1·8 Travel-wave vee antenna. 
a. Place the zero-phase reference point at the vertex of the vee antenna of Fig. 6-4, and 

derive the radiation pattern as 

where 

F (6) = ei«(3L12)[-1+COS(6-a)] sin(6 _ a) sin[(f3L12)(1 - cos(8 - a»] 
1 (f3LI2)(1 - cos(8 - a» 

and F2(8) is the same as Fl(8) except -a is replaced by a. This pattern expression is valid 
only in the plane of the vee. 

b. Plot the polar pattern in Fig. 6-4 for L = 6A and a = 16°. 
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6.1-9 Rhombic antenna. 
a. Show that the pattern of the rhombic in Fig. 6-5 is 

FR(8) = KR{FI(8) - F2(8) + e-i/3L[F3 - F4]} 

where F3 = ei/3Lcos(8-<>'>F2 arid F4 = ei/3LCOs(8+<>')F1• FI and F2 are given in Prob. 6.1-8. This 
expression is valid only in the plane of the rhombic. 

b. Plot the polar pattern in Fig. 6-5 for L = 6A and a = 16°. 
6.1-10 A rhombic antenna above ground is to be designed for a main beam maximum at an 
elevation angle of 20". Determine the rhombic configuration required. 
6.1-11 a. Write an expression for the total current on the Beverage antenna in Fig. 6-7. 

b. Determine a in (6-10) for the Beverage in Fig. 6-7. 
6.2-1 Compare the radiation resistances of the resonant stub helix to a short monopole for 
the height values of 0.01, 0.05, 0.08, and O.H. 
6.2-2 Find the radiation resistance of a six-turn resonant stub helix that is 2 cm high and 
operates at 850 MHz. 
6.2-3 An unfurable helix was built with an overall length of 78.7 cm, a diameter of 4.84 cm, 
and a pitch angle of 11.7°. The center frequency of operation is 1.7 GHz. Calculate the number 
of turns, the gain in decibels, the half-power beamwidth in degrees, and the axial ratio for 
the helix. 
6.2-4 It is desired to achieve a right-hand circularly polarized wave at 475 MHz having a 
half-power beamwidth of 39°. One of the easiest ways to do this is with a helix antenna. It is 
to be built with a pitch angle of 12S, and the circumference of one turn is to be one wave
length at the center frequency of operation. 

a. Calculate the number of turns needed. 
b. What is the directivity in decibels? 
c. What is the axial ratio of the on-axis fields? 
d. Over what range of frequencies will these parameters remain relatively constant? 
e. Find the input impedance at the design frequency and at the ends of the band. 
f. Evaluate HP at the band ends. 

6.2-5 A commercially available axial mode helix antenna has six turns made of 0.95-em 
aluminum tubing supported by fiberglass insulators attached to a 3.8-cm aluminum shaft. The 
band of operation is 300 to 520 MHz. The mechanical characteristics are as follows: length 
of helix, 118 cm; diameter of helix (center to center), 23.2 em; and ground screen diameter, 
89cm. 

a. Determine the pitch angle a. 
b. Compute the gain in decibels at edges of the frequency band of operation. 

6.2-6 A 12-turn axial mode helix has a circumference of 0.197 m, a pitch angle of 8.53°, and 
operates at 1525 MHz. Calculate and plot the radiation pattern in linear-polar form. 
6.2-7 A helix antenna has five turnsand a pitch angle of 12° .. It is operated such that its 
circumference is one wavelength. (a) Use simple array theory techniques to derive and ac
curately sketch the radiation pattern. (b) Calculate the half-power beamwidth, not based on 
results from (a). 
6.2-8 One turn of an axial mode helix radiates similarly to a one-wavelength loop antenna. 
Explain why, then, that the helix antenna radiates circular polarization and the loop radiates 
linear polarization. 
6.3-1 Calculate the input impedance for infinite biconical antennas of the following cone 
half-angles: 0.1°, 1°, 10°,20°,50°. 
6.3-2 Show that the radiated power of the infinite biconical antenna is 

p = 47T...;pJeH~ In[cot(8hI2)] 

and that the directivity is 

D = 1 
sin2 81n[cot(8h I2)] 
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6.4-1 Construction project. Select a frequency for which you have laboratory equipment to 
measure impedance (probably in the VHF or UHF range). Construct both an optimum open
sleeve dipole and its ordinary dipole version. (Alternatively, monopoles may be constructed.) 
Measure the input impedance of both antennas over a 2: 1 frequency range about the center 
frequency. (Alternatively, measure the VSWR) . 
6.4-2. Use (6-54) and Figs. 5-5 and 5-6 to estimate the input impedance of the asymmetrically 
fed dipole in Prob. 5.1-4. 
6.5-1 Find the input impedance of a slot that is complementary to a half-wavelength long 
ribbon dipole with impedance 73 + j42.5 n. 
6.5-2 The far-field components for a short slot with uniform electric field and of length az 
« A along the z-axis are 

v az e-j(3r 
E</> = -_O_jf3--sin 8 

2'IT r 

V az e-J(3r 
He = _O_jf3 -- sin 8 

27TTj r 

where Vo is the excitation voltage across the center of the slot. 
a. Find the input radiation resistance. 
b. Verify that (6-55) is satisfied using the appropriate complementary antenna. 

6.5-3 Frequency-independent antennas have constant HP with frequency. Explain this in 
terms of the formula HP = KAt L. 
6.6-1 Design an equiangular spiral antenna for operation over the band 450 to 900 MHz. 
6.6-2 Construction project. Construct the equiangular spiral antenna of the previous problem 
using aluminum foil glued to cardboard. Test its performance with a receiver (perhaps a 
television). 
6.7-1 Design a self-complementary log-periodic toothed planar antenna for operation from 
400 MHz to 2 GHz with a half-power beamwidth of 70°. 
6.7-2 A log-periodic dipole array is to be designed to cover the frequency range 84 to 
200 MHz and have 7.5-dB gain. Give the required element lengths and spacings for optimal 
design. 
6;7-3 Evaluate the dipole lengths and spacings for the LPDA of Example 6-3. 
6.7-4 Design an LPDA to operate from 470 MHz to 890 MHz with 9-dB gain. Add one extra 
element to each end over that required by (6-86). 
6.7-5 What is the physical length of the LPDA in Example 6-3? 



Chapter 7 

Aperture Antennas 

Three of the four classes of antennas (electrically small, resonant, and broadband), 
which are summarized in Fig. 1-6, have been discussed. In this chapter, we treat the 
fourth and final antenna type, the aperture antenna. Part of the structure of an 
aperture antenna is an aperture, or opening, through which electromagnetic waves 
flow. An aperture antenna operating as a receiver "collects" waves via the aperture. 
Analogies in acoustics are the megaphone and the parabolic microphone, which 
uses a parabolic reflector to focus sound waves on a microphone at the focal point. 
Also, the pupil of the human eye is an aperture for optical frequency electromag
netic waves. At radio frequencies, horns and reflectors are examples of aperture 
antennas; see Fig. 1-6. Aperture antennas are in common use at UHF frequencies 
and above. They are the antenna of choice in applications requiring very high gain. 
A distinguishing feature of large aperture antennas is the increase in gain with the 
operating frequency. The gain of an aperture antenna increases with the square of 
frequency if aperture efficiency is constant with frequency; see (2-89). Another fea
ture is the nearly real-valued input impedance. 

Since all receiving antennas act as collectors of waves, an effective aperture can 
be defined for every antenna; see Sec. 2.5. However, this chapter deals with antennas 
that have an obvious physical aperture. In the first section, general principles are 
developed for calculating the radiation patterns from any aperture antenna. Sub
sequent discussions focus on rectangular and circular aperture shapes. The prop
erties of specific antennas such as horns and circular parabolic reflectors then follow 
naturally. As in preceding chapters, theoretical derivations lead to an accurate de
scription of the antenna parameters, as well as design techniques. Both rigorous 
and approximate methods of gain calculation are also presented in this chapter. 

7.1 RADIATION FROM APERTURES AND HUYGENS' PRINCIPLE 

Although aperture antennas were not widely used until the World War II period, 
the basic concepts were available in 1690 when Huygens explained, in a simple way, 
the bending (or diffraction) of light waves around an object. This was accomplished 
by viewing each point of a wave front as a secondary source of spherical waves. The 
next wave front is the envelope of these secondary waves in the forward direction. 
Some 150 years after Huygens' contribution, Fresnel recognized that the phase shift 
between wave fronts is computed from the distance between wave fronts I1L by the 
familiar relation f3I1L. Figure 7-1 shows how a plane wave and a spherical wave 
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Secondary 
sources 

I 

~ Wave fronts 

(a) Plane wave. 

, 

Figure '·1 Secondary waves used to 
(b) Spherical wave. construct successive wavefronts. 

can be constructed from secondary waves; also see Figs. 12-1 and 12-2. The envelope 
of secondary waves forms the new wave front. Geometrical optics (ray tracing) 
predicts that light shining through a slit in a screen will have a lit region and a 
completely dark shadow region with a sharp boundary between them. Geometrical 
optics works well only for apertures that are very large relative to a wavelength. 
The secondary source concept shows that the secondary waves will spread out away 
from the aperture and there will be a smooth blending of the lit and shadow regions. 
This diffraction effect is illustrated in Fig. 7-2 for a slit in an opaque screen with a 
plane wave incident on it. 

Huygens' principle evolved into a mathematical form referred to as the equiva
lence principle (or, field equivalence principle). The field equivalence principle re
places an aperture antenna with equivalent currents that produce radiation fields 
equivalent to those from the antenna. The equivalence principle is derived by ob
serving that a solution to Maxwell's equations and the boundary conditions, which 
all electromagnetic problems must satisfy, is the solution. This follows from the 
uniqueness theorem in mathematics which states that a solution that satisfies a dif
ferential equation (e.g., Maxwell's equations) and the boundary conditions is 
unique. We now use this concept to set up equivalent current relations for use in 
analyzing aperture antennas. 

In the original problem of Fig. 7-3a, the fields that satisfy Maxwell's equations in 
the region exterior to volume V and that satisfy boundary conditions along S are 
up.ique.1 As long as the sources exterior to V and the boundary conditions along S 

: I : ~ 
t 

lil} Figure '·2 Plane wave incident on a slit in a screen. 
The edge diffraction leads to spreading of the 
radiation from the slit. 

lIn this chapter, the uppercase symbols V and S will be used to denote volume and surface. 
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(a) Original 
problem. 
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(b) General equivalent 
problem. 

Figure 7-3 The equivalence principle. 

s 

E,n 

(c) Equivalent problem 
with zero internal 
fields. 

are not changed, the solution (E, H) will not change. In the equivalent problem, 
the sources exterior to V are not changed, since there are none. Also, the boundary 
conditions are not changed, as will now be explained. In the original problem, the 
fields along the boundary are E(S) and H(S). In the equivalent problem of Fig. 7-3b, 
the original sources (e.g., the antenna structure) have been removed, altering the 
fields internal to S, denoted as El and HI. In order for the fields external to S to 
remain the same, equivalent currents must be introduced to satisfy the discontinuity 
of the fields across S. These equivalent currents are found from the boundary con
ditions of (1-22) and (1-23) as 

lSI = fi x [H - HI] 

MSI = [E - E l ] x fi 

on S 

on S 

(7-1a) 

(7-1b) 

where (Elo HI) and (E, H) are the fields internal and external to S; see Fig. 7-3b. 
These equivalent currents, which are obtained from only a knowledge of the tan
gential fields over S, can be used to find the fields external to S. However, the fields 
on S required to determine the equivalent currents are unknown. Also, we do not 
know how to find the external fields from the equivalent currents. We now address 
these difficulties, starting with the second one. 

Since the internal fields (Elo HI) are arbitrary, we choose them to be zero for 
simplicity; see Fig. 7-3c. Then (7-1) becomes 

Is = fi x H(S) 

Ms = E(S) x fi 

(7-2a) 

(7-2b) 

where E(S) and H(S) are the fields over the surface S. This zero internal field 
formulation is referred to as Love's equivalence principle. 

Since the fields inside S are zero in the equivalent problem of Fig. 7-3c, we are 
free to introduce materials inside S. If a perfect electric conductor is placed along 
S, Is will vanish. The explanation is often given that the electric current is "shorted 
out" by the conductor. This leaves a magnetic current density Ms radiating in the 
presence of the electric conductor producing the external fields. Similarly, a perfect 
magnetic conductor can be introduced along S to eliminate Ms, leaving only Is. 
Thus, we have two more equivalent formulations. They are Ms in the presence of 
a perfect electric conductor over S and Is in the presence of a perfect magnetic 
conductor over S. Both yield the correct fields external to S. However, these prob
lems are difficult to solve as long as S is a general surface. Note that if the real 
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antenna contains conducting portions, then the Js equals the actual current density 
over that portion and the aperture portion contains both Js and Ms (before any 
fictitious conductors are introduced). 

If the surface S is large in terms of a wavelength and the curvature of S is small, 
image theory can be applied locally across the surface to solve for the currents 
operating in the presence of the introduced conductors; this is exploited in Chap. 
12. However, since the selection of S is for convenience and we are interested in 
radiation problems, we can extend S to infinity. Since S must be a closed surface, S 
includes the infinite plane along z = 0 and closes at infinity to enclose sources in 
the region z < 0 of Fig. 7-4. In this case, we can apply image theory with no ap
proximation and easily solve many practical problems with planar apertures. 

We can apply image theory to the planar surface S to simplify the solution pro
cedure. To do this, we find the fields due to currents Js and Ms on the z = 0 plane 
as shown in Fig. 7-4a; this will be followed by the application of image theory to 
reduce the solution formulation by one-half. Although not all antenna problems 
have a planar aperture that can be placed in the xy-plane, an equivalent planar 
aperture surface S can be set up. This will be fruitful if the tangential fields over S 
can be obtained; more will be said about this later. First, we need to solve for fields 
in z > 0 due to the equivalent currents of Fig. 7-4a. 

(a) Both equivalent surface current densities acting in free space. 

s s s 
hs 

I I 
Jst I tJs It2Js 

I I 
Perfect 

tMs<==> Mst!tMs<==> 
I 
I 

magnetic I Ms=O 
conductor for I for I 
C1m =co z>O I z>O I 

I I 
I I 
I I 

(b) Equivalent electric current density alone. 

S S S 

hs 
I I 

Jst I tJs I Js=O I I 
Perfect 

t Ms <==> Mst ! t Ms <==> 
I 

electric :t 2Ms 
conductor for : for I 
C1=co I z>O I z>O I 

I I 
I I 

(c) Equivalent magnetic current density alone. 

Figure 7-4 Equivalent current configurations for a planar aperture surface. The antenna 
located in z < 0 has been removed and three different equivalent current sets introduced 
as shown. 



7.1 Radiation from Apertures and Huygens' Principle 279 

The fields (E, H) in the region z > 0, in general, are found by first evaluating A 
using (1-58) and finding E and H from (1-47) and (1-37). In this case, the equivalent 
currents Is and Ms will yield the exact fields everywhere in z > O. However, we 
restrict our solution to the far-field region appropriate to antenna problems. Then 
we can use the much simpler procedure of Sec. 1.7.4 that we have used many times 
to solve radiation problems. Now we slightly recast the formulation for the case of 
planar surface current densities in the xy-plane. First, the magnetic vector potential 
is found from the form of (1-101) appropriate to the geometry of Fig. 7-4a: 

A = f.L e-
jW II Is(r')ej{~ror' dS' 

47Tr s 

The far-zone electric field from (1-105) is 

EA = - jw(Al/O + At/><!» 

(7-3) 

(7-4) 

The subscript A indicates that this field arises from the magnetic vector potential A. 
The electric vector potential F associated with the magnetic current density is 

- found using the duality principle introduced in Sec. 2.4.12: 

F = 8 e-
jW II Ms(r')e j /3i

or' dS' 
47Tr s 

The far-zone magnetic field arising from F is the dual of (7-4): 

HF = -jw(Fl/O + Ft/><!» 

(7-5) 

(7-6) 

Since the solution is in the far field, the electric field associated with HF can be 
found from the TEM relationship of (1-107) as 

(7-7) 

The total electric field is then found by summing the contributions from each 
current: 

E = EA + EF = -jw(Al/ - 71Ft/»O + (At/> + 71Fl/)<!>l (7-8) 

The equivalent system of Fig. 7 -4a involves both the electric and magnetic current 
densities. Computations can be reduced considerably if image theory is used so that 
we only have to deal with one of the currents. First, we introduce a perfect magnetic 
planar conductor along surface S. The image currents shown in Fig. 7-4b are ob
tained by the duality of images in a perfect magnetic ground plane; that is, a mag
netic current parallel to the plane has an oppositely-directed image and a parallel 
electric current has a similarly directed image. The fields for z > 0 are unchanged 
after removing the conducting plane and introducing the images, as shown in Fig. 
7-4b. Since the currents and their images are adjacent to the plane S, we can add 
them vectorially to obtain the final equivalent system, which has a doubled electric 
surface current density and no magnetic surface current density. The radiation elec
tric field for z > 0 is 2EA • In a similar fashion, a perfect electric ground plane can 
be introduced along S as shown in the leftmost part of Fig. 7-4c. Image theory 
renders the images shown; see Fig. 2-9. These images acting together yield a zero 

ZUle symbol F for magnetic vector potential should not be confused with the normalized radiation pattern 
function F(O, 4». 
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total electric surface current density and a magnetic surface current density of 2Ms. 
Then the radiation electric field for z > 0 is 2EF • 

We can now summarize the equivalence theorem in terms most suitable to radi
ation pattern calculations. First, an aperture plane is selected for the antenna, this 
is usually the physical aperture of the antenna but need not be. Coordinates are set 
up such that the aperture plane is the xy-plane and the + z-axis is the forward 
radiation direction. Then the radiation fields for z > 0 are found by one of the three 
equivalent systems of Fig. 7-4 as follows: 

a. Js and Ms on S (xy-plane) 

E = EA + EF 

with (7-3) in (7-4) and (7-5) in (7-6) and (7-7) 
h. 2Js on S 

c. 2Ms on S 

(7-9a) 

(7-9b) 

(7-9c) 

The procedures for finding radiation from equivalent aperture plane currents are 
now clear. It remains then to focus on determining those currents, which are estab
lished using (7-2). 

So far, no approximations have been introduced other than the usual far-field 
approximations. Indeed, if the exact fields E(S) and/or H(S) are used in any of the 
above three procedures, exact far-field results will be obtained in the half-space 
z > O. However, such exact knowledge of the fields over the entire plane S is rarely 
available. Usually, at best it is possible to obtain only an approximate knowledge 
of the fields over a finite portion of the infinite aperture plane. One such approach 
is the popular physical optics approximation, in which it is assumed that the aperture 
fields Ea and Ha are those of the incident wave. It is usually assumed that these 
fields exist over only some finite portion Sa of the infinite plane S and the fields 
elsewhere over S are zero. In most cases, the aperture surface Sa coincides with the 
physical aperture of the antenna. These approximations improve as the dimensions 
of the aperture relative to a wavelength increase. 

The three solution procedures will now be simplified. Suppose that aperture fields 
Ea and Ha, which exist over and are tangent to some portion of Sa of the infinite 
plane S, are known (perhaps by employing the physical optics approximation). The 
equivalent surface current densities follow from (7-2) as 

J s = fi x Ha 

Ms = Ea x fi 

on Sa and zero elsewhere. Using these in (7-3) and (7-5) gives 

F = e _e - fi x EaejJ3i·r' dS' -jf3r II 
41Tr 

s. 

(7-10) 

(7-11) 

(7-12) 

(7-13) 
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The integral in the above two equations is a two-dimenional Fourier transform. The 
two-dimensional Fourier transform of an aperture field plays an important role in 
radiation calculations for aperture antennas, in a way similar to the Fourier trans
form of the current distribution for line sources (see Chap. 4). We therefore make 
the following definitions for the integrals: 

p = I I Eaej(:li'·r· dS' (7-14) 
Sa 

Q = I I Haej(:li'or' dS' (7-15) 
Sa 

The far-zone electric field based on both aperture fields can be written in a single 
expression often encountered in the literature [1]. The total electric field in terms 
of the potentials, from (7-4) and (7-7), is 

E = -jwA - jWTJF x i (7-16) 

where the r-component of the first term is to be neglected. Substituting in (7-12) 
and (7-13) and performing some manipulations yield 

-j(:lr II E = -jf3 ~7Tr i x [fi x Ea - TJ i x (fi x Ha)]e-j(:li'or' dS' 
Sa 

(7-17) 

This gives the full vector form of the radiated electric field from the aperture fields 
and is of len called a vector diffraction integral. The term "diffraction" is used be
cause the field found using (7-17) represents the superposition of all elements of 
the source distribution; this is in contrast to geometrical optics that traces rays from 
points on the antenna directly to observation points (see Sec. 12.1). The subsequent 
developments here are cast in terms of the Fourier transforms P and Q; this provides 
a more procedural, as well as instructive, approach. 

The aperture surface Sa is in the xy-plane, so r' = x'i + y'y. This with i in 
spherical coordinates from (C-4) in (7-14) and (7-15) yield 

PX
o 
= II Eax(x', y')ej(:l(X' sin II cos 4>+Y' sin II sin 4» dx' dy' 

Sa 

Py = II Eay(x', y')ej(:l(X'sinIlCOS4>+Y'sinllsin4» dx' dy' 
Sa 

Qx = II Hax(x', y')ej(:l(X' sin II cos 4>+Y' sin II sin 4» dx' dy' 
Sa 

Qy = II Hay(x', Y')ej(:l(X' sin II cos 4>+y' sin II sin 4» dx' dy' 
Sa 

Now, (7-12) and (7-13) together with fi = i reduce to 
-j{:lr 

A = JL _e - (-Q i + QxY) 
47Tr y 

-j(:lr 

F = -8 _e - (-P i + PxY) 
47Tr y 

(7-18a) 

(7-18b) 

(7-19a) 

(7-19b) 

(7-20) 

(7-21) 
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Expressing i and y in spherical coordinates as in (C-l) and (C-2), and retaining only 
the 8- and q,..components give 

e-j{jr A A 

A = P, -4 [0 cos O(Qx sin 4> - Qy cos 4» + "'(Qx cos 4> + Qy sin 4»] (7-22) 
7Tr 

e-j{jr A A 

F = -e -4 [0 cos O(Px sin 4> - Py cos 4» + ",(Px cos 4> + Py sin 4»] (7-23) 
7Tr 

Using these in (7-8) yields the final radiation field components 
-j{3r 

(a) Ee = jf3 ~4 [Px cos 4> + Py sin 4> (7-24a) 
7Tr 

+ 'T/ cos O(Qy cos 4> - Qx sin 4»] 
-j{jr 

EtI> = jf3 ~4 [cos O(Py cos 4> - Px sin 4» (7-24b) 
7Tr 

- 'T/(Qy sin 4> + Qx cos 4»] 
In a similar fashion, the other two equivalent systems reduce to 

-j{3r 

(b) E9 = jf3'T/ ~2 cos O(Qy cos 4> - Qx sin 4» 
7Tr 

-j{Jr 

EtI> = -jf3'T/ ~2 (Qy sin 4> + Qx cos 4» 
7Tr 

-j{3r 

(c) E9 = jf3 ~2 (Px cos 4> + Py sin 4» 
7Tr 
-j{jr 

EtI> = jf3 ~2 cos O(Py cos 4> - Px sin 4» 
7Tr 

(7-2Sa) 

(7-2Sb) 

(7-26a) 

(7-26b) 

If the exact aperture fields over the entire aperture plane are used, the three 
formulations of (7-24) to (7-26) each yield the same result. Use ofthe exact aperture 
fields leads to equal contributions arising from the electric and magnetic currents 
[2]. Therefore, the equivalent system using both current types, as in (7-24), gives 
zero total field for z < 0 because cos 0 is negative for 7T/2 ::5 0::5 7T, and the contri
butions cancel as guaranteed by the equivalence theorem. However, the single cur
rent systems of (7-25) and (7-26) do not yield zero fields for z < O. This is an 
expected result since image theory was involved in the development of these, and 
identical fields are obtained only in the region z > O. 

The trigonometric functions appearing in (7-24) to (7-26) actually describe the 
projections of the aperture equivalent surface current densities onto the plane con
taining the far-field components (i.e., perpendicular to i). For aperture field ex
pressions, the trigonometric functions that multiply the radiation integrals are often 
referred to as obliquity factors. The element factor sin 0 for line sources along the 
z-axis is an obliquity factor. For apertures that are several wavelengths in extent, 
the obliquity factors do not reduce the main beam and first few side lobes by a 
significant amount. Then the Fourier transform adequately describes the pattern, 
and the aperture antenna problem reduces to first finding the (scalar) far-field pat
tern from the Fourier transform of the aperture electric field magnitude. Polariza
tion is determined from the component( s) of the aperture electric field tangent to 
a far-field sphere by projecting EA on to the far-field sphere. 
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In practice, only approximate information about the aperture fields is available, 
such as obtained from the physical optics approximation. Then the three formula
tions give different results. The accuracy of the three results depends on the accuracy 
of the aperture fields, but the differences are usually not significant. For apertures 
mounted in a conducting ground plane, the aperture plane (except for the aperture 
itself) is well modeled as an infinite, perfectly conducting plane. Then the magnetic 
current (aperture electric field) formulation of (7-25) is preferred since the aperture 
electric field, and thus magnetic current, is zero outside the aperture because of the 
boundary condition of zero tangential electric field on the conductor. For apertures 
in free space, the dual current formulation of (7-24) is used. This is usually accom
panied by the assumption that the aperture fields are related as a transverse elec
tromagnetic (TEM) wave: 

H 1" a = - Z X Ea 
'TJ 

(7-27) 

This implies that 

Q 1" = -z x P 
'TJ 

or Q = _ Py Q = Px 

x 'TJ' y 'TJ 
(7-28) 

This assumption is valid for moderate- to high-gain antennas and is often applied 
with success even to apertures that are only a few wavelengths in extent. Using 
(7-28)in (7-24) leads to 

e-j~r 1 + cos (J 
E8 = jf3 47Tr 2 [Px cos c/J + Py sin c/J] (7-29a) 

e-j~r 1 + cos (J 
E", = jf3 47Tr 2 [Py cos c/J - Px sin c/J] (7-29b) 

which is a simpler form than (7-24). The factors in brackets are identical to those 
in (7-26). The obliquity factor of (1 + cos (J)/2 differs only slightly from the cos (J 
obliquity factor in (7-26) for small values of (J, where radiation is significant for high
gain antennas. Unlike (7-26), (7-29) remains valid over all space (i.e., 0 < (J < 180°) 
because image theory was not employed and we can take surface S to enclose the 
antenna, since equivalent currents are zero except over the finite aperture. How
ever, accuracy is likely to degrade for directions far out from the main beam. In 
summary, (7-26) should be used for apertures in ground planes and (7-29) should 
be used for aperture antennas in free space. 

Slit in an Infinite Conducting Plane 

The aperture antenna calculation procedures and the physical optics approximation can be 
illustrated rather simply for a plane wave normally incident on a slit in an infinite perfectly 
conducting plane as shown in Fig. 7-5. This is the same problem as in Fig. 4-60, except for a 
coordinate system change. The physical optics approximation leads us to assume that the 
incident field Ei = yEoe-ifJz associated with the plane wave propagating in the +z-direction 
renders the field over the physical aperture, so 

{

yEo 
E = a 

o 

Iyl:s ~, 
2 

elsewhere 

z=O 
(7-30) 
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Ei 

LIncident 
plane wave 

Figure 7-5 Plane wave incident on a slit in an 
infinite conducting plane. The slit is infinite in the 
x-direction and is L wide in the y-direction. 

The magnetic current formulation is appropriate in this case because the aperture electric 
field is zero over the perfectly conducting portion of the aperture surface. This is essentially 
a one-dimensional problem because the aperture field is uniform in the x-direction; then the 
radiation fields will not change with position along the x-direction. We are thus concerned 
only with the yz-plane (<p = 90°), and since the aperture field is only y-directed, (7-18) reduces 
to 

p = Ap = A fL'2 E jf3y'sin8 d ' = AE L sin[(,BLl2) sin 8] 
y y Y -Ll2 oe y Y 0 (,BLl2) sin 8 (7-31) 

When normalized, the magnitude of this expression renders the following radiation pattern: 

F(8) = sin[(,BLl2) sin 8] 
(,BLl2) sin 8 

(7-32) 

The polarization of the far field (electric field) is the tangent of the aperture electric field 
direction y onto the far-field sphere (in the <p = 90° observation plane), which is the 
8-component and there is no </rcomponent. Notice that (7-32) is nonzero at 8 = 90°; this is 
acceptable since E8 can be normal to the conducting plane. A note of caution is in order for 
this example, which has an aperture that is infinite in one dimension. The problem is really 
two-dimensional rather than three-dimensional (equivalently, the aperture is one-dimen
sional rather than two-dimensional). Therefore, the complete electric field will not be given 
by (7-26). The spherical wave behavior of e-jf3rlr (e.g., free-space Green's function) is replaced 
by the cylindrical wave behavior e-if3rNr. However, the one-dimensional Fourier transform 
as presented here yields the correct angular variation (pattern). The pattern based on this 
simple approach agrees well with that of more rigorous techniques [3]. 

7.2 RECTANGULAR APERTURES 

There are several antenna types that have a physical aperture which is rectangular 
in shape. For example, many hom antennas have rectangular apertures. Another 
example is a rectangular slot in a metallic source structure such as a waveguide. In 
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this section, we present some general principles about rectangular apertures that 
have uniform and tapered excitations. In Sec. 7.4, these principles are applied to 
rectangular aperture horn antennas. 

7.2.1 The Uniform Rectangular Aperture 

A general rectangular aperture is shown in Fig. 7-6. It is excited in an idealized 
fashion such that the aperture fields are confined to the Lx by Ly region. If the 
aperture fields are uniform in phase and amplitude across the physical aperture, it 
is referred to as a uniform rectangular aperture. Suppose the aperture electric field 
is y-polarized; then the uniform rectangular aperture electric field is 

Then from (7-18b) 

Ixl :5 Lx, 
2 

where we have introduced the pattern variables 

u = sin () cos tP, v = sin () sin tP 

The complete radiation fields are found from (7-26) as 

(7-33) 

(7-34) 

(7-35) 

. e-i {3r • sin[(f3LxI2)u] sin[(f3Ly/2)v] 
E6 = Jf3 21Tr EoLxLy sm tP (f3LxI2)u (f3Ly/2)v (7-36a) 

. e-i {3r sin[(f3Lxl2u] sin[(f3Lyf2)v] 
E<f> = Jf3 21Tr EoLxLy cos (J cos cf> (f3LxI2)u (f3Ly/2)v (7-36b) 

These fields are rather complicated functions of () and tP, but fortunately they 
simplify in the principal planes. In the E-plane (yz-plane), tP = 90° (and 270°) and 
(7-36a) reduces to 

E-plane (7-37) 

y 

'------+--x 

Figure 7-6 The rectangular aperture. 
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In the H-plane (xz-plane), c/J = 0° (and 180°) and (7-36b) becomes 

E = 'fJ. e-
j
!3r ELL 0 sin[{3Lx/2) sin 0] H-plane 

'" ltJ 211'r 0 x y cos ((3Lx/2) sin 0 (7-38) 

Note that E", goes to zero at 0 = 90° where it is tangent to the perfect conductor 
introduced in the equivalent magnetic current formulation. The normalized forms 
of these principal plane patterns are 

FlO) _ sin[({3Lx/2) sin 0] 
H\ - cos 0 ((3Lx/2) sin 0 ' (7-39) 

sin[({3Ly l2) sin 0] 
FE(fJ) = ({3Ly/2) sin fJ ' (7-40) 

For large apertures (Lx, Ly » A), the main beam is narrow, the cos fJ factor is 
negligible, and the principal plane patterns are both of the form sin(x)/x that we 
have encountered several times before, as, for example, with the uniform line 
source. By neglecting the obliquity factors in (7-36), the normalized pattern factor 
for the uniform rectangular aperture is 

sin[ ({3Lx /2)u] sin[ ({3Ly/2)v ] 
f(u, v) = ({3Lx/2)u ({3Ly/2)v (7-41) 

which is the normalized version of Py in (7-34). The half-power beamwidths in the 
principal planes follow from the line source result in (4-14). In thexz- andyz-planes, 
the beamwidth expressions are 

A A 
HPx = 0.886 L rad = 50.8 L deg 

x x 
(7-42a) 

A A 
HP y = 0.886 L rad = 50.8 L deg 

y y 
(7-42b) 

Finally, we derive an expression for the directivity of a uniform rectangular ap
erture. Such calculations are greatly simplified by using the variables u and v. The 
transformation from fJ and c/J to u and v given by (7-35) is essentially a collapsing 
of the spherical surface of unit radius onto a planar surface through the equator, 
giving a circular disk of unit radius. The u, v disk is analogous to the azimuthal map 
projection used in cartography to show, for example, the northern hemisphere on 
a planar map; the globe is projected with the North Pole at the center and the 
azimuth (radial) lines give true compass directions. The visible region in u and v 
corresponding to fJ :s; 11'/2 is 

(7-43) 

which follows from (7-35). 
The beam solid angle is found using 

(7-44) 

where only radiation for fJ :s; 11'/2 is considered. The beam solid angle can be eval
uated by integrating over the entire visible region in terms of u and v. The projection 
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of dO. onto the u, v plane is given by du dv = cos () dO.. From (7-43), it is seen that 
cos () = Y1 - u2 - v2• Therefore, dO. = du dv/Y1 - u2 - v2 and (7-44) becomes 

- II 2 dudv . nA - IF(u, v)1 y 2 2 
1 - u - V 

u2+v2s1 

(7-45) 

This is a general expression. For a large uniform phase aperture (Lx and Ly» A), 
the radiation is concentrated in a narrow region about u = v = 0 «() = 0). Then the 
square root in (7-45) is approximately 1. Also, since the side lobes are very low, we 
can extend the limits to infinity without appreciably affecting the value of the in
tegral. 

Using these results and (7-41) for the uniform rectangular aperture in (7-45) yields 

·fco sin2[(,BLx I2)u] fco sin2[(,BLyI2)v] nA = 2 du 2 dv (7-46) -co [(,BLxI2)u] -co [(,BLyI2)v] 

The following change of variables: 

,BLx ,BLx . 
u' =""2 u =""2 sm () cos tP (7-47a) 

,BLy ,BLy. . 
v' = ""2 v = ""2 sm () sm tP (7-47b) 

leads to 

2 2 fco sin2 u' fco sin2 v' 
nA = ,BLx ,BLy -co (u'f du' -co (v'f dv' (7-48) 

From (F-12) each integral above equals 7T, so 

4 A2 
nA = (27T/A)2LxLy 7T

2 
= LxLy (7-49) 

The directivity of the rectangular aperture with uniform amplitude and phase is 
then 

(7-50) 

From this expression, the physical area of the aperture can be identified as Ap = 
LxLy. Comparing this to D = 47TAem/A2 from (2-84), we see that t~e maximum 
effective aperture Aem equals the physical aperture Ap for the uniform rectangular 
aperture. This is true for any shape aperture with uniform excitation. Also note that 
for ideal apertures, there are no ohmic losses (radiation effiCiency e, = 1), so gain 
equals directivity and Ae = Aem. 

A 20A x lOA Uniform Rectangular Aperture 

The complete pattern for a uniform rectangular aperture that has Lx = 20,\ and Ly = 10,\ is 
from (7-41) 

f( ) 
= sin(20mt) sin(lOw) 

u, v 20mt lOw (7-51) 



288 Chapter 7 Aperture Antennas 

o 

-10 

Fg -20 

g 
.:::: -30 

~o 

o 

-10 

Fg -20 

g 
.:::: -30 

-40 

v 
I 

() 0 

-1.00 -.80 -.60 -.40 -.20 0 

'oor -u 
Figure 7-7 Contour plot of 
the pattern from a uniform 
amplitude, uniform phase 
rectangular aperture (Lx = / 
20A, Ly = lOA). The solid' 
contour levels are 0, -5, 
-10, -15, -20, -25, 
- 30 dB. The dashed contour 
levels are -35 and -40 dB. 
Principal plane profiles are 
shown in Fig. 7-8. 

u 
.20 .40 .60 .80 1.00 

(a) The xz-plane pattern; u = sin 9 

-1.00 -.80 -.60 -.40 -.20 0 
v 

.20 .40 .60 .80 1.00 
(b) The yz-plane pattern; v = sin 9 

Figure 7-8 Principal plane patterns for a uniform amplitude, uniform phase rectangular 
aperture (Lx = 20A, Ly = lOA). The complete pattern is shown in Fig. 7-7. 
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The contour plot of this pattern is shown in Fig. 7-7. The principal plane patterns, which are 
profiles along the u and v axes of Fig. 7-7, are shown in Fig. 7-8. The aperture of Fig. 7-6 has 
a ratio LxfLy = 2 as in this example. Notice that the wide aperture dimension Lx leads to a 
narrow beamwidth in that direction (along the u-axis). The half-power beamwidth from 
(7-42) is HPx = 0.0443 rad = 2.540 in the xz-plane, and HPy = 0.0886 rad = 5.080 in the 
yz-plane. The directivity from (7-50) is D = 4'17"(20A)(1OA)/A2 = 2513 = 34 dB. 

7.2.2 Tapered Rectangular Apertures 

In the previous section, we saw that the uniform rectangular aperture has an effec
tive aperture equal to its physical aperture. In other words, uniform illumination 
leads to the most efficient use of the aperture area. It will be shown in Sec. 7.3 that 
uniform excitation amplitude for an aperture gives the highest directivity possible 
for all constant phase excitations of that aperture. In the antenna design problem, 
high directivity is not the only parameter to be considered. Frequently, low side 
lobes are important. As we saw in Chap. 4, the side lobes can be reduced by tapering 
the excitation amplitude toward the edges of a line source. This is also true for two
dimensional apertures. In fact, many of the line source results can be directly applied 
to aperture problems. 

To simplify our general discussion of rectangular aperture distributions, we omit 
the polarization of the aperture electric field, so that Ea can represent either the x
or y-component of the aperture field. Then (7-18) becomes 

P = J J Eix', y')ejf3ux'ei /3VY' dx' dy' (7-52) 
Sa 

Most practical aperture distributions are separable and can be expressed as a prod
uct of functions of each aperture variable alone: 

(7-53) 

Then (7-52) reduces to 

J

LX l2 JL/2 
P = E (x')ei{3ux' dx' E (y')ei/3Vy' dy' -Lx12 a1 -L/2 a2 (7-54) 

Each of these integrals is recognized as the pattern factor of a line source along the 
respective aperture directions. The normalized pattern factor for the rectangular 
aperture is then 

f(u', v') = fl(U')f2(V') (7-55) 

where f1(U') and f2(V') arise from the first and second integrals in (7-54), which are 
essentially pattern factors of line source distributions along the x- and y-directions. 
Ag~in, here we have neglected any obliquity factors. The uniform rectangular ap
erture result corresponding to (7-55) is (7-41). It is obt~ined directly from sin(u)/u 
of (4-9) by using u' of (7-47a) in place of u for !1(U') and v' of (7-47b) in place of 
u for fz(v'). Note the different definition of u in Chap. 4 and this chapter. 

Thus, the pattern expression for a rectangular aperture distribution that is sepa
rable, as in (7-53), is obtained by finding the patterns f1 and f2 corresponding to 
the distributions Ea1 and Ea2, and then employing (7-55). 
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The Open-Ended Rectangular Waveguide 

One of the smallest aperture antennas is the open-ended waveguide shown in Fig. 7-9. It 
requires no construction, since the antenna is the open end of a waveguide. It is often used 
as a probe, such as with a near-field measurement range (see Sec. 9.5), because of its compact 
size. When operated in the dominant TElO mode, the aperture electric field is cosine-tapered 
in the x-direction with length Lx = a, similar to (4-23), and is uniform in the y-direction with 
length Ly = b. The radiation pattern then can be found from the corresponding line source 
results using f(u', v') = fl(U')fz(V'), where fl(U') is obtained from (4-27) and fz(v') is ob
tained from (4-9): 

cos u' sin v' cos[(,BLx/2)u] sin[(,BLJ2)v] 
f(u',' v') = 1 _ [(2I1T)u']2 -;;- = 1 - [(2/'I7)(,BLx /2)u]2 (,BLJ2)v (7-56) 

The vertical linear polarization of this antenna is evident from Fig. 7-9, which shows the 
components of the electric field in the far field. The complete far-field component expressions 
are easily obtained from (7-56) using the equivalent current formulations of (7-24) or (7-26). 
If the open-ended waveguide is surrounded by a large ground plane, (7-56) in (7-26) yields 
the follOwing principal plane pattern results by a process identical to the development pre
sented for (7-39) and (7-40): 

z 

cO{~Sin 8] 
FH(8) = cos 8 [ ]2 

1 - ~,Ba sin 8 
'1T'2 

y 

-PTT+r-----------r--x 

open-ended waveguide on a 
ground plane, 0 < 8 < 900 

(7-57a) 

(7-57b) 

Figure '·9 Geometry for an open
ended rectangular waveguide operating 
in the dominant TElO mode as in 
Example 7-3. The aperture electric 
field Ea and radiated field components 
E8 and E</> are shown. 
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Figure '·10 E-plane radiation 
patterns of the open-ended WR-90 
waveguide of Example 7-3 operating 
at 9.32 GHz with the geometry of 
Fig. 7-9. Patterns are calculated using 
(7-58b) for free space (solid curve) 
and (7-57b) for a ground plane 
(dashed curve). Also shown is the 
measured pattern (dotted curve) for 
the open-ended waveguide in free 
space [4]. 

The magnetic current formulation is chosen because the ground plane is well represented by 
the perfect conductor used in the image theory model of Fig. 7-4c. If the waveguide radiates 
into free space, the complete expression of (7-24) is more appropriate and yields 

cos[~ sin 6] 
FH(6) = 1 + cos 6 2 

2 1-[;~sin6] 

sin[l3; sin 6] 
F (6\ = 1 + cos 6 ___ _ 

E ) 2 I3b 
- sin (J 
2 

open-ended waveguide in 
free space, 0 < 6 < 1800 

(7-58a) _ 

(7-58b) 

Note the difference in obliquity factors between (7-57) and (7-58). For (7-57), the boundary 
conditions on the ground plane at 6 = 900 are satisfied as explained in association with 
(7-38). For operation in free space, (7-58) is valid all the way to 6 = 1800 where the 
(1 + cos 6)/2 obliquity factor takes the pattern to zero. However, an open-ended waveguide 
is an electrically small aperture and the' theory we have used assumes the aperture to be 
large. Thus, both (7-57) and (7-58) are approximate. Figure 7-10 shows the E-plane patterns 
measured [1, p. 345] and calculated using (7-57b) and (7-58b) for a WR90 waveguide at 
9.32 GHz. Agreement of the data measured in free space is better for the pattern based on 
(7-58b), as it should. Better results can be obtained by including the phase constant (l3g ) of 
the waveguide, the reflection coefficient introduced by the discontinuity of the abrupt ter
mination, and, most of all, the fringe currents on the waveguide walls [4]; see Prob. 7.2-4. 
The directivity of the open-ended waveguide is discussed in Example 7-4 and the half-power 
beamwidth in Prob. 7.2-3. 

7.3 TECHNIQUES FOR EVALUATING GAIN 

Aperture antennas are often selected for use in applications requiring high gain. It 
is, therefore, important to be able to evaluate gain as accurately as possible. In this 
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section, techniques are presented for evaluating gain based on pattern information 
and on aperture field information. In addition, simple formulas are presented that 
provide approximate gain values. These techniques apply to a wide variety of an
tenna types. 

7.3.1 Directivity 

Two useful forms for directivity from (1-46) are 

D = 41T 
OA 

D = 41TUm 

p 

where U m is the maximum of the radiation intensity defined through 

U(8, 4» = 2171 [IE812 + IEq,12]r2 = UmIF(8,4>)12 

OA is the beam solid angle: 

(7-59) 

(7-60) 

(7-61) 

(7-62) 

The total radiated power P is evaluated by integrating (7-61) over all radiation space 
or simply P = UmOA , as in (1-144). Accurate evaluation of directivity using (7-59) 
and (7-62) requires both a knowledge of the pattern over all angles 8, 4> as well as 
integration of the pattern. If the pattern function is known, the integral in (7-62) 
can sometimes be evaluated analytically, but is usually found by numerical integra
tion. 

Pattern integration can be avoided when evaluating the directivity of aperture 
antennas. This approach is based on determining the radiated power in the aperture 
plane where it is easier to integrate. A knowledge of the aperture fields is required, 
of course. The formulation is simplified by assuming that the tangential aperture 
electric and magnetic fields are related as a TEM wave; see (7-27). This is justified 
by the good match to free space (e.g., low VSWR) that most aperture antennas 
exhibit, indicating real power flow as with a TEM wave. Using (7-27) in the general 
radiation field expression of (7-24) with (7-61) gives 

U«(), 4» = 3:;2'T/ (1 + cos 8)2[IPxI2 + IPll (7-63) 

The maximum value of this function, which corresponds to the main beam peak 
from (7-14), is 

U m = 8 f3: 1 f f Ea dS' 12 
1T 'T/ Sa 

(7-64) 

since r· r' = 0 in the broadside case (8 = 0) because r = i and r' is in the xy-plane. 
Integration of (7-63) to obtain P is, in general, rather difficult. This can be avoided 

by observing that the total power reaching the far field must have passed through 
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the aperture. Within the validity of (7-27), the power density in the aperture is 
IEa12/211 and we can determine the radiated power from 

p = 21 J J IEal2 dS' 
11 s. 

(7-65) 

Substituting (7-64) and (7-65) in (7-60) gives a simplified, but powerful, directivity 
relationship: 

(7-66) 

This formula assumes the following: The pattern peak is directed broadside to the 
aperture, the aperture is large relative to a wavele~gth, and the aperture fields nearly 
form a plane wave. It turns out that the latter two conditions need not be strictly 
satisfied for good results to be obtained. Note the similarity of (7-66) to (3-93) for 
a half-wavelength spaced linear array. 

If the aperture distribution is of uniform amplitude (Ea = Eo), then (7-66) 
reduces to 

(7-67) 

where Ap is the physical aperture area. This was shown to be true for the rectangular 
aperture by direct evaluation; see (7-50). Further, (7-67) is a general result and 
implies that the directivity of a uniform amplitude aperture is the highest obtainable 
from a uniform phase aperture. This is true because the maximum of (7-66) occurs 
for a uniform illumination, which yields (7-67); see Prob. 7.3-2. The IEEE term for 
Du is standard directivity. 

Directivity of an Open-Ended Rectangular Waveguide 
, i 

To illustrate the aperture field integration method of determining directivity, we return to 
the open-ended waveguide operating in the TElO mode as described in Example 7-3 and 
illustrated in Fig. 7-9. The aperture field distribution is ' 

'1TX' 
Ea = yEo cos-, 

a 
-~ < x' < ~ 

2 - - 2' 
b,b 

--:S Y :S-
2 2 

(7-68) 

where the waveguide (and, thus, the aperture) has wide and narrow dimensions of a and b. 
Then 

III 1

2 (Ja12 
I Jbl2 )2 (20)2 

Ea dS' = Eo -a12 cos 7T: -b12 dy' = ~ -; b
2 

s. 
(7-69) 

and 

II J
al2 I Jbl2 

IE 12 dS' = g;, COS2 ~ dy' = g;, ~ b a 0 -al2 a -b12 0 2 
s. 

(7-70) 
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Substituting these into (7-66) gives 

471" (8 ) 471" D = - - ab = - (0 81)ab >.? 71"2 >.?' (7-71) 

This directivity is reduced by a factor of 0.81 (the aperture taper efficiency, et) from that of 
the same aperture when uniformly illuminated as in (7-67). This formula provides only a 
rough approximation for a small aperture such as this. Accurate gain techniques for open
ended waveguides are available [4]. 

Most rectangular aperture distributions are separable, that is, 

It can then be shown (see Prob. 7.3-15) that the directivity is also separable: 

where 

Dx, Dy = directivity of a line source with a relative current distribution 
of Ea1(x), Ea2(y) 

80 = main beam pointing direction relative to broadside 

(7-72) 

(7-73) 

The cos 80 factor represents the projection of the aperture physical area onto the 
plane normal to the main beam maximum direction 80 , This approximation is valid 
if the beam is not scanned within several beamwidths of endfire. The directivity of 
a uniform rectangular aperture for broadside (80 = 0) can be expressed as follows 
using (4-21): 

(7-74) 

which is (7-50). 

7.3.2 Gain and Efficiencies 

Gain equals directivity reduced by the amount of power lost on the antenna struc
ture; see Secs. 1.8 and 2.5 for previous discussions of gain. This is expressed using 
radiation efficiency from (1-159) as 

(7-75) 

Another form follows from (7-60) with input power in place of radiated power since 
P = e,Pin; also see (1-155): 

G = 4'7TUm 

Pin 
(7-76) 

This form is often used when evaluating antennas by numerical computation. 
Since the directivity of an aperture antenna is directly proportional to its physical 

aperture area Ap, gain will be also: 

(7-77) 
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where (2-89), (2-90), and (7-67) were used. Ae is the effective aperture and can be 
calculated through this equation for any antenna, including arrays. From this, we 
see that 

0:5 Bap :5 1 (7-78) 

Aperture efficiency Bap is a measure of how efficiently the antenna physical area is 
utilized. If Bap is known, it is a simple matter to calculate the gain of an aperture 
antenna of aperture area Ap using (7-77). 

There are several contributions to the overall aperture efficiency. The following 
form shows the factors separately and is appropriate to general use: 

(7-79) 

All these factors have values from zero to unity. We discussed radiation efficiency 
e r in Sec. 1.8; it represents all forms of dissipation on the antenna structure such as 
conductor losses. In most aperture antennas, these losses are very low, so er = 1 
and 

G=D most aperture antennas (7-80) 

This may not hold if one of the following situations applies: The antenna size is less 
than a wavelength, a lossy transmission line or device is considered part of the 
antenna, or lossy materials are an integral part of the antenna such as a dielectric 
lens. 

Aperture taper efficiency Bt represents gain loss strictly due to the aperture am
plitude distribution. It is also called the utilization factor. Often, the amplitude is 
tapered from the center to the edges of an aperture intentionally to reduce side
lobes. Bt is the ratio of directivity computed with only the amplitude taper present 
Dt to the directivity of the same aperture uniformly illuminated Du: 

D, 
B =

t Du or D t = BtDu (7-81) 

Examples for line sources are given in Table 4-2. Also, in Example 7-4 we found 
Bt = 0.81 for an open-ended waveguide. 

Antennas that have a secondary radiating aperture illuminated by a primary 
(feed) antenna, such as a parabolic reflector, experience spillover loss due to power 
from the feed missing the radiating aperture. This spillover efficiency Bs and aperture 
taper efficiency are the main sources of gain loss in most aperture antennas. The 
product BtBs is called the illumination efficiency Bi. 

The remaining factor in (7-79) Ba is achievement efficiency and can include many 
subefficiencies. More subefficiencies will be treated with reflector antennas in Sec. 
7.5, but the following two are usually dominant: 

(7-82) 

Cross-polarization efficiency Ber represents loss due to power being radiated in a 
polarization state orthogonal to the intended polarization. Phase-error efficiency Bph 

represents loss due to nonuniform phase across the aperture. 
Any of the efficiency factors can be expressed as a gain factor in decibels as 

BidB) = 10 log Bn (7-83) 
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Gain "loss" is negative of this. For example, the aperture taper efficiency for Ex
ample 7-4 is St = 0.81, so stCdB) = -0.91 dB and the gain loss is +0.91 dB. This is 
the only source of loss in this case. In general, (7-77) and (7-79) can be written in 
dB form as 

G(dB) = 10 10g(:: Ap) + er(dB) + BtCdB) + Bs(dB) + BaCdB) (7-84) 

Recall that polarization mismatch factor p and impedance mismatch factor q are 
not included in aperture efficiency nor gain, but they play a role similar to the 
efficiency factors (as discussed in Sec. 2.5). 

Another measure of antenna performance is beam efficiency BM. Instead of a gain 
loss, beam efficiency quantifies the solid angle extent of the main beam OM relative 
to that of the entire pattern: 

(7-85) 

7.3.3 Simple Directivity Formulas 

It is often necessary to estimate the gain of an antenna, especially in system calcu
lations. H the gain cannot be measured, simple gain equations can be used. The 
most direct and simplest approach is to use (7-77). The operating wavelength and 
physical aperture area are easily obtained. Aperture efficiency can sometimes be 
determined by using a theoretical model, as will be discussed for horns and reflectors 
later in this chapter. In many cases, it can be estimated. In general Bap ranges from 
30 to 80% with 50% being a good overall value. Optimum gain pyramidal horns 
have an aperture efficiency near 50%. Parabolic reflector antennas have an effi
ciency of 55% or greater. Gain can be found by estimating the aperture efficiency. 
For example, a 30-dB gain antenna with an actual efficiency of 55% will have a gain 
error of 0.38 dB when an estimated efficiency of 60% is used. 

It is very useful to have an approximate directivity expression that depends only 
on the half-power beamwidths of the principal plane patterns. This is expected to 
yield good results since we know that directivity varies inversely with the beam solid 
angle (D = 4'IT/OA ) and the beam solid angle is primarily controlled by the main 
beam. Thus, we expect to find that D ex: (HPEHPH)-l, where the product of the 
principal plane beamwidths approximates the beam solid angle. We now derive such 
a relation. 

The directivity of a rectangular aperture with a separable distribution given by 
(7-73) for broadside operation (00 = 0) is 

(7-86) 

where Dx and Dy are the directivities of a line source (or linear array) associated 
with the x and y aperture distribution variations. But we know from studying several 



7.3 Techniques for Evaluating Gain 297 

llnear current distributions, that these directivities are related to the aperture ex
tents as 

(7-87) 

where directivity factors Cx and cy are constants that vary slightly with the distri
butions Ea1(x) and Eaz(Y). For uniform line sources, Cx = cy = 1; see (4-21). Using 
(7-87) in (7-86) and rearranging give 

(7-88) 

The beamwidth factors kx and ky are constants associated with the following beam
width formulas that we have used frequently (see Table 4-2): 

A A 
HPx = kx L' HPy = ky L (7-89) 

x y 

For uniform line sources, kx = ky = 0.886. The numerator in (7-88) is the directivity
beam width product: 

(7-90) 

It is similar to the gain-bandwidth product that is commonly used to characterize 
circuit devices. It remains relatively constant under a variety of operating circum
stances because as the amplitude is tapered, constants cx, cy decrease due to aperture 
taper efficiency reduction, but the constants kx, ky increase due to beam broadening 
and nearly cancel the decrease in cx, cy. 

If we could determine the value of DB, (7-88) would be our desired simple ex
pression for directivity. For uniform line sources, 

DBu = 417(1)(1)(0.886)(0.886) = 9.86 radz = 32,383 deg2 
Then (7-88) becomes 

D = 32,383 
Uroct HP E" HP If" 

(7-91) 

(7-92) 

where HPE" and HPHo are the principal plane beamwidths in degrees. Although this 
is based on a uniform rectangular aperture, it produces accurate results for any 
pattern with a moderately narrow major lobe and with minor lobes present. This 
relation can be used for scanned beams if the beamwidths are those of the scanned 
beam [5]. For uniform circular apertures, 

417 ,A 180 
( )2()2 

DBucir = D . HpZ = A2 1Taz 1.02 2a -:;;: = 33,707 deg2 (7-93) 

where (7-171) and (7-172) were used. This is very close to the directivity-beamwidth 
product of 32,383 for uniform rectangular apertures. As the amplitude taper from 
the center to the perimeter of a circular aperture is changed, DB varies from 33,709 
to about 39,000 deg2 [6]. Fora rectangular aperture with a cosine amplitude taper 
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in the H-plane and uniform phase, as found in the open-ended waveguide of Ex
ample 7-4, DB is 35,230 dei. 

Some simple mathematical models for patterns have no minor lobes. Examples 
are Gaussian and cosq 

() beams; see Probs. 7.3-18 and 7.3-19. Also see Sec. 9.6.2. 
Then all radiation is contained in the main lobe and there are no minor lobes and 
the beam solid angle is well approximated as the product of the principal plane 
beamdwidths; that is, fiA = HPEHPH • (See Fig. 1-18). And the directivity is 

41,253 
(7-94) 

This formula can work well for low-directivity antennas. For example, a half-wave 
dipole has HPE" = 78, HPJ{' = 360 and from (7-94) D = 1.47, which is close to the 
correct value of 1.64. Other simple formulas have been proposed, but they are 
mostly for special cases [7-10]. 

In practice, antennas produce radiation patterns with significant power content 
in their minor lobes. In addition, the main beam rolls off more slowly than idealized 
patterns such as the sin u/u pattern for a uniform line source. Thus, the solid angle 
of the main beam is larger than that predicted by the product of the principal plane 
beamwidths. This together with the increased solid angle in the minor lobes com
pared to ideal models leads to directivity reduction. A variation of (7-92) that com
pares well to high-gain antennas used in practice is 

G = 26,000 
HPE"HPHo 

(7-95) 

Gain is used here instead of directivity because it applies directly to antenna prac-
-~ 

tice. Performance data quoted by manufacturers usually is the measured gain be-
cause it relates directly to how the antenna will be used. In most cases, ohmic losses 
are very small so that G = D. 

The first point to recognize when using the foregoing simple formulas for finding 
directivity or gain based only on half-power beamwidths is that accurate results 
cannot be expected. There simply is not enough information contained in the 
half-power beamwidth values. Generally speaking though, we can summarize the 
application of the simple formulas as follows. For antennas with very low directivity 
and usually without side lobes, (7-94) is the appropriate choice. When working with 
theoretical models of antennas with appreciable electrical size, (7-92) yields good 
directivity values. Finally, (7-95) yields very usable gain values for practical high
gain antennas. The numerator of (7-95) is smaller than that of (7-94) because of 
several influences on achieved gain, such as broad regions of side lobes that do not 
decay to negligible values as in the theoretical aperture models. The following ex
amples illustrate the use of (7-95). 

Pyramidal Hom Antenna 

A pyramidal hom antenna (see Fig. 7-18a), with a rectangular aperture of width A and height 
B, designed for optimum gain has an aperture efficiency of 51 %; so from (7-77) _ 

G = 051 411' AB 
• ).2 (7-96) ) 
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As a specific example, a "standard gain hom" operating from 33 to 50 GHz has a measured 
gain of 24.7 dB (G h 295.1) at 40 GHz (A = 0.75 em). The aperture dimensions of this hom 
are A = 5.54 cm and B = 4.55 em. Using these values of A, A, and B in (7-96) gives G = 
287.2 = 24.6 dB. The gain can also be estimated from the principal plane half-power beam
widths, measured at 40 GHz to be HPE' = 9° and HPHo = 10°. Then (7-95) yields G = 
288.9 = 24.6 dB. The gain values from both of these methods agree very well with the 
measured gain of 24.7 dB. 

Circular Parabolic Reflector Antenna 

The aperture efficiency of a typical circular parabolic reflector antenna with diameter D is 
55%, so (7-77) becomes 

(7-97) 

For a specific example, a 3.66-m (12-ft) circular reflector operating at 11.7 GHz (A = 2.564 em) 
has a measured value of G = 50.4 dB and HP£o = HPH' = OS. Again, we will check our 
estimation formulas. First, (7-97) gives G = 5.43(366/2.564)2 = 110,644 = 50.4 dB. Next, 
(7-95) yields G = 26,000/(0.5)2 = 104,000 = 50.2 dB. Both of these estimates are in good 
agreement with the measured gain. 

7.4 RECTANGULAR HORN ANTENNAS 

Hom antennas are extremely popular antennas in the microwave region above 
about 1 GHz. Horns provide high gain, low VSWR, relatively wide bandwidth, low 
weight, and they are-rather easy to construct. As an additional benefit, the theoret
ical calculations for hom antennas are achieved very closely in practice. 

The three basic types of hom antennas that utilize rectangular geometry are il
lustrated in Fig. 7-11. These horns are fed by a rectangular waveguide that is orl-

(a) H-plane sectoral horn. (b) E-plane sectoral horn. 

(c) Pyramidal horn. 

Figure 7-11 Rectangular hom antennas. 
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ented with its broad wall horizontal. For dominant waveguide mode excitation, the 
E-plane is then vertical and the H-plane horizontal. If the hom serves to flare the 
broad wall dimension and leave the narrow wall of the waveguide unchanged, it is 
called an H-plane sectoral hom antenna as shown in Fig. 7-11a. On the other hand, 
if the hom serves to flare only in the E-plane dimension, it is called an E-plane 
sectoral hom antenna and is shown in Fig. 7-11b. When both waveguide dimensions 
are flared, it is referred to as a pyramidal hom antenna, which is shown in Fig. 7 -lle. 

The operation of a hom antenna can be viewed as analogous to a megaphone, 
which is an acoustic hom radiator providing directivity for sound waves. The elec
tromagnetic hom acts as a transition from the waveguide mode to the free-space 
mode. This transition reduces reflected waves and emphasizes the traveling waves. 
This traveling wave behavior, as we have seen with other antennas, leads to low 
VSWR and wide bandwidth. 

Aperture antennas are among the oldest antennas. Heinrich Hertz experimented 
with microwave parabolic cylinder antennas in 1888. The Indian Physicist J. Chun
der Bose operated a pyramidal hom, which he called a "collecting funnel," at 
60 GHz in 1897. The hom antenna has been in widespread use since the 1940s; see 
[11] for a collection of many papers on hom antennas. 

A characteristic of the hom antenna that we have not encountered until now is 
that the longer path length from the connecting waveguide to the edge of the hom 
aperture compared to the aperture center in the flare plane introduces a phase delay 
across the aperture. This aperture "phase error" is not present in antennas such as 
an open-ended waveguide and complicates the analysis. Phase errors occur in sev
eral areas of antennas and they are treated in this section on rectangular hom 
antennas. In addition to the rectangular horns, conical hom antennas are common. 
There are also special-purpose horns including those with a dielectric or metallic 
plate lens in the aperture to correct for the phase error and those with metallic 
ridges inside the hom to increase bandwidth [12]. One of the most important ap
plications for hom antennas is as a feed for a reflector antenna. Popular feed horns 
have corrugations on the inside walls; these are discussed in Sec. 7.7. 

7.4.1 The H-Plane Sectoral Hom Antenna 

The H-plane sectoral hom of Fig. 7-12a is fed from a rectangular waveguide of 
interior dimensions a and b, with a the broadwall dimension. The aperture is of 
width A in the H-plane and height b in the E-plane. The H-plane cross section 

x 

/'++----z 

(a) Overall geometry. 
(b) Cross section through the xz-plane (H-plane). 

Figure 7-12 H-plane sectoral hom antenna. 
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of Fig. 7-12b reveals the geometrical parameters. The following relationships for 
the geometry will be of use in subsequent analysis: 

e~ = Rf + (~r (7-98) 

-l( A) aH = tan 2Rl (7-99) 

RirlH 2 1 
RH = (A - a) - - -

A 4 
(7-100) 

The above relations follow directly from Fig. 7 -12b and it is an exercise to prove 
(7-100). The dimensions A and RH (or eH or R 1) must be determined to allow 
construction of the horn. We first investigate the principles of operation and then 
present design procedures for determining the horn dimensions. 

The key to solving aperture antenna problems is to find the tangential fields over 
the aperture. The aperture plane for the H-plane sectoral horn shown in Fig. 7-12a 
is in the xy-plane. The aperture fields, of course, arise from the attached waveguide. 
As is usually the case in practice, we will assume that the waveguide carries the 
dominant TElO rectangular waveguide mode. The transverse fields in the waveguide 
are then given by 

'TT'X 'Q E = E cos - e-]PgZ y og a 

Ey 
H =-

x Z 
g 

(7-101a) 

(7-101b) 

where Zg = 71[1 - (A/2a)2r1l2 is the waveguide characteristic impedance. The fields 
arriving at the aperture are essentially an expanded version of these waveguide 
fields. However, the waves arriving at different points in the aperture are not in
phase because of the different path lengths. We will now determine this phase dis
tribution. 

The path length R from the (virtual) horn apex in the waveguide to the horn 
aperture increases toward the horn mouth edges. Thus, waves arriving at aperture 
positions displaced from the aperture center lag in phase relative to those arriving 
at the center. The phase constant changes from that in the waveguide {3g to the free
space constant {3 as waves progress down the horn. But for relatively large horns, 
the phase constant for waves in the vicinity of the aperture is approximately that of 
free space. The aperture phase variation in the x-direction is then given by 

(7-102) 

The aperture phase is uniform in the y-direction. An approximate form for R using 
Fig. 7 -12b is 

·R = VRf + x 2 
= Rl[1 + (:J 2T/2 

(7-103a) 

= R{ 1 + ~ (:J 2J (7-103b) 
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for x « Ri that holds if AI2 « Ri. Then 

1 x 2 

R - R """--
1 2 Ri (7-104) 

The amplitude distribution is an expanded version of that in the waveguide, so it is 
a cosine taper in the x-direction. Using this fact and (7-104) in (7-102) leads to the 
aperture electric field distribution 

E = E cos 'TT'X e -j(pI2R1)x2 
ay 0 A (7-105) 

inside the aperture and zero elsewhere. Note that Eay(x = ±AI2) = 0 as required 
by boundary conditions. The phase distribution is often referred to as a quadratic 
phase error, since the deviation from a uniform phase condition varies as the square 
of the distance from the aperture center. This result can be derived more rigorously 
by representing the horn as a radial waveguide [13]. 

The quadratic phase error complicates the radiation integral; however, the result 
is worth the effort. Substituting (7-105) into (7-18b) yields 

f
A'2' fb'2 

P = E cos 'TTX e-i({3I2R1)x,2ei/3UX'dx' ei(3vY'dy' 
y 0 -A12 A -b12 (7-106) 

After considerable work, this reduces to 

P = E [! J'TTRi J«() ~)]{b sin[(J3bI2) sin () sin ~]} 
y 0 2 13' (J3bI2) sin () sin ~ 

(7-107) 

where the factors in brackets correspond to each of the integrals in (7-106). The 
second factor is that for a uniform line source. The first involves the function 

J«(), ~) = ei(Rl /2/3)(/3Sin9COS4>+1T1Ai[C(s2) - jS(s2) - c(sD + jS(sD] 
+ ej(Rl/2(3)(/3sin9COS4>-1TIA)2[C(t2) - jS(t2) - C(tD + jS(tD] 

where 

s' = ~(_J3A _ R au _ 'TTRi) 
1 V~ 2 W A 

S2 = J'TT;R
i 

( 13: - RiJ3U - 'TT~1) 
t1 = J 1 (_J3A - RiJ3U + 'TTRi) 

'TTJ3Ri 2 A 

t2 = J'TT;R
i 

( 13: - RiJ3U + 'TT~1) 

(7-108) 

(7-109) 

and the functions C(x) and S(x) are Fresnel integrals defined in (F-17) and tabulated 
in [14]. 

The total radiation fields can now be obtained. Using (7-29) gives the far-zone 
electric field components 

-j/3r 
E9 = jJ3 ~4 (1 + cos () sin ~ Py (7-110a) 

'TTr 

. e-j/3r 
E4> = JJ3 -4 (1 + cos () cos ~ Py 'TTr 

(7-110b) 
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These together with (7-107) give the complete radiated electric field 

E = jf3E
o
b j7TR1 e-

i
{3r (1 + cos 0)(9 sin cf> + cI> cos cf» 

13 47Tr 2 

. sin[(f3bl2) sin fJ sin cf>] 1(0 cf» 
(f3b12) sin 0 sin cf> ' 

(7-111) 

where l(fJ, cf» is still given by (7-10S). 
The complete radiation expression is rather cumbersome, so we will examine the 

principal plane patterns. In the E-plane, cf> = 90° and the normalized form of 
(7-111) is 

F ( ~ = 1 + cos fJ sin[(f3b/2) sin fJ] 
. E fJ 2 (f3b12) sin fJ (7-112) 

The second factor is the pattern of a uniform line source of length b along the y-axis, 
as one would expect from the aperture distribution. 

In the H-plane, cf> = 0° and the normalized H-plane pattern is 

F IfJ) = 1 + cos fJ f 10\ = 1 + cos fJ l(fJ, cf> = 0°) 
H\ 2 H\ ) 2 l(fJ = 0°, cf> = 0°) 

(7-113) 

The H-plane pattern can be displayed rather simply using universal radiation pat
tern plots that are based on the maximum phase error across the aperture. The 
aperture distribution phase error as a function of position x from (7-105) is 

S=LX2 
2R1 

Since the maximum value of x is A/2, the maximum phase error is 

13 (A)2 A2 
. l>u.ax = 2R1 "2 = 27T SAR

1 
= 27Tt 

where t is defined to be 

A2 1 (A)2 1 
t = SAR1 = 8 A R1/A 

The function 1(0, cf> = 0°) in (7-10S) can be expressed in terms of t as 

l(fJ, cf> = 0°) = ei(1T/8t)[(AIA)Sinfl+1I2j2[C(S2) - jS(S2) - C(S1) + jS(S1)] 
+ ei(1T/8t)[(AIA) sin fI-1/2 j2[C(t2) - jS(t2) - C(t1) + jS(t1)] 

where 

S = 2Vt[ -1 - .!. (A sin fJ) - .!.] 
1 4tA St 

S2 = 2Vt[1 - .!. (A sin 0) - .!.] 
4t A St 

t1 = 2Vt[ -1 - .!. (A sin 0) + .!.] 
4t A St 

t2 = 2Vt[1 - :t (1 sin fJ) + :J 

(7-114) 

(7-115) 

(7-116) 

(7-117) 

(7-11S) 
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This function is plotted in Fig. 7-13 for various values of t. It is normalized to the 
main beam peak for a zero phase error condition, which displays the directivity loss 
(reduction of the main beam peak) as the maximum phase error 2'1Tt increases. 

The curves in Fig. 7-13 are universal pattern plots from which antenna patterns 
can be derived for specific values of A, b, and A. The H-plane plots (solid curves) 
are a function of (AlA) sin O. The E-plane plot (dashed curve) is the second factor 
of (7-112), and the abscissa for it is (bIA) sin O. The factor (1 + cos 0)/2 that appears 
in both pattern functions (7-112) and (7-113) is not included in Fig. 7-13. For most 
situations, it has a small effect on the total pattern and may be neglected. Its effect, 
however, is easily included by adding 20 10g[(1 + cos 0)/2] to the corresponding 
pattern value from the universal pattern. Note that the E-plane plot of Fig. 7-13 has 
the -13.3-dB side lobe level of a uniform line source pattern, and the H-plane 
constant phase (t = 0) plot has the -23-dB side lobe level of a cosine-tapered line 
source pattern. As the phase error increases, the H-plane pattern beamwidth and 
side lobes increase. 

The pattern of !H(O) in (7-113) can be evaluated with excellent results using a 
mathematics application computer package to perform the numerical integration: 
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Figure '·13 Universal 
radiation patterns for the 

4.0 principal planes of an H-plane 
sectoral hom as shown in Fig. 
7-12. The factor (1 + cos 8)/2 
is not included. 
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where (7-106) was used with the exact phase error expression of (7-103a) rather 
than the quadratic approximation of (7-103b). This avoids the foregoing compli
cated expressions and permits inclusion of the exact phase. 

The directivity for an H-plane sectoral hom is obtained from the aperture inte
gration method 0r<7-66) as 

b 32 (A) H 41T H 
DH = A -:;; A Sph = 1I? St Sph Ab (7-120a) 

where 

8 
S =-

t 1Tz (7-120b) 

(7-120c) 

(7-120d) 

Note that PI = -S1 = t~ and pz = s~ = -t1 from (7-108) for u = O. This expression 
explicitly shows the two efficiency factors associated with aperture taper and phase, 
St and s:,1. 

A family of universal directivity curves is given in Fig. 7-14, where )J)Hlb is 
plotted versus AlA for various values of RI/A. Notice that for a given axial length 
Rio there is an optimum aperture width A corresponding to the peak of the appro-
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Figure '·14 Universal directivity curves for an H-plane sectoral hom. 
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priate curve. The values of AI A corresponding to OPtimV operation plotted versus 
RilA produce a smooth curve with the equation AlA = 3Ri/A, giving 

A = Y3ARi optimum (7-121) 

For example, the value of AlA for the peak of the RilA = 30 curve of Fig. 7-14 is 
9.5, and from (7-121), AlA = Y3Ri/A = Y3(30) = 9.49. 

The optimum phase error parameter value corresponding to optimum directivity 
is found from (7-116) with (7-121) as 

optimum (7-122) 

The optimum behavior of the directivity curves can be explained rather simply. For 
a fixed axial length, as the aperture width A is increased from a small value, the 
directivity increases by virtue of the increased aperture area. Optimum performance 
is reached when t = top = 3/8, which corresponds to a phase lag at the aperture 
edges (x = ±A/2) of 8max = 21Ttop = 31T14 = 135°. As A is increased beyond the 
optimum point, the phase deviations across the aperture lead to cancellations in the 
far field and decreased directivity, as can be seen from the pattern plots of Fig. 7-13. 

The foregoing analysis can be performed without approximation by using nu
merical techniques together with the exact phase error (7-103a), as with the radia
tion integral in (7-119). However, it is easier to use a corrected phase error param
eter that includes the effects of the exact phase error. The exact pattern is obtained 
if the value of t in (7-118) is replaced by the following [15]: 

te = (~r :t{[ 1 + (~)\6 tZ r/z 

- 1} exact (7-123) 

If the phase error is not large and the aperture is more than a few wavelengths, 
then te = t. For example, the optimum case with a 3A aperture (AlA = 3) has an 
exact phase error parameter of te = 0.354, which is close to the approximate value 
of 0.375. Similarly, exact phase error conditions for directivity are obtained by re
placing twith te in (7-120). 

The half-power beamwidth for optimum performance can be determined from 
the pattern plot of Fig. 7-13 for t = 3/8. The 3-dB down point on the main beam 
occurs for (AlA) sin 8H = 0.68, so the H-plane beamwidth for an optimum H-plane 
sectoral hom is 28H = sin-i(0.68A/A); and for A » A, 

A A 
HPH = 1.36 A = 78° A optimum (7-124) 

7.4.2 The E·Plane Sectoral Hom Antenna 

A rectangular hom antenna can also be formed by flaring the feed waveguide in 
the E-plane. The resulting hom is referred to as an E·plane sectoral hom antenna 
as shown in Fig. 7-15. The geometrical relationships for this hom are 

(1 = R~ + (~r (7-125) 

-i( B ) aE = tan 2R
z 

(7-126) 

RE = (B - b)J(iY -~ (7-127) 
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(a) Overall geometry. (b) Cross section through the yz-plane (E-plane). 

Figure 7-15 E-plane sectoral hom antenna. 

A similar line of reasoning as employed for the H-plane hom leads to the following 
aperture electric field distribution for the E-plane hom: 

E = E cos 'lTX e-j «(:JI2RiJ?-
ay 0 a ' (7-128) 

The same steps as used with the H-plane sectoral hom yield the radiation field: 

J'lTR2 4a e-j
/3r, 2 A A 

E = j{3Eo - - -- e,(/3R2/2)v (8 sin tP + <f» cos tP) 
{3 'IT 4'ITr 

1 + cos fJ cos[({3a/2)u] . . 
2 1 - [({3a/'IT)U]2 [C(r2) - jS(r2) - C(rl) + jS(rl)] 

where 

The normalized H-plane pattern follows from this with tP = 0° as 

Fn(fJ) = 1 + cos fJ cos[({3a/2) sin fJ] 
2 1 - [({3a/'IT) sin fJy 

(7-129a) 

(7-129b) 

(7-130) 

The second factor in this expression is the pattern of a uniform phase, cosine am
plitude tapered line source of length a. 

The aperture phase error in the E-plane is approximated with the quadratic phase 
error in (7-128) as S = ({3/2R2)y2. The maximum phase error occurs for y = ±B/2, 
giving s",ax = ({3/2R2)(B/2)2 = 2'IT(B2/8AR2) = 2 'IT s, where we define the phase error 
parameter s as 

B2 1 (B)2 1 
s = 8AR2 = 8 A R2/ A (7-131) 

The E-plane pattern magnitude from (7-129) with tP = 90° can be expressed in terms 
of s as 

(7-132a) 
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where 

r3 = 2V2[ -1 - :s (~sin 0) J. r4 = 2Vs[ 1 - :s (~sin 0) ] (7-132b) 

Similar to (7-119) for the H-plane sectoral horn, the pattern of an E-plane sectoral 
horn can be evaluated by direct numerical integration; IEee) in (7-132a) is found 
from 

(7-133) 

The universal patterns for the E-plane sectoral horn are plotted in Fig. 7-16. The 
E-plane patterns (solid curves) for various values of s are not normalized to 0 dB 
at the maximum point, but rather are given relative to the no-phase error case, 
which is s = 0 corresponding to a uniform line source. The H-plane pattern (dashed 
curve) is that of a cosine-tapered line source, which is the second factor of (7-130). 
The factor (1 + cos 0)/2 is not included in these plots. 
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The directivity of the E-plane sectoral horn found from (7-66) is 
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Figure 7-16 Universal 
radiation patterns for the 
principal planes of an E-plane 
sectoral hom antenna as 
shown in Fig. 7-15. The factor 
(1 + cos 8)/2 is not included. 
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where 

8 
8 =-

t 'T1'2 
(7-134b) 

(7-134c) 

q = B = 2Vs 
V2AR2 

(7-134d) 

A family of universal directivity curves AD Ela for various values of R21 A is given in 
Fig. 7-17 as a function of BIA. The peak of each curve corresponds to optimum 
directivity for the value of R2. A curve fit to pairs of values of BI A and R21 A for 
optimum conditions yields 

B = V2AR2 

The corresponding value of s is 

B2 1 
sop = 8AR

2 
= 4' 

optimum (7-135) 

optimum (7-136) 

Exact phase error conditions corresponding to spherical wave fronts in the ap
erture plane can be included easily, replacing s by Se [9]: 

Se = (~r ! {[ 1 + (~) \6s2 T/2 - 1} exact (7-137) 

That is, the pattern and directivity expressions of (7-132) and (7-134) are made exact 
by using (7-137). However, in practice, accuracy cannot be expected when the ap-
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Figure 7·17 Universal directivity curves for an E-plane sectoral hom. 
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erture is small because the aperture fields are not well approximated by free-space 
conditions. 

The half-power beamwidth relationship for the optimum hom follows from the 
s = 114 plot in Fig. 7-16 and is 

HPE = 2 sin-1 ~;: = 0.94 ~ = 54° ~ optimum (7-138) 

Gain for hom antennas nearly equals directivity, that is, GE = DE and GH = D H. 

The gain of an E-plane sectoral hom has been shown to be more accurately given 
by [16] 

G - 16aB C
2
(ql) + S2(Ql) 7T(aIA)(l-MAg) (7-139) 

E - A?(l + AgIA) Qi e 

where Ag = A/Y1 - (A/2a)2 is the wav~ength of the dominant mode in the wave
guide feeding the antenna and ql = B[ 2AgeE cos(aEI2)]-1. This expression yields 
values that agree quite well with experimental results. The values from (7-134) are 
less than those of (7-139) by 20% or more. 

7.4.3 The Pyramidal Hom Antenna 

Probably the most popular form of the rectangular hom antenna is the pyramidal 
hom antenna. As shown in Fig. 7-18, it is flared in both the E- and H-planes. This 
configuration will lead to narrow beamwidths in both principal planes, forming a 
pencil beam. The aperture electric field is obtained by combining the results for 
H- and E-plane sectoral horns from (7-105) and (7-128) giving 

(7-140) 

x 

"'-----+.::f:-- z 

(a) Overall geometry. 

(b) Cross section through the xz-plane (H-plane). (c) Cross section through the yz-plane (E-plane). 

Figure '·18 Pyramidal horn antenna. 
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Following a procedure similar to that used for the sectoral horns will yield a general 
radiation field expression. The principal plane patterns are the same as those ob
tained from the sectoral horn calculations because the aperture distribution is sep
arable as in (7-72). To be precise, the E- and H-plane patterns of the pyramidal 
horn equal the E-plane pattern ofthe E-plane sectoral horn and the H-plane pattern 
of the H-plane sectoral horn. Therefore, the E-plane pattern of the pyramidal horn 
can be found from the universal pattern plots (solid curves) of Fig. 7-16, and the 
H-plane pattern can be found from the solid curves of Fig. 7-13. 

Since pyramidal horns are used as gain standards at microwave frequencies, ac
curate gain evaluation is important. The directivity of the pyramidal horn is found 
rather simply from 

(7-141) 

See Prob. 7.4-15. The terms in parentheses are obtained directly from the directivity 
curves for sectoral horns of Figs. 7-14 and 7-17, respectively. Gain values computed 
with (7-141) agree very well with experiment for sufficiently large horns. It includes 
the geometrical optics fields and singly diffracted fields from the horn edges. The 
inclusion of mUltiple diffraction and diffraction at the edges arising from reflections 
from the horn interior leads to small oscillations in the gain about that predicted by 
(7-141) as a function of frequency, and in agreement with experimental results [17]. 

It is instructive to examine the aperture efficiency contributions for horns. The 
radiation efficiency e, is close to unity, so we can take gain to be equal to directivity; 
see (7-80). The two efficiencies that must be considered are the aperture taper 
efficiency 8 t and phase efficiency 8 p h: 

(7-142) 

where we decomposed total phase efficiency into factors due to phase errors in the 
E- and H-planes. Gain is then expressed from (7-77) as 

(7-143) 

where Go is the gain without a phase error effect and includes aperture taper effi
ciency, which was found in Example 7-4 to be 8 t = 0.81. The phase error efficiencies 
can be found by evaluating directivity for the sectoral horns and removing the 
known taper efficiency. The results of this process are plotted in Fig. 7-19 as a 
function of phase error parameters sand t. The aperture efficiencies for optimum 
sectoral horns with s = 0.25 and t = 0.375 are 

8! = 0.649, 

Both include 8 t = 0.81. So, 

8~ = 0.643 optimum 

The aperture efficiency of an optimum pyramidal horn from (7-142) is 

8~p = 8,e;h8::" = 0.81(0.80)(0.79) = 0.51 

(7-144) 

(7-145) 

(7-146) 

It is common to use an aperture efficiency value of 50% for optimum gain pyramidal 
horns. 
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Figure 7·19 Aperture efficiencies for E- and H-plane sectoral horns (left ordinate) and 
phase efficiencies associated with E- and H-plane flares (right ordinate). 

The gain of an optimum gain pyramidal horn from (7-146) in (7-143) is 

I G ~ 0.51 ~ AB I optimum pyramidal hom 

It is popular to express horn gain in dB form by taking 10 log of (7-143): 

GdB = Go,dB + e;h,dB(s) + e!1,dB(t) 

(7-147) 

(7-148) 

The last two terms are gain reduction factors associated with the phase errors of 
(7-120c) and (7-134c). These phase efficiencies, before taking 10 log, can be ap
proximated with simple formulas [18]: 

1 
e;h(s) = 4s [C2(2Vs) + S2(2Vs)] 

"" 1.00329 - 0.11911s - 2.75224s2 
(7-149) 

'Tr2 

e!1(t) = 64t ([C(Pl) - C(P2)]2 + [S(Pl) - S(P2)]2} 

"" 1.00323 - 0.08784t - 1.27048t2 
(7-150) 

The approximate formulas are valid from zero up to at least s = 0.262 and t = 0.397. 
For example, s = 0.25 and t = 0.375 in the approximate formulas give the values in 
(7-144), which are the points shown in Fig. 7-19. Increased accuracy is obtained if 
the exact phase error parameters in (7-123) and (7-137) are used. 

Many applications for horns require a specified gain to be realized at a known 
operating frequency. Usually, the optimum gain design approach is used because it 
renders the shortest axial length for the specified gain. We now derive the single 
design equation that permits determination of the optimum hom geometry for the 
specified gain. The procedure includes the connecting waveguide internal dimen
sions a and b as well as the hom dimensions. There are three conditions that must 
be satisfied. The first two are that the phase error in the E- and H-planes be those 
associated with optimum performance. The third is that the structure of the pyra-
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midal hom be physically realizable and properly mate to the connecting waveguide. 
This can be seen from Fig. 7-18 to be 

RE = RH = Rp 

From similar triangles in Fig. 7-18, 

Rl AI2 A 
RH AI2 - al2 A - a 

R2 BI2 B = =--
RE BI2 - bl2 B - b 

(7-151) 

(7-152) 

(7-153) 

Imposing the optimum performance in the E-plane through (7-135) and substituting 
(7-153), we obtain 

B = J2AREB or B2 - bB - 2ARE = 0 (7-154) 
B-b 

which is a quadratic equation with one solution as follows: 

B = ~ (b + Yb2 + 8ARE ) (7-155) 

The second solution yields the impossible case of negative B and is ignored. Simi
larly, the optimum performance condition for the H-plane of (7-122) together with 
(7-152) yields 

(7-156) 

Imposing the physical realization condition of (7-151) with (7-156) in (7-155) gives 

B = ~ (b + Jb2 + 8A(A
3 

- a») (7-157) 

Linking this to the specified gain G gives 

G = :: EapAB = :: A ~ (b + Jb2 + 8A(A
3 

- a») (7-158) 

Expanding to form a fourth-order equation in A gives the desired design equation 
[19]: 

optimum pyramidal hom 

design equation 
(7-159) 

It is possible to solve this quartic equation for its roots, but it is rather involved and 
the solution is easily obtained using a numerical equation solver routine. Alterna
tively, it can be solved by trial and error using a first guess approximation of 

Al = 0.45AVG (7-160) 

We now summarize the steps in the optimum hom design procedure: 

Step 1: Specify the desired gain G at the operating wavelength A and specify the 
connecting waveguide dimensions a and b. 
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Figure 7-20 Directivity and aperture efficiency of the standard gain rectangular horn of 
Example 7-7. 

Step 2: Solve (7-159) for A using Bap = 0.5l. 
Step 3: Find the remaining horn dimensions as follows: B from (7-147); Rl from 

(7-121); RH from (7-152); eH from (7-98); R2 from (7-135); RE from 
(7-153); and eE from (7-125). 

Step 4: The correct solution can be verified by checking to see if RE equals RH 
and by evaluating (7-131) and (7-116) to see if s = 0.25 and t = 0.375. 

Horn antennas operate well over a bandwidth of about 50%. However, perfor
mance is optimum only at the design frequency. Figure 7-20 is a gain curve for the 
"standard gain horn" in the 8.2 to 12.4 GHz band that is considered in Example 
7-7. Note that gain increases with frequency, which is characteristic of aperture 
antennas. The curve is not a straight line as might seem to be the case from the 
explicit frequency-squared dependence in (7-77). This is because aperture efficiency 
decreases with frequency due to increasing phase errors, as shown in Fig. 7-20. Thus, 
an optimum gain horn is only "optimum" at its design frequency. 

Before closing this section with an example of optimum horn design, we comment 
on the assumption that phase error arises from a spherical phase front in the ap
erture and the wavelength there equals that of free space. A solution technique for 
rectangular horns is available that uses a gradual change in phase velocity from the 
waveguide to the aperture by treating each point as a section of an infinitely long 
waveguide of that width [20]. However, for all but short horns with small apertures, 
gain does not differ noticeably from the foregoing design approach. 

Design of an Optimum Gain Pyramidal Horn Antenna 

Commercial "standard gain" pyramidal hom antennas are available to cover the frequency 
band from 8.2 to 12.4 GHz (X-band). They are fed from a WR90 waveguide with a = 0.9 in. 
= 2.286 em and b = 0.4 in. = 1.016 cm. As the gain curve in Fig. 7-20 indicates, the aperture 
efficiency decreases rapidly with frequency. Therefore, the optimum design point is chosen 
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near the low end of the band to provide more uniform gain over the whole band. Gain 
reduction due to increased phase errors at the high end of the band is significant, but the 
aperture is much larger electrically so gain actually increases. 

For this design example, we choose the optimum design point to be at 8.75 GHz, where 
aperture efficiency is 51 %. The desired gain is G = 21.75 dB or 102

.175 = 149.6 at 8.75 GHz 
(A = 3.43 em). The design equation of (7-159) is solved by trial and error beginning with 
Al = 18.9 em using (7-160). Step 3 of the design procedure gives all remaining horn dimen
sions: 

A = 18.61 cm, 

Rl = 33.67 cm, 

e H = 34.93 cm, 

RH = 29.53 cm, 

B = 14.75 cm 

R2 = 31.72 em 

eE = 32.56 cm 

RE = 29.53 cm 

These values are verified by noting that Rp = RE = RH and by evaluating (7-128) and (7-115) 
to obtain the optimum values of s = 0.25 and t = 0.375. The gain value is verified using the 
universal directivity curves R2/A = 9.3 and BIA = 4.3 with Fig. 7-17, giving ADEla = 36, and 
Rl/A = 10.1 and AlA = 5.4 with Fig. 7-14, giving ADHlb = 43. Then from (7-137), 

Dp = 3~ G DE )(~ DH) = 3~ (36)(43) = 152 = 21.8 dB 

which is very close to the design goal of 21.75 dB. Accurate evaluation of directivity using 
(7-120c) and (7-134c) in (7-148) with sop = 0.25 and top = 0.375 gives a value of 21.79 dB. 
The exact phase errors for this geometry are s. = 0.247 and t. = 0.368 from (7-137) and 
(7-123); they lead to a directivity of 21.85 dB. The directivity as a function of frequency is 
plotted in Fig. 7-20; see Prob. 7.4-17. 

The complete radiation patterns at 8.75 GHz are plotted in Fig. 7-21 including the 
(1 + cos 6)/2 factor. The half-power beamwidths are 

HPH = 14.2° 

These agree exactly with the predicted values based on (7-138) and (7-124). Thus, the simple 
half-power beamwidth formulas of (7-138) and (7-124) give good results for optimum horns. 
The first side lobe of the E-plane and H-plane patterns in Fig. 7-21 are located at 6° and 44° 
with values of -9.4 and -32.5 dB, respectively. The E- and H-plane first side lobe values 
without the (1 + cos 6)/2 factor included are -9.2 and -31.2 dB, respectively, and can be 
found in Figs. 7-16 and 7-13. 

Figure 7-21 Principal plane patterns for the 
optimum pyramidal horn antenna of Example 
7-7 at 8.75 GHz. The patterns include the 
(1 + cos 6)/2 factor. HPE = 12.3° and HPH = 

14.1°. 
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The gain (directivity) can also be estimated directly from the beamwidths using (7-95): 

26,000 26,000 
G = HPE,'HPHo = (12.40)(14.20) = 21.7 dB 

which is close to the design value of 21.75 dB. 

7.5 CIRCULAR APERTURES 

An antenna that has a physical aperture opening with a circular shape is said to 
have a circular aperture. Various forms of circular aperture antennas are encoun
tered in practice. In this section, we discuss ideal circular aperture distributions with 
uniform and tapered amplitudes. This is followed in the next section by a study of 
parabolic reflector antennas that are the most popular circular aperture antennas. 

7.5.1 The Uniform Circular Aperture 

A general circular aperture is shown in Fig. 7-22. If the aperture distribution am
plitude is constant, it is referred to as a uniform circular aperture. This is approxi
mated by a circular hole in a conducting sheet with a uniform plane wave incident 
from behind. Suppose the aperture electric field is x-directed, or 

p'::::; a 

Then (7-14) gives 

P = iEo f f ejfJior' dS' 
Sa 

From Fig. 7-22, it is seen that 

r' = p' cos cP'i + p' sin cP'y 
This with (C-4) yields 

z 

x 

r· r' = p' sin 8(cos cP cos cP' + sin cP sin cP') 
= p' sin 8 cos(cP - cP') 

----7---'" -............ -
or --

Far-field point 
(r. 6.~) 

Figure 7·22 The circular aperture. 

(7-161) 

(7-162) 

(7-163) 

(7-164) 
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Hence, (7-162) becomes 

p = XEo J:[ J:1T 

ei13p' sin (Jcos(q,-q,') d<p I ]pI dp' 

= xEo21T J: p'JO({3p' sin ()) dp' (7-165) 

where (F-6) was used for the <p I integration. Jo(x) is a Bessel function of the first 
kind and zero order, which is unity at x = 0 and is a decaying oscillatory function 
for increasing x. The p' integration can be performed using 

(7-166) 

which follows from (F-9). J1(x) is a Bessel function of the first kind and first order, 
which is zero for x = 0 and is a decaying oscillatory function for increasing x. Trans
forming variables as x = {3p' sin () and using (7-166) in (7-165) yield. 

P = xEo 21T fJ. ~ () J1({3a sin ()) = iPx 
pSIll 

The equivalent magnetic current formulation of (7-26) gives 

A A ei /3r 
E = (6 cos <p - c!> sin <p cos ())j{3 -2 Px 

1Tr 
-il3r 

= pEomij{3 ~2 f«()) 
1Tr 

where the polarization vector is 

p = 0 cos <p - cj, sin <p cos () 

(7-167) 

(7-168) 

(7-169) 

and the relative variation of the radiation integral Px normalized to unity maximum 
at () = 0° is 

f«()) = 2l1({3a .sin 8) 
(3a SIll () 

(7-170) 

f«()) is independent of <p due to the circular symmetry of the aperture distribution. 
In the E-plane, <p = 0° and (7-169) becomes p = 0, and f«()) rep"resents the 
E(J component. In the H-plane, <p = 90° and (7-169) reduces to p = -c!> cos (), and 
f( ()) multiplied by cos () represents the Eq, component. This cos () factor ensures that 
the electric field goes to zero at () = 90° as required by the boundary condition on 
the tangential electric field on the ground plane. 

For large apertures, f( ()) gives a narrow main beam in the 8 = 0° direction for 
the uniform phase aperture we are considering here. Thus, near the main beam, 
cos () "'" 1 since () is small and (7-169) gives p "'" 0 cos <p - cj, sin <p, which is the 
projection of the aperture electric field vector x tangent to the far field sphere; see 
(C-1). In this case, all 8 dependence is contained in f«()). An example of f«()) is 
plotted in Fig. 7-23 in the uv-plane for a = 5A out to the limit of the visible region 
«() = 90°). A plot of the radiation pattern in any plane passing through the 
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u 

Figure 7-23 Radiation pattern of a uniform amplitude, uniform phase, lO-wavelength 
diameter circular aperture. 

center of Fig. 7-23 is shown in Fig. 7-24. Note the similarity of this pattern, 2J1(x)/x, 
to the uniform line source pattern, sin x/x. 

The half-power point of (7-170) occurs at f3a sin () = 1.6, so the half-power beam
width for a » A is 

or 

HP - 2 - 2 . -1 1.6 2 1.6 A - 8m>- sm -= --
f3a 11' 2a 

A A 
HP= 1.02 2a rad = 58.4 2a deg (7-171) 

For the lOA diameter example, HP = 0.102 rad = 5.84°. The side lobe level of any 
uniform circular aperture pattern is -17.6 dB. This can be seen in Fig. 7-24. Since 
the uniform circular aperture has uniform excitation amplitude, it has unity aperture 
taper efficiency and the directivity, from (7-66), is 

_ 411' _ 411' 2 
Du - A2 Ap - A2 11'a (7-172) 
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Figure '·24 Pattern of a lOA diameter uniform circular aperture. It is the pattern in any 
plane passing through the center of Fig. 7-23. 

7.5.2 Tapered Circular Apertures 

Many circular aperture antennas can be approximated as a radially symmetric cir
cular aperture with an aperture field amplitude distribution that is tapered from the 
center of the aperture toward the edge. In practice, many circular aperture distri
butions are close to radially symmetric and do not vary with c/J' (see Fig. 7-22). We 
shall assume this is the case, and again we will confine our attention to a broadside 
circular aperture that is large in terms of a wavelength. Then the pattern is well 
approximated by the unnormalized radiation integral 

r2
'IT ra 

fui() = Jo Jo Ea(p')ej~p'sin9COS("'-"")p' dp' dc/J' 

Performing the integration over c/J' with the aid of (F-6) leads to 

lun(O) = 21T J: Ea(p')p'Jo(f3p' sin 0) dp' 

(7-173) 

(7-174) 

This integral can be performed for various aperture tapers and normalized to obtain 
f«()· 

The properties of several common circular aperture tapers are given in Table 7-1. 
Similar data are available in the literature [6,21,22] including elliptical apertures 
[23]. Table 7-1 is analogous to Table 4-2 for line source distributions. The parabolic 
distribution (n = 1) of Table 7-1a provides a smooth taper from the aperture center 
to edge where the aperture field is zero. When n = 0, the distribution reduces to 
the uniform case where, of course, aperture taper efficiency is unity; see (7-81) and 
(7-172). The parabolic taper (11 = 1) yields lower side lobes at the expense of wider 
beamwidth and reduced directivity compared to the uniform distribution. This effect 
is more pronounced for the plrrabolic squared (n = 2) distribution. The side-lobe 
level-beamwidth tradeoff can be customized by using the parabolic-on-a-pedestal 
aperture distribution in Table:7-1b. The pedestal height C is the edge (field) illu
mination relative to that at the !center. This taper can be used to model illuminations 
commonly encountered with a circular reflector antenna, where the pedestal rep
resents the fact that the feed antenna pattern is intercepted by the reflector only 
out to the reflector rim. Again, we observe that as the taper becomes more severe 
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Table 7·1 Characteristics of Tapered Circular Aperture Distributions 

a. Parabolic taper 

Eip') = [ 1 - (~rr 
f( ) = 2n+1(n + l)!Jn+1(J3a sin 8) 

8, n (J3a sin 8)n+l 

'"'-'----'-......l---L--L.-.L..-L----'-......l-"" __ P I 
a a 0 

Side Lobe Normalized 
HP Level Pattern 

n (rad) (dB) s, f(8, n) Distribution 

A 
-17.6 1.00 

2J 1 (J3a sin 8) 
0 1.02 20 J3a sin 8 

Uniform 

A 
-24.6 0.75 

8J2(J3a sin 8) 
1 1.27 2a ({3a sin 6)2 

Parabolic 

A 
-30.6 0.55 

48J 3 (J3a sin 8) 
2 1.47 20 (J3a sin 8)3 

Parabolic squared 

b. Parabolic taper on a pedestal Eip) 

Ea(P') = C + (1 + c{ 1 - (~rr 
1.0 

1- C 
Cf(8, n = 0) + --1 f(8, n) 

f(8, n, C) = 
n+ 

1- C 
C+-- _p' n+1 

0 a a 

n=l n=2 
Edge 

Side Lobe Side Lobe Illumination 
HP Level HP Level 

CdB C (rad) (dB) s, (rad) (dB) s, 

-8 0.398 
A 

1.12 20 -21.5 0.942 
A 

1.14 20 -24.7 0.918 

-10 0.316 
A 

1.14 20 -22.3 0.917 
A 

1.17 20 -27.0 0.877 

-12 0.251 
A 

1.16 20 -22.9 0.893 
A 

1.20 20 -29.5 0.834 

-14 0.200 
A 

1.17 20 -23.4 0.871 
A 

1.23 20 -31.7 0.792 

-16 0.158 
A 

1.19 20 -23.8 0.850 
A 

1.26 20 -33.5 0.754 

-18 0.126 
A 

1.20 20 -24.1 0.833 
A 

1.29 2a -34.5 0.719 

-20 0.100 
A 

1.21 20 -24.3 0.817 
A 

1.32 2a -34.7 0.690 
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Table 7-1 (continued) 

b. ParaboHc taper on a Pedestal (continued) 

Interpolation equations for finding HP and 8, when CdB is between -8 and -20 dB: 

Quantity 

HP=k~ 
2a 

8, 

n=l 

k = -0.OO8CdB + 1.06 

8, = O.01CdB + 1.02 

n=2 

k = -0.015CdB + 1.02 

8, = 0.019CdB + 1.06 

(n increases or C decreases), the side-lobe level decreases while the beamwidth 
increases and directivity decreases. The data in Table 7-1 provide canonical forms 
for use in modeling parabolic reflector antennas discussed in the next section. 

The directivity-bandwidth product DBcir is found by a form of (7-90) appropriate 
to tapered circular apertures using cxCy ~ e- = 'TT'S, and kxky ~ k2: 

(
180)2 

DBcir = 'TT'2s ,k2 -:;; = 32,400s,k2 degZ (7-175) 

For the range of values given in Table 7-1b, this product remains nearly constant, 
leading to 

(7-176) 

where HP is the half-power beamwidth in all planes in degrees. 
This section is closed by deriving the fundamental relation used to develop Table 

7-1. The parabolic distribution used in (7-174) gives 

fun(O) = 2'TT'L
a [1 - (~rrp'10(f3P' sin 0) dp' (7-177) 

The integral can be evaluated using 

(1 2n , 

Jo (1 - x 2txJo(bx) dx = bn:~ In+1(b) 

by letting x = p'la and b = f3a sin O. Then (7-177) reduces to 

'TT'a2 
fun(O) = n + 1 f(O, n) 

where 

f(
O ) = 2n+1(n + 1)! In+1(f3a sin 0) 
, n (f3a sin Ot+1 

(7-178) 

(7-179) 

(7-180) 

is the normalized pattern fuhction. The patterns given in Table 7-1a follow from 
(7-180). The aperture taper efficiency is (see Prob. 7.5-4) 

[c + ~: ~r 
s, = (7-181) 

C2 + 2C(1 - C) + (1 - Ci 
n+1 2n+1 
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7.6 REFLECTOR ANTENNAS 

High-gain antennas are required for long-distance radio communication and high
resolution radar applications. Reflector systems are perhaps the most widely used 
high-gain antennas and routinely achieve gains far in excess of 30 dB in the micro
wave region. Such gains would be difficult to obtain with any other single antenna 
we have discussed thus far. In this section, we consider the more important reflector 
antenna configurations, with emphasis on those that have circular apertures. 

7.6.1 Parabolic ReOector Antenna Principles 

The simplest reflector antenna consists of two components: A reflecting surface that 
is large relative to a wavelength and a much smaller feed antenna. The most popular 
form is the parabolic reflector antenna shown in Fig. 7 -25a. The reflector (or "dish") 
is a paraboloid of revolution. The intersection of the reflector with any plane con
taining the reflector axis (z-axis) forms a curve of the parabolic type shown in Fig. 
7-25b. The equation describing the parabolic reflector surface shape in the rectan
gular form using (p', Z /) is 

(p')2 = 4F(F - z/), p' S; a (7-182) 

The apex of the dish corresponds to p' = 0 and zf = F, and the edge of the dish to 
p' = a and zf = F - a2/4F. For a given displacement p' from the axis ofthe reflector, 
the point R on the reflector surface is a distance rf away from the focal point O. 
The parabolic curve can also be expressed in polar coordinates (rf' Of) as 

_ 2F _ 2 Of 
rf - 1 0 - F sec -2 + cos f 

(7-183) 

Then the projection of this distancerf onto the aperture plane is 

Zj-

. 2F sin Of Of 
p' = rf sm Of = 1 0 = 2F tan -2 + cos f 

Far-field point 
(T, 8, 4» 

(7-184) 

Zj --L:;rI~--;;CZf....u..~O-focal point 
j 

F~ 
I 
I 
I 
I 
I 
I Aperture plane 
V 
I 
I 
I 
I 

(a) Parabolic reflector and coordinate system (b) Cross section of the reflector in the xz-plane. 

Figure 7-25 The axisymmetric parabolic reflector antenna. 
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At the apex (Of = 00
), rf = F, and p' = O. At the reflector edge (Of = ( 0 ), rf = 

2FI(1 + cos (0) and p' = a. 
The axisymmetric parabolic reflector is completely specified with two parameters, 

the diameter D and focal length F. Equivalently, the reflector is often stated in 
terms of D and FID, which give the size and shape (curvature rate), respectively. 
The "focal-Iength-to-diameter" ratio FID represents the curvature rate of the dish. 
In the limit as FID approaches infinity, the reflector becomes planar. A flat reflec
tor "focuses" at infinity, and a normally incident plane wave is reflected back as a 
plane wave (i.e., it is focused at infinity). Shapes associated with commonly used 
reflectors are shown in Fig. 7-26. When FID are 0.25, the focal point lies in the 
plane passing through the rim. As indicated in Fig. 7-25b, the angle from the feed 
axis (the zraxis) to the reflector rim is related to the FID using (7-184) at point 
E (p' = a, Of = (0) as 

F 
-=---
D 

1 
(7-185a) 

(7-185b) 

The reflector design problem consists primarily of matching the feed antenna pat
tern to the reflector. The usual goal is to have the feed pattern about 10 dB down 
in the direction of the rim, for example, Ff(Of = (0) = -10 dB. Feed antennas with 
this property can be constructed for the commonly used FID values of 0.3 to 1.0 
and are discussed in Sec. 7.7. The FID choice also impacts on cross-polarization 
performance, as we shall see. 

The focal distance of a reflector is easily calculated using diameter D and height 
RD. This practiCal relation is found by solving (7-182) at the rim, where p' = DI2 
and Zf = F - Ro, giving 

O.5D 

0 

1 1 
"3 4 

Focal 
Point 

100 

'" II> 

j50 

<:e" 

1.5 2 
FID 

(7-186) 

E. 
80 D ----

0.25 90° 
0.30 79.6° 
0.33 73.7° 

0.4 64.0° 
0.5 53.1° 
1.0 28.1° 

(a) Shapes for common FID values. (b) Angle from the reflector axis to rim 80 versus FID 

Figure '·26 Curvatures of parabolic reflectors. 
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For example, when F/D= 114, this gives Ho = D14; thus, Ho = F, which is evident 
from Fig. 7-26. 

The following two very important properties make the parabolic reflector useful 
as an antenna: 

1. All rays leaving the focal point 0 are collimated after reflection from the 
reflector and the reflected rays are parallel to the reflector axis (z-axis). 

2. All path lengths from the focal point to the reflector and on to the aperture 
plane are the same and are equal to 2F. 

The terminology used here is that of geometrical optics (GO) which treats wave 
propagation as rays that are normal to the equiphase surface. For a point source at 
the focus, the wave fronts are spherical and all rays are along rf shown in Fig. 7-25. 
GO principles will now be used to verify the above two properties. 

The first property follows directly from the enforcement of the law of reflection 
on the reflector surface; that is, a r = ai in Fig. 7-25b. To show this, we first determine 
the surface normal fi by evaluating the gradient of the parabolic curve equation, 
Cp = F - rf cos2(OfI2) = 0, based on (7-183) in feed coordinates: 

N = VCp = V(F- rfcos
2 ~) 

[
a A 1 a A 1 a] = i, - + 8, - - + ~, . - Cp 

arf rf aOf rf sm Of a<Pf 

Of A Of Of 
= -i, cos2 "2 + 8, cos "2 sin "2 

o 
Normalizing using N 2 = N· N = cos2 

; gives 

N Of A Of 
fi = - = -i, cos - + 8, sin -

N 2 2 

(7-187) 

(7-188) 

The angles between the surface normal and the incident and reflected rays are then 
easily found from 

A A Of 
cos a· = -r,· n = cos -, 2 (7-189a) 

cos a r = Z • fi = (-i, cos Of + 0, sin Of) • fi 

Of . . Of Of 
= cos Of cos "2 + sm Of sm "2 == cos "2 (7-189b) 

Comparing these two equations, we see that 

Of 
a· = a =-, r 2 (7-190) 

proving that the law of reflection is satisfied. Also, note from Fig. 7-25b that 
ai + a r = Of' which is consistent with (7-190). 

The equal path length property follows from (7-183) as 

OR + RA = total path length from focal point to aperture 

= rf + rf cos Of = rf(1 + cos Of) = 2F (7-191) 
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Since the total' path length is constant (2F), the phase of waves arriving in the 
aperture plane from a point source at the focus will also be constant. Thus, the 
parabolic reflector with a feed that has a point phase center at the focal point will 
produce uniform phase across the aperture plane. The aperture amplitude distribu
tion, however, will not be uniform. 

Reflector antennas are analyzed by tracing rays to the aperture and setting up an 
aperture distribution that can be integrated to obtain the far-field pattern. Alter
natively, an equivalent surface current over the reflector can be integrated. In either 
case, GO principles are used to determine the current distribution. Application of 
GO requires the following to be true: 

a. The radius of curvature of the main reflector is large compared to a wavelength 
and the local region around each reflection point can be treated as planar. 

b. The radius of curvature of the incoming wave from the feed is large and can 
be treated locally at the reflection point as a plane wave. 

In addition, with metallic objects we make the following assumption: 

c. The reflector acts as a perfect conductor so that the incident and reflected 
wave amplitudes are equal; in fact, r = -1. 

The law of reflection applied to a reflector (e.g., see property 1 for parabolic re
flectors) relies on these assumptions. 

The parabolic reflector is inherently a very wideband antenna. The bandwidth of 
a reflector is determined at the low-frequency end by the size of the reflector; it 
should be at least several wavelengths in extent for GO principles to hold. At the 
high-frequency end, performance is limited by the smoothness of the reflector sur
face. Surface distortions must be much less than a wavelength to avoid phase errors 
in the aperture; see (7-235). In practice, the bandwidth of a reflector antenna system 
is usually limited by the bandwidth of the feed antenna rather than the reflector. 

We now discuss techniques for analyzing reflector antennas. The techniques are 
not limited to reflectors of parabolic shape, but we consider only parabolic reflector 
cases. 

GOI Aperture Distribution Method. The most basic method of analyzing reflector 
antennas is to use GO to determine the aperture field distribution and then find the 
far-field radiation pattern using the aperture theory developed in Sec. 7.5. This is 
done by tracing rays from the feed antenna to the aperture. First, we assume the 
feed is an isotropic radiator; the influence of the radiation pattern of a real feed 
antenna will be included later. Since all rays from the feed travel the same physical 
distance to the aperture, the aperture distribution of a parabolic reflector will be of 
uniform phase (this is true for all frequencies). However, there is a nonuniform 
amplitude distribution introduced. This is due to the fact that the power density of 
the rays leaving the isotropic feed falls off as 1/rJ since the wave is spherical. After 
reflection, there is no longe} any spreading loss since the rays are parallel (Le., 
focused at infinity), forming a section of plane wave. Hence, the aperture field in
tensity varies as 1/r,. This is proved more formally below. 

Geometrical optics (see Section 12.1) assumes that power density in free space 
follows straight-line paths. Applied to this case, the power in a conical wedge of 
solid angle dO with cross-sectional angle d(), as shown in Fig. 7-27 will remain 
confined to that conical wedge as it progresses out from the feed. After reflection, 
the power associated with the increment d(), arrives at the aperture plane in a thin 
ring of thickness dp' and area dA. The power leaving the feed, assumed to be 
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Figure 7·27 Axisymmetric, focus-fed 
parabolic reflector antenna in cross section. 

isotropic, and arriving at the aperture is proportional to Pt dO., where Pt is the 
transmit power. This power is distributed over area dA in the aperture plane. Thus, 
the power density in the aperture plane varies as 

S ( ') ex: Pt dO. ex: dO 
aP dA dA (7-192) 

since Pt is a constant. After integration over l/Jf' dO = 27T sin Of dOf and dA = 
27TP' dp'. So, 

(7-193) 

From (7-184), 

dp' d ( Of) Of - = - 2Ftan- = Fsec2- = rf 
dOf dOf 2 2 

(7-194) 

where (7-183) was used for the last equality. Then 

dOf 1 
-=-
dp' rf 

(7-195) 

Hence, (7-192) with (7-184) and (7-195) becomes 

sin Of 1 1 
Sa ex: rf sin Of;:; = rJ (7-196) 

This proves the spherical wave nature of the feed radiation and is referred to as 
spherical spreading loss. And since Ea ex: vs;., 

(7-197) 

Thus, there is a natural amplitude taper in the aperture caused by the curvature of 
the reflector. 

If the primary (or feed) antenna is not isotropic, the effect of its normalized 
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radiation pattern Ff «()" cp ') can be included, using the coordinate system of Fig. 
7-25 as 

E «() ,/,. ') = V -j(52F Ff«()f, cp ') " 
a f, 'I' oe Ur 

rf 
(7-198) 

where ur is the unit vector of the ape'rture electric field. The phase shift associated 
with the 2F path length from the focal point to the aperture plane is also included. 
The coordinates p' and cp I are appropriate for describing the aperture electric field. 
Feed coordinates rf and ()f are expressed in terms of the aperture coordinate p' 
using 

4](2 + p'2 
rf = 4F (7-199a) 

()f = 2 tan-1 ;~ (7-199b) 

which follow from (7-183) and (7-184). These transformations can be used with 
(7-198) to obtain the aperture distribution at points (p', cp') from the feed antenna 
radiation pattern Ff . It remains only to find the polarization of the aperture electric 
field vector by determining ur in (7-198). This follows by using the approximations 
that at the point of reflection, the reflector behaves as if planar [assumption (a)] 
and is perfectly conducting [assumption (c)]. Then the tangential component of the 
total electric field formed by the sum of the incident and reflected wave electric 
fields, Ei + E" is zero at the reflector. The law of reflection requires that 0 bisect 
the incident and reflected rays; then, EI + Er = 2(0· Ej)o, or 

(7-200) 

Since the reflector is assumed to be perfect [assumption (c) above], IErl = IEil; using 
this to normalize the above equation gives 

" 2("")" " U = n· u, n - u· r I I (7-201) 

where Dr = ErllErl and Di = EI/IEII. 
We can now write the radiation pattern function for the entire reflector system. 

The Fourier transform ofthe aperture distribution follows from (7-163) and (7-198) 
in (7-14): 

L
21T La F «() ,/,. ') 

p = Vo f ,,'I' UreHJp'sin6COS(<I>-<I>')p' dp' dcp' 
o 0 rf 

(7-202) 

for a circular projected aperture of radius a = D/2. The complete radiation pattern 
then follows from (7-29). A single reflector fed from a feed antenna at the focal 
point is often called a focus-fed or prime-focus reflector antenna. The feed is the 
primary antenna and the reflector forms the secondary antenna. The feed pattern is 
then the primary pattern and the pattern from the antenna system as a whole is 
called the secondary pattern. 

The uniform aperture phase associated with the GO formulation and the use of 
a real-valued feed pattern function Ff «()" cp ') leads to a symmetric pattern function 
since the Fourier transform of a real function is symmetric. Thus, the GO formu
lation always renders a symmetric far-field pattern. However, for general situations, 
such as offset reflectors to be discussed in Sec. 7.6.3, reflector antennas have asym
metric patterns. A more accurate analysis technique is now introduced for this 
purpose. 



328 -Chapter 7 Aperture Antennas 
, . 

PO/Sur/ace Cu"ent Method. The theory developed in Sec.,1.7iridicates that we 
can integrate over a current distribution to obtain the far field. For reflector anten
nas, we use the current on the metallic reflector generated by the incident fields 
from the feed antenna. Using the general expression for the magnetic vector po
tential of (1-101) appropriate to a surface current in the general far-field electric 
field expression of (1-105) gives 

E = -jWJL ~:: J J [1. - (Is· i)i]ej{X·r' dS' (7-203) 
s, 

where Sr is the surface of the reflector. This approach, of course, is viable only if 
the surface current 1. is known. The current is found using the physical-optics (PO) 
approximation that makes use of assumptions (a) to (c) used in GO analysis to 
relate the surface current to the incident field from the feed. That is, the wave 
arriving from the feed behaves locally as a plane wave and reflects from a locally
plane reflector that behaves as a perfect reflector. Then the incident magnetic field 
from the feed Hi and the magnetic field associated with the reflected wave Hr are 
related to the surface current from (1-26) as Is = B tan, where B tan is the tangential 
component of the total magnetic field that is given by fi x (Hi + fl.). But for a 
perfect conductor, the reflected magnetic field equals the incident magnetic field, 
so we are led to 

over the front of the reflector 

on the shadowed side of the reflector 
(7-204) 

Thus, the PO approximation interprets the reflector surface Sr as having a nonzero 
current only over portions illuminated by the feed using ray tracing. Also, the dis
continuity at the rim of the reflector separating 'the illuminated and shadowed 
regions is neglected. This effect as well as direct radiation and blockage/scattering 
effects due to the feed assembly can be treated separately. 

The integral in (7-203) can be evaluated analytically for arbitrary symmetrical 
reflectors. Known as Rusch's method, it ushered in the era of modem reflector 
antenna analysis and remains the most popular approach for reflector analysis [24, 
25]. However, the integration is usually performed numerically [26]. In addition, a 
Jacobian transformation is usually employed to evaluate the integral using aperture 
plane coordinates, avoiding direct integration over the curved reflector surface [27]. 
Series expansions are also employed for efficient integral evaluation [28]. A number 
of codes are available to evaluate reflector antenna performance. The powerful code 
GRASP [29] includes PO evaluation. PRAC (Parabolic Reflector Antenna Code) 
is a user-friendly program written for the personal computer and is described in 
AppendixG. 

For axisymmetric reflectors, the GO/aperture integration (GO/AI) and PO/sur
face integration (PO/SI) methods yield identical results [30]. However, the two 
methods, as conventionally applied to offset reflectors, yield different results, with 
the GO/AI method being slightly inferior. In addition, the pattern accuracy of both 
formulations degrades beyond the main beam and first few side lobes; the pattern 
effects in this region are dominated by diffraction from the reflector rim. 

Diffraction Effects. The GO/AI and PO/SI techniques just discussed produce ac
curate results for the main beam and first few side lobes. The pattern in the far-out 
side-lobe region is found by including diffraction (i.e., scattering) from the rim of 
the reflector (and subreflector in dual systems) and any other sharp edges. This is 
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done by augmenting GO with diffraction effects through the use of the geometrical 
theory of diffraction (GTD) or by augmenting PO with a fringe current on the rim 
using the physical theory of diffraction (PTD). GTD and PTD are discussed in Chap. 
12 and an example of diffraction from a reflector is treated in Sec. 12.16. 

7.6.2 The Axisymmetric Parabolic Reflector Antenna 

In this and the remaining subsections, we discuss commonly used reflector geome
tries and their properties. The most popular reflector antenna is the focus-fed, ax
isymmetric parabolic reflector illustrated in Fig. 7-27. The feed is located at the focal 
point and its main beam peak is directed toward the reflector center. Usually, the 
feed is some type of horn antenna as discussed in Sec. 7.7. A simple dipole feed can 
be used at UHF frequencies and below. 

Consider a feed antenna that is linearly polarized along the x-axis (coincident 
with the xraxis) and pointed toward the reflector apex with E- and H-plane patterns 
CE(Of) and Cn(0f)' respectively. The aperture field produced by a feed that is rep
resented by (7-239a) is found from (7-198) and (7-201) with (7-188) as 

-jfI2F 

Ea = Vo _e - (-x[CE(Of) cos2 4>f + CH(Of) sin2 4>f] 
rf 

+ y[CE(Of) - CH(Of)] sin 4>f cos 4>f} 
(7-205) 

Note the use of pattern coordinate unit vectors. If the feed is balanced with a 
rotationally symmetric normalized pattern FiOf) , (7-205) simplifies to Ea -
-XFf(Of)' So, cross-polarization (i.e., y-polarized field content) arises from the im
balance between the E- and H-plane copolarized patterns, CE and CH • Equation 
(7-205) also shows that cross-polarization in the aperture is maximum in the 4> = 
45°, 135° plane. This aperture cross-polarization causes far-field cross-polarization. 
The aperture distribution of (7-205) can be integrated to find the radiation.,It is 
instructive to examine (7-205) for an xrPolarized short dipole, which has CE = 
cos Of and CH = 1: 

-j~F 

Ea = Vo _e - {-i(cos Of cos2 4>f + sin2 4>f) 
rf 

- y(l - cos Of) sin 4>f cos 4>f} 
(7-206) 

The field components are shown in Fig. 7-28. The bracketed expression reduces to 
-i cos Of in the E-plane (4)f = 0°) and -x in the H-plane (4)f = 90°). Thus, the 

x 

I 

y-

I 
E-plane 

-H-plane 

Figure '·28 Electric field distribution in the 
aperture of a parabolic reflector for an 
x-polarized short dipole feed antenna. The 
electric field is decomposed into its x- and 
y-components. See (7-206). 
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aperture electric field is polarized parallel to the short dipole feed in the principal 
planes. Note that the aperture fields are inverted relative to the incident fields due 
to the reflection process. For nonprincipal planes, field components orthogonal to 
that of the feed (e.g., y-components) are present, giving cross-polarization. These 
cross-polarization properties are also true for the reflector radiation. The cross
polarization content in the aperture fields cancels in principal planes. This follows 
from the opposite phase of the cross-polarized components on opposite halves of 
the aperture. However, in nonprincipal planes, complete cancellation in the far field 
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Figure 7-29 An axisymmetric parabolic reflector with diameter D = 100A and FID = 0.5 
fed by a half-wave dipole located at the focus. All data were computed using GRASP [29]. 
From [43] © 1993. Reprinted by permission of Artech House, Inc., Boston, MA. 
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does not occur. The largest cross-polarized components introduced by the reflector 
occur in the 45° planes. We also note a very important conclusion: As FID increases, 
cross-polarization decreases. This follows by first noting from (7-185b) that as FID 
increases, the maximum feed angle Of = ()o decreases and thus the second term in 
the (7-206) decreases, leading to reduced cross~polarization. In the limit of large 
FID, the reflector becomes flat and does not introduce cross-polarization. 

Figure 7-29 presents pattern data computed with the GRASP commercial reflec
tor antenna code [29] using physical optics, surface current integration. A half-wave 
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Figure 7-29 (continued) 
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dipole, as is frequently encountered in practice, is used as the feed and behaves 
similar to the short dipole discussed above. Cross-polarization for reflectors is 
defined as ratio of the cross-polarization relative to the co-polarized pattern 
peak value. The peak cross-polarization is denoted as XPOL. Note the lack of 
cross-polarization in the principal planes in Fig. 7-29 and a cross-polar peak of 
XPOL = -26.3 dB in the cp = 450 plane. Ignoring the polarization vector and sub
stituting (7-199) into (7-198) give an expression for the normalized aperture illumi
nation in aperture coordinates: 

(7-207a) 

(7-207b) 

This permits direct evaluation of the electric field variation as a function of aperture 
radius p'. The second factor in (7-207a) is called the spherical spreading factor and 
represents the fact that the distance r f from the focal point to the reflector increases 
with p'. As noted earlier, rays leaving the feed at the focal point spread out in all 
directions, leading to rfl field variation. After reflection from the main reflector, 
the rays are collimated and no longer experience amplitude decay. The exact form 
of the aperture distribution has less influence on the pattern and directivity of a 
reflector than the edge illumination El, or edge taper ET, that are found from 
(7-207b) for p' = a as 

El = 2010g[Ean(p' = a)] = -FT -LSPh = -ET (dB) 

where 

El= edge illumination (dB) = 20 log C 
ET = edge taper (dB) = -El 
FT = feed taper (at aperture edge) (dB) = -2010g[F/8o)] 

Lsph = SPheric[al s
p

read
1
in

g 
I]OSS at the a[p1e:u::Se:~Je (dB) 

~ 20 log 1 + 16(~)' ~ 20 log 2 

(7-208) 

The above expression for Lsph shows 'that FID influences the amount of spherical 
spreading loss. It varies from 0.5 to 6.0 dB for FID, ranging from 1.0 down to 0.25; 
see Fig. 7-26. 

Reflector antenna performance can be estimated by a' simple process. First, the 
aperture distribution is obtained using (7-207). Next, a canonical distribution, such 
as presented in Table 7-1, is selected so that it approximates the aperture distribu
tion. Then the performance parameters of Table 7-1 such as HP, SLL, and B t are 
evaluated. Interpolation can be used for intermediate values. This canonical distri
bution method is illustrated in Example 7-8. The approach is described in detail in 
[6], which also contains useful data for canonical distributions; however, [6] failed 
to include spherical spreading loss. 
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A 28-GHz Parabolic Reflector Antenna 

An axisymmetric parabolic reflector antenna 1.22 m (4 ft) in diameter was used at Virginia 
Tech to receive signals at 28.56 GHz (A = 1.05 cm) from a geostationary satellite. It has an 
FID = 0.5. It is constructed of epoxy fiberglass with a reflective metal layer and has an rms 
surface accuracy of 0.2 mm. The feed antenna is a circular corrugated hom positioned at the 
focal point and supported with four thin-profile spars. The feed pattern is slightly asymmetric, 
but analysis using a canonical distribution yields good results. We assume the feed to be 
rotationally symmetric and equal to the measured E-plane feed pattern with the following 
beamwidths: 

BW -10dB = 104° (7-209) 

The angle from the center to the edge of the reflector from (7-185b) is 60 = 53.1°. The 10-
dB down point will fall inside the reflector since BW -lOc1B/2 = 52°. We assume the feed pattern 
has fallen to 11 dB down at the rim, that is, FT = 11 dB. The spherical spreading loss from 
(7-208b) is L sph = 1.9 dB. The edge taper from (7-208a) is ET = 11 + 1.9 = 12.9 dB. The 
corresponding edge illumination EI = -12.9 dB (C = 0.2265) falls between the values in 
Table 7-1. Linearly interpolating for the parabolic-squared taper yields the following results: 

A 
HP = 1.214 D = 0.599° (0.605° measured) 

SLL = -30.5 dB (-28.5 dB measured) 

(7-21Oa) 

(7-210b) 

Note the very good agreement to measured values. The complete pattern using f( 6, n, C) 
from Table 7-1b is plotted in Fig. 7-30. Also shown for comparison is the measured pattern; 
it is identical to the ground computed pattern over the main beam. The gain is evaluated in 
Prob.7.6-6. 

-28.5 dB 

-30 

2° 
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Figure 7-30 Measured (solid) E-plane pattern for the 1.22-m-diameter axisymmetric 
parabolic reflector at 28.56 GHz in Example 7-8. The computed (dashed) pattern is for a 
parabolic-squared circular aperture distribution on a -12.9-dB pedestal. 
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Figure 7-31 Geometry of the offset parabolic reflector of diameter D and focal length F. 
The axis of symmetry s bisects the parent parabolic curve of diameter Dr Note that the 
axisymmetric case occurs when H = O. 

7.6.3 Offset Parabolic Reflectors 

The blockage of the main reflector aperture by the feed assembly and associated 
support structure can be reduced or eliminated by using the offset reflector shown 
in Fig. 7-31. The properties of the offset reflector are similar to the axisymmetric 
counterpart formed by using the diameter of the parent reflector D po That is, the 
appropriate focal-Iength-to-diameter ratio to use for electrical performance is FIDp. 
This degrades cross-polarization performance because FIDp < FID for the offset 
reflector and cross-polarization levels rise with decreasing FIDp for an unbalanced 
feed pointed toward the apex, that is, Of = 0°. More will be said about cross
polarization in Sec. 7.6.5. 

The analysis techniques explained in the previous section for axisymmetric ge
ometries are general and are also used for offset reflectors. The GOI AI and POISI 
methods yield identical results if the integration surface is chosen to cap the reflector 
[30]. This is the natural choice for axisymmetric reflectors where the integration 
plane is selected to coincide with the physical aperture plane that contains the rim 
of the reflector, thus capping it. However, if the projected aperture of an offset 
reflector (as shown in Fig. 7-31) is used for the integration surface, GOIAI and 
POISI yield different results [31]. POISI is thought to produce more accurate pat
terns, especially for cross-polarization. In addition, the pattern accuracy of both 
formulations degrades beyond the main beam and first few side lobes. Pattern ef
fects in this region are dominated by diffraction from the reflector rim; see Sec. 
12.16. 

Pencil beams are required in communication applications for high gain and in 
remote sensing for scene resolution. Offset reflectors are used not only to produce 
pencil beam patterns, as discussed so far, but also for contoured beams. Offset re
flectors produce contour beams by using an array of feed horns or by shaping the 
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main reflector (e.g., using a nonparabolic shape) [27]. Offset reflectors avoid block
age caused by hardware in the feed region created by a cluster of feed horns. A 
popular application for contour beams is on geostationary satellites that have an
tennas which produce a footprint conforming to a desired earth region such as a 
country or continent. The multiple feed antennas in the focal region, each creating 
a scanned beam according to the displacement from the focal point, are combined 
with amplitude and phase weighting to produce a custom-shaped main beam. 

7.6.4 Dual Reflector Antennas 

A subreflector can be introduced between the feed and main reflector of a single 
reflector antenna to form a dual reflector. The most popular dual reflector is the 
axisymmetric Cassegrain reflector antenna shown in Fig. 7-32. The main reflector is 
parabolic and the subreflector is hyperbolic. This geometry again produces a focused 
system. That is, rays associated with an incoming plane wave parallel to the axis of 
symmetry reflect from both reflectors and intersect at a point, the focal point F'. 
The virtual focal point F shown in Fig. 7-32 is the point from which transmitted rays 
appear to emanate with a spherical wave front after reflection from the subreflector. 
That is, the feed is mirrored in the subreflector. 

A second form of the dual reflector antenna that offers perfect focusing is the 
Gregorian reflector. It has a concave rather than a convex subreflector that is located 
beyond the virtual focal point as shown in Fig. 7-32 and has an elliptical cross section. 
Both Cassegrain and Gregorian systems have their origins in optical telescopes and 
are named for their inventors. The subreflector for the Gregorian system being more 
distant from the main reflector requires more support structure. Both types of dual 
reflectors offer the major advantage of having the feed conveniently located near 
the apex of the main reflector. This provides convenient access to the feed region, 
reduces the support problem for feed hardware, and eliminates the long transmis
sion line run, and associated losses, often used to reach the focal region of a prime 
focus reflector. Another advantage of dual reflectors over single reflectors is in low
noise earth terminal applications. The feed radiation not intercepted by the subre
flector of a dual reflector (e.g., spillover) is directed toward the low-noise sky region 
rather than the more noisy ground as seen by the spillover of a single reflector. 

The subreflector shapes used in the classical dual reflector configurations are 
described by conic sections. Figure 7-33 gives the geometry of the subreflectors 
in subreflector coordinates Xs and Zs; the complete subreflector surface is obtained 
by rotating the curve about the zs-axis. The subreflector is determined by its di-

D 

main 
reflector 

Figure 7-32 Classical axisymmetrical dual 
reflectors. The main reflector is parabolic 
and the subreflector is hyperbolic 
(elliptical) for the Cassegrain (Gregorian) 
reflector system. 
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(a) Hyperbolic subreflector. (b) Elliptical subreflector. 

Figure 7-33 Geometry of classical subreflectors. 

ameter Ds and eccentricity e. The shape is controlled by the eccentricity, which is 
defined as 

e = ~ {>1 
a <1 

hyperbola (Cassegrain) 

ellipse (Gregorian) 
(7-211) 

Example shapes are e = 00, planar; e = 0, circle (sphere); and e = 1, parabola. The 
equations of the subreflector surfaces are given by 

hyperbola 

(7-212) 

ellipse 

The distances c and a are shown in Fig. 7-33. The required hyperbolic shape will be 
proved for the Cassegrain dual reflector. This derivation also illustrates how the 
subreflector operates. 

The function of the hyperbolic subreflector is to convert the incoming wave from 
a feed antenna located at the focal point F' to a spherical wave front w that appears 
to originate from the virtual focal point F. For this to be true, the optical path (total 
distance) from F' to wavefront w must be constant. Enforcement of this condition 
determines the subreflector shape. As seen from Fig. 7-33a, the total distance from 
F' to A including reflection from the subreflector is 

F' R + RA = F'V + VB = c + a + VB (7-213) 

But 

(7-214) 

where FB = FA was based on the exiting wave being spherical. This in (7-213) 
leads to 

F' R - FR = c + a - (FB - VB) = c + a - (c - a) = 2a (7-215) 
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This result coincides with the following definition of a hyperbola: A hyperbola is 
the locus of a point that moves such that the difference of its distances, F'R - FR, 
from two fixed points, F' and F, is equal to a constant, 2a. 

Dual reflectors can be modeled with a single equivalent parabolic reflector as 
shown in Fig. 7-34 for the a¥symmetric Cassegrain reflector [32]. The equivalent 
parabola has the same diameter (De = D), but a focal length (Fe) longer than that 
of the main reflector (F): 

e + 1 
F =--F=MF 

e e - 1 
(7-216) 

where M is called the magnification. From (7-211), e > 1 for the hyperbolic subre
flector of a Cassegrain reflector, so M > 1 and Fe > F. This increased effective focal 
length provides several advantages, which are noted by examining the equivalent 
(single) parabolic reflector with diameter D and focal length Fe, and thus larger 
focal-Iength-to-diameter ratio than the actual dual reflector. First, as noted in Sec. 
7.6.2, cross-polarization in the far-field pattern improves with larger focallength-to
diameter ratio. Second, there is less spherical spreading loss at the rim of the main 
reflector; see (7-207). Finally, main beam scan performance is improved. This fol
lows because the larger the focal-Iength-to-diameter ratio is, the less the radiation 
pattern deteriorates as the feed antenna is laterally displaced (in the xsYs-plane). 
This is explained by examining the limiting case of an infinite focal length-to
diameter ratio case (e.g., a flat main reflector) in which no deterioration occurs for 
reflection off normal incidence. The equivalent parabola concept applies to dual 
offset reflectors also [27, 33]. 

In a single reflector antenna system, the phase front from the feed antenna is 
converted to the desired exiting phase front. This is usually a spherical to planar 
conversion as accomplished with a parabolic reflector. Limited aperture amplitude 
control is accomplished through feed taper and FID; see (7-208). This is true for 
traditional single and dual reflectors with a parabolic main reflector. However, if 
both reflector shapes in dual reflectors are allowed to be "shaped," both the aper
ture amplitude and phase can be controlled. In the usual synthesis case, the sub
reflector has a highly tapered illumination to reduce spillover and is shaped to 
spread the reflected rays out for uniform amplitude. This requires shaping of the 
main reflector. The topic of dual reflector synthesis is rather advanced, but can be 
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Figure '.34 The equivalent single parabolic reflector for a Cassegrain dual reflector. 
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understood with the following simplified explanation [24, 34-38]. In principle, the 
shapes of both the main reflector and the subreflector can be determined exactly 
for axisymmetric systems [36] and for offset dual reflectors [38]. As in the above
mentioned case, the shapes of dual reflectors can be determined to yield uniform 
aperture amplitude and phase, giving maximum aperture utilization. The design 
problem is to convert the rather broad feed antenna radiation pattern to a nearly 
uniform amplitude and phase aperture distribution while keeping spillover accept
able. The concept is to underilluminate the subreflector in order to reduce its spill
over and then increase its curvature over classical shape to direct reflected rays to 
edges of the main reflector. Within the limit of geometrical optics, main reflector 
spillover is avoided with proper reflector sizing. Shaping of the subreflector changes 
the total path length from the feed to the aperture. But that can be nearly compen
sated for by shaping the main reflector to correct for phase errors introduced by 
subreflector shaping. The amount of main reflector shape change is on the same 
order as subreflector shape change because both introduce about the same phase 
error. However, subreflector shaping almost completely controls the aperture am
plitude distribution. This sequential shaping does not yield an exact solution but 
avoids the difficult mathematics associated with the exact approach, which requires 
simultaneous solution for the reflector shapes. Dual-shaped reflectors are in wide 
use for high-gain axisymmetric systems such as satellite communications earth ter
minals with main reflectors larger than a few meters in diameter. Shaped offset dual 
reflectors for smaller systems are also being used. One of the highest reported ap
erture efficiencies (85%) was achieved with a l.5-m main reflector in a shaped offset 
dual reflector configuration operated at 31 GHz [39]. Dual reflectors can also be 
designed for low side lobes [40]. 

For the synthesis of dual-shaped reflectors, it is common to use geometrical optics 
(GO) during the design process. The previous discussion of shaped reflectors for 
high efficiency is a good example. After the reflector shapes are determined using 
GO-based synthesis, a computer code is then employed to accurately determine 
performance parameters such as gain, side-lobe level, and cross-polarization. There 
are two popular approaches for the computer analysis of dual reflectors: GTDIPO 
that uses the geometrical theory of diffraction (GTD is treated in Chap. 12) on the 
subreflector and PO on the main reflector, and POIPO that uses PO on both the 
subreflector and main reflector. For small subreflectors less than about lOA, POIPO 
is thought to give more accurate results [27]. GTDIPO is usually used for electrically 
large reflector systems because POIPO computations are very time-consuming. 

7.6.S Cross-Polariza"on and Scanning Properties of Reflector Antennas 

Reflectors are used in many situations, including dual polarized operation that per
mits two communication channels on the same frequency. This requires the two 
polarizations to be nearly orthogonal. A second popular use for reflectors is to scan 
a single main beam or to form multiple narrow beams with the same large main 
reflector by displacing the feed(s) from the focal point. Both cross-polarization and 
beam scanning are discussed in this section. 

Analysis of the axisymmetric parabolic reflector in Sec. 7.6.2 showed that for a 
purely polarized but unbalanced feed, such as a dipole, reflector-induced cross
polarization is zero in the principal planes and is maximum in the 45° planes; see 
Fig. 7-29. A balanced feed with a rotationally symmetric pattern (see Sec. 7.7) 
positioned with its perfect phase center at the focus produces no far-field cross-
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polarization based on GO analysis [42]. However, PO analysis of an axisymmetric 
reflector with a balanced feed does yield a small cross-polarized pattern. In practice, 
the feed is usually responsible for the dominant contribution to cross-polarization 
from axisymmetric reflectors. 

As noted in Sec. 7.6.2, the cross-polarization of axisymmetric reflectors decreases 
with increasing FID. That is, as the dish curvature reduces, less cross-polarization 
is introduced. This is easily remembered because as FID becomes larger, the reflec
tor becomes flatter and a flat reflector does not depolarize. If the feed antenna 
pattern is rotationally symmetric (e.g., balanced) and purely polarized, cross-polar
ization is reduced significantly, but a residual level remains due to axial (z-directed) 
currents on the reflector. 

Cross-polarization behavior for offset reflectors is more complex. The general 
geometry is shown in Fig. 7-31. As explained in Sec. 7.6.3, the parent reflector 
diameter must be used for- electrical performance. Since FID of the actual offset 
reflector is greater in FIDp for the parent reflector, cross-polarization will be worse 
in an offset reflector. This assumes that the feed is directed toward the apex; that 
is, "'I = ()". This would lead to considerable spillover. Instead, the feed is usually 
pointed so that its axis bisects the angle subtended by the reflector ("'I = "'B) or the 
ray along the feed axis arrives in the center of the projected aperture ("'I = "'C). 
The influence of feed pointing angle is illustrated in Fig. 7-35 for an offset reflector 
with a diameter of 85.5'\', offset height h = D18, and FID = 0.3. The feed is linearly 
polarized with a circularly symmetric pattern (e.g., balanced feed) and a lO-dB 
beamwidth of 70°. This geometry yields results that are representative of offset 
reflectors used in practice. In this example, the bisector angle is "'B = 45.1° and the 
angle of the central ray is "'C = 49.7°. Note in Fig. 7-35 that cross-polarization 
performance degrades as the feed pointing angle increases. However, gain shows a 
broad peak centered on "'I = 47°, which is between "'B and "'c. Side-lobe level is 
fairly constant with pointing angle as long as "'I > 30°. It turns out that the feed 
pointing angle "'I = "'E that leads to equal edge illuminations (Eh = E1u) produces 
very low side lobes with only small penalties in gain and cross-polarization [42]. In 
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Figure '·35 Peak cross-polarization level (XPOL), side-lobe level (SLL), and gain (G) as a 
function of feed pointing angle (.pI) for an offset reflector (see Fig. 7-31) with D = 85.5'\', 
FIDp = 0.3, and h = DIS. The bisector angle is .pB = 45.1°. The central ray angle is .pc = 
49.7°. The feed is balanced and linearly polarized. From [42] © 1993. Reprinted by 
permission of IEEE. 
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this example, !/IE = 49.6°, where SLL = -30.1 dB. An important fundamental lim
itation on offset reflectors is apparent from Fig. 7-35. For maximum gain (i.e., ap
erture efficiency), cross-polarization is on the order of -23 dB, which is unaccept
ably high in many applications. 

Cross-polarization performance of single offset reflectors is summarized in Fig. 
7-36 [43, 44]. The cross-polarization for a balanced feed linearly polarized will be 
maximum in the plane of asymmetry (yz-plane) and zero in the plane of symmetry 
(xz-plane) [43-45]. The polarization in the (secondary) pattern of a reflector an
tenna is influenced by both the cross-polarization of the (primary) feed pattern, 
XPOLp , as well as that introduced by the reflector, XPOLR • So far, we have ne
glected any feed cross-polarizatiQn, that is, XPOLp = O. Since cross-polarization 
requires a code such as a physical optics code for exact evaluation, an approximate 
technique is very useful. A worst-case estimate of cross-polarization of the reflector 
system is found by adding the contributions [46]: 

XPOLs = XPOLp + XPOLR (7-217) 

For example, a feed with -30-dB cross-polarization (XPOLp = 0.0316) used in 
a reflector with -Z3-dB cross-polarization (XPOLR = 0.0708) gives XPOLs = 
0.1024 = -19.8 dB. 

The situation is much different for a circularly polarized (CP), balanced feed as 
indicated in Fig. 7-36. There is no cross-polarization; however, the main beam 
"squints" off axis in the yz-plane [43-47]. The main beam rotates (or squints) to 
opposite sides of the reflector axis for opposite senses of CPo Note that with CP 
feeds, the sense of CP radiated from the reflector will be opposite that of the feed 
due to the sense reversal encountered during reflection. 

The advantages of the offset reflector of Sec. 7.6.3 and the dual reflector of Sec. 
7.6.4 can be combined in the form of a dual offset reflector. Aperture blockage is 
eliminated and the subreflector introduces a second design variable for reducing 
cross-polarization far below that of a single offset reflector. The performance of a 
dual offset reflector can be evaluated in a manner similar to that for the axisym-
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metric dual reflector by using an equivalent single paraboloid with the same diam
eter as the main reflector and a focal length given by Fe = MF from (7-216). If the 
dual reflector geometry is chosen such that the feed axis of the original system is 
coincident with the equivalent paraboloid axis, cross-polarization will be minimum. 

Reflector antennas designed for high gain are focused systems. That is, an incom
ing wave parallel to the axis of the main reflector will be focused to a small region 
near the focal point. This leads to a simple antenna system, but limits beam scanning 
possibilities if rotating the entire reflector system is to be avoided. Some beam 
scanning is possible by displacing the feed off the focal point. This can be understood 
by considering a planar reflector with a small feed antenna that is displaced (and 
tilted back to aim at the reflector) from the axis perpendicular to the reflector. The 
reflected wave, or main beam from the reflector, will exit at an angle equal to the 
displacement angle. A similar effect applies to parabolic reflectors as shown in Fig. 
7-37, where the feed antenna is laterally displaced a distance 8 in the focal plane. 
If the reflector is flat (FID = 00), the angle of the beam scan angle OB equals the 
feed tilt angle OF. For curved reflectors (F < 00), the beam scan angle will be less 
than the feed tilt angle. Scanning is quantified with beam deviation factor (BDF): 

BDF = °B 
OF 

(7-218) 

BDF is maximum at unity for a flat reflector and decreases with decreasing FID or 
FID p for axisymmetric and offset reflectors, respectively. The following approximate 
expression can be used for small displacements 8 [27, 48]: 

1 + 0.36 [ 4 ~r2 
BDF = [FJ 2 

1 + 4-
D 

(7-219) 

Lateral feed displacement introduces a planar phase front tilted with respect to 
the aperture plane that is responsible for scanning the beam in a direction opposite 
to the displacement, as indicated in Fig. 7-37. However, nonlinear phase as a func
tion of position in the aperture plane is also introduced, leading to pattern distortion, 
including beam broadening, and gain loss [49]. These effects worsen with increasing 
displacement and lower FID values. One characteristic pattern distortion is a high 
first side lobe called the coma lobe on the reflector axis side of the main beam. 

Multiple reflectors can also be scanned by displacement of the feed off the focal 
point. Dual reflectors offer the advantage of a longer effective focal length through 
the equivalent parabolic reflector; see (7-216). This leads to better scan perfor-

1 
D--

j Figure 7-37 Beam scanning of a reflector antenna 
by feed displacement. 
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mance. Application of an equivalent single paraboloid provides approximate results 
for small scan angles with dual offset reflectors [50]. Advanced techniques can be 
used with tri-reflectors to minimize motion during scan [51, 52]. 

7.6.6 Gain Calculations for Reflector Antennas 

Aperture antennas usually have an obvious physical aperture of area Ap through 
which energy passes on its way to the far field. The maximum achievable gain for 
an aperture antenna from (7-67) and (7-75) is 

4'7T 
Gmax = Du = A? Ap (7-220) 

This gain is possible only under the ideal circumstances of a uniform amplitude, 
uniform phase antenna with no spillover or ohmic losses present. In practice, these 
conditions are not satisfied and gain is decreased from ideal, as represented through 
the following: 

(7-221) 

where Bap is aperture efficiency and 0 :s Bap :s 1; see (7-77) and (7-78). Since wave
length and physical aperture area are easily found, the study of gain reduces to one 
of aperture efficiency, which can be expressed as a product of subefficiencies: 

where 

er = radiation efficiency 
B t = aperture taper efficiency 
Bs = spillover efficiency 
Ba = achievement efficiency 

We now explain each of these efficiencies. 

(7-222) 

Aperture taper efficiency is obtained by working with that portion of the power 
that reaches the aperture. That is, if we ignore achievement and spillover losses, 
(7-66) for a circular reflector aperture of radius a leads to 

1 1 f:1T f: Eip', c/J ')p' dp' dc/J' 12 

B

t 

= '7Ta
2 f:1T f: !Eip', c/J,)!2p' dp' dc/J' 

(7-223) 

This expression can be written directly in terms of the known feed antenna pattern 
by transforming to feed angles: 

B t =-2 
'7Ta 

(7-224) 
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The aperture taper efficiency can be evaluated from the feed pattern using this 
expression. 

The feed antenna radiation pattern has the greatest influence on reflector antenna 
gain by its control over the aperture distribution and aperture taper efficiency, as 
discussed in Sec. 7.6.2. Since the feed pattern will extend beyond the rim of the 
reflector, the associated power will not be redirected by the reflector into the main 
beam and consequently gain is reduced. This is referred to as spillover and the 
associated efficiency factor is called spillover efficiency 8., which is defined as the 
fraction of power radiated by the feed that is intercepted by the main reflector of a 
single reflector or the subreflector of a dual reflector. 

Spillover efficiency measures that portion of the feed pattern that is intercepted 
by the main reflector (and redirected through the aperture into the main beam) 
relative to the total feed power: 

(7-225) 

Notice that the numerator involves an integral over the feed pattern only out to the 
angular extent of the reflector, whereas the denominator integral extends over the 
entire feed pattern. 

The reflector design problem reduces to a tradeoff between aperture taper and 
spillover through feed antenna choice. A broad feed pattern introduces little am
plitude taper across the aperture, but there will be a significant spillover as illus
trated in Fig. 7-38a. The spillover problem is solved by using a feed with a narrow 
pattern as illustrated in Fig. 7-38b. However, now the feed pattern taper is large, 
leading to low aperture taper efficiency. 

Taper and spillover efficiencies can be combined to form illumination efficiency 
Si to completely account for feed pattern and main reflector effects. That is, Si yields 
total aperture efficiency under ideal circumstances of no ohmic losses (e r = 1) and 
no achievement losses (sa = 1). Multiplying (7-224) and (7-225) and using a = 
2Ftan{Ool2) from (7-185a) lead to 

o etishigh 

e. is low 

I High spillover 

etislow 

e, is high 

I Low spillover 

(7-226) 

(a) Broad feed pattern giving high aperture taper (b) Narrow feed pattern giving high spillover efficiency 
efficiency but low spillover efficiency. but low aperture taper efficiency. 

Figure 7-38 Illustration of the influence of the feed antenna pattern on reflector aperture 
taper and spillover. 
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Here, we have made use of the following expression for the gain of the feed: 

41T 
(7-227) 

This is actually feed directivity, but feed ohmic losses are included in e, for the 
entire reflector system. 

An ideal, and unrealizable, feed antenna pattern would compensate for spherical 
spreading loss by increasing with angle off axis and then abruptly falling to zero in 
the direction of the rim to avoid spillover. This pattern follows from (7-196) and 
(7-194) as 

ideal feed (7-228) 

which is normalized to a peak of unity at {Jf = {Jo' Using this in (7-226) yields an 
efficiency of Bi = 1; see Prob. 7.6-11. Thus, the ideal feed pattern of (7-228) will 
lead to 100% aperture efficiency if no ohmic or achievement losses are present. The 
ideal feed must, however, be infinitely large in order to produce the discontinuous 
pattern. 

Usually, (7-226) cannot be evaluated analytically and must either be estimated 
based on canonical distributions or evaluated numerically. However, there is one 
feed pattern function that is used to model the patterns of real feeds such as conical 
corrugated horns and that can be handled analytically. This pattern, which is dis
cussed in detail in Sec. 7.7.4, is the rotationally symmetric pattern of 

(

cosq Of 

Ff(Of) = 0 (7-229) 

The evaluation of (7-225) and (7-227) using this feed model is straightforward and 
yields 

Gf = 2(2q + 1) 

(7-230) 

(7-231) 

The evaluation of B t in (7-226) is more difficult. Expressions for Bi follow for a few 
q values [1, p. 425]: 

2 (Jo 
B· = cot -. 

I 2 

24[Sin
2 ~ + In( cos ~) r 

40[ sin4 ~ + In( cos ~) r 
14U sin2 

00 + ~ (1 - cos ( 0 )3 + 2 In( cos ~ ) r 
q = 1 

q=2 

q=3 

(7-232) 
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The edge illumination EI for this distribution from (7-208a) is 

El - 1 + cos eo q 8 
- 2 coso (7-233) 

The q-value of 2 is representative of situations encountered in practice. The taper 
and spillover efficiencies and their product found from (7-230) and (7-232) are plot
ted in Fig. 7-39. The tradeoff between taper and spillover is evident. The peak value 
is about 8i = 82% and occurs for an edge illumination of about E1dB = -11 dB. 
Thus, we arrive at a general rule: Peak aperture efficiency of a parabolic reflector 
occurs for an edge illumination of about -11 dB, or Ean(P' = a) = 0.28. It turns out 
that the peak illumination efficiency for q-values of 1 to 4 is near 82%; see Prob. 
7.6-16. In practice, the highest achievable aperture efficiency for a single reflector 
using a nearly rotationally symmetric feed pattern is about 75%. If simple feeds 
such as an open-ended waveguide are used, the aperture efficiency is about 60%. 
We now examine the remaining efficiencies responsible for gain reduction. 

The several factors that reduce gain for practical implementation reasons are 
lumped together into achievement efficiency, which is expressed using subefficien
cies as 

where 

ST. = random surface error efficiency 
SeT = cross-polarization efficiency 

Sblk = aperture blockage efficiency 
s.", = reflector phase error efficiency 
s"'f = feed phase error efficiency 

(7-234) 

All these efficiencies can range from 0 to 1, but for properly designed systems they 
are just slightly less than unity. We now discuss them. 

Random surface deviations from the ideal shape of a reflector cause gain reduc
tion and side-lobe increase. This is due to the distortions in the aperture phase 
because of the consequent departure from equal ray path lengths of a focused re
flector system. Random surface error efficiency ST. is the efficiency factor associated 

0.8 

~ 0.6 

J 
~ 0.4 

0.2 
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o -5 -10 -15 -20 -25 

Edge illumination (EI), dB 

Figure '·39 Aperture taper 8 t , 

spillover B .. and illumination Bi 

efficiencies for a cos2 Of feed 
pattern (q = 2) as a function of 
edge illumination E1. 
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with gain loss from random reflector surface errors. This efficiency can be expressed 
in terms of the rms surface deviation 5, which is approximately one-third of the 
peak-to-peak error. For surface errors that are not large and have a correlation 
length that is small compared to the reflector size, 

STS = e-(
47T8IAf = 685.8(51,\)2 dB (7-235) 

21TI,\ converts the surface errors to phase and the additional factor of 2 accounts for 
the two-way path of the reflected rays. This result was derived for a flat reflector 
with Gaussian distributed errors, but it works well in practice [53]. It can be seen 
from (7-235) that for 5« '\, the efficiency is nearly 100%. For a fixed random error 
5, as frequency increases such that 5 varies from 0.01'\ and O.H, the efficiency de
creases from 0.98 to 0.21. The corresponding gain loss from (7-235) is 0.07 to 6.9 dB. 
We conclude that random error loss is in transition for 5 near 0.01'\. Smaller errors 
are negligible, whereas larger errors can be a significant problem. The manufactur
ing techniques for a reflector determine its surface accuracy. Machined metal re
flectors are the most accurate with 5 near 0.04 rom (0.001 in.). Mass production of 
reflectors that are a few meters in diameter or less using presses and molds yields 
slightly larger errors and this accuracy degrades for larger reflectors. 

Cross-polarization efficiency SeT has contributions due to the reflector(s) and the 
feed antenna. The former is usually small (except for offset reflectors) and is ne
glected. Feed antennas have a component that is orthogonal to the desired polar
ization. The associated power ends up in the far field and is wasted-hence, a gain 
loss. Typical feeds yield SeT values from 96 to 99% [54], corresponding to gain losses 
of from 0.2 to 0.04 dB. 

Structures placed in front of a reflector such as the feed, subreflector, and support 
hardware will block rays exiting the aperture and scatter power into the side-lobe 
region. A simple approximate formula is available for aperture blockage efficiency 
[54]: 

(7-236) 

where Ab is the blockage area projected onto the physical aperture of area Ap- The 
square is present because of gain loss due to a decrease of on-axis power by blockage 
and due to the increase in off-axis power by redirection of the same power into the 
side lobes. The aperture taper efficiency St is included to weight the central area 
more heavily where blockage is usually present. For optimum operation, St is about 
0.89; see Prob. 7.6-16(b). Then for blockages of AblAp = 1,5, and 10%, Sblk = 0.98, 
0.89, and 0.79, respectively. 

Under ideal circumstances, reflector antennas have uniform aperture phase. As 
with hom antennas, phase errors in the aperture plane lead to gain loss and pattern 
deterioration [54]. Phase errors arise for the following reasons: 

a. Displacement of the phase center of the feed antenna off the focal point. The 
reflector is said to be defocused. Lateral displacement causes beam scanning 
as discussed in Sec. 7.6.5. Often, these errors can be corrected by repositioning 
the phase center of the feed antenna to the focal point. 

h. Deterministic deviations of the rejlector(s) from design shapes. For example, 
a single reflector that deviates from a paraboloidal shape with a "potato chip" 
distortion over the entire reflector will produce a smooth phase error over the 
aperture. Forces such as wind, temperature gradients, and differential gravity 
effects in addition to manufacturing defects cause deterministic errors whose 
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efficiency is represented with B</>r' Only sophisticated techniques such as array 
feeds are capable of correcting for deterministic errors [55]. 

c. An impeifect feed antenna phase center. The loss is represented by B"'f and 
can be partially compensated by feed repositioning [54]. 

d. Random sUiface e"or effects. These effects cannot be corrected. The associ-
ated efficiency factor Brs is given in (7-235). 

The first three listed effects can be combined into phase-error efficiency Bph' Since 
random phase errors are usually the dominant effect, Brs is shown explicitly in 
(7-234). 

The diffraction effects mentioned in Sec. 7.6.1 also causegain loss, but are usually 
small compared to spillover loss [54]. This and other sources of gain loss not spe
cifically mentioned are included in Ba • 

lt is important to remember that a reflector antenna usually includes some pro
cessing components such as an orthomode transducer (OMT) to separate orthog
onal polarizations at the feed. These components are lossy and reduce the gain. 
Their losses, along with other losses such as radome loss, are all included in e r' 
Systems using offset reflectors usually place the upconverter/downconverter hard
ware immediately behind the feed horn because aperture blockage is not a problem. 
This greatly reduces the RF transmission line loss compared to an axisymmetric 
reflector with a transmission line running from the feed to the rear of the reflector. 

Although highly approximate, it is helpful to have a "typical" aperture efficiency 
value for a reflector antenna. For many applications, it can be approximated by 

Bap "" 0.65 (7-237) 

7.6.7 Other Reflector Antennas 

The principles of reflecting surfaces for focusing have been employed in optical 
telescopes for several centuries. The reflector antenna, however, did not appear 
until 1888 when Hertz used a cylindrical parabolic zinc mirror, fed with a dipole 
along the focal line and connected to a spark-gap generator as shown in Fig. l-la. 
Several other scientists investigated reflectors shortly after Hertz's work. But the 
use of reflector antennas did not fully emerge until shortly before World War II 
when in 1937 Grote Reber constructed a 9.l-m-diameter prime-focus, reflector an
tenna for radio astronomy. A more detailed history of reflector antennas is found 
in [56]. 

Single and dual parabolic reflectors, as described in this chapter, were developed 
roughly from World War II through' 1960. Since that period, modifications to the 
basic reflector types have been introduced for the purpose of increasing aperture 
efficiency or for special antenna pattern-shaping applications to produce a pencil 
beam, a fan beam, a shaped main beam, low side lobes, or multiple main beams. In 
this section, we introduce a few of the many types of reflector antennas that are in 
common use. 

A parabolic reflector with a circular perimeter and a simple feed at the focal point 
as in Fig. 7-27 is used to produce a pencil-beam pattern that is rotationally sym
metric. As we have seen, the configuration can be axisymmetric or offset, and sub
reflectors can be used to form a multiple reflector. There are many applications for 
a high-gain reflector antenna with different beamwidths in the principal planes. An 
example is shown in Fig. 7-40a, which is a single parabolic reflector with wider 
horizontal than vertical aperture extent. This produces a narrower main beam in 
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the horizontal plane as needed for VSAT (Very Small Aperture Terminal) satellite 
communications. The narrow beam is in the geostationary satellite arc to avoid 
interference between adjacent satellites. The feed antenna must have a broader 
pattern in the horizontal plane for proper dish illumination. A pattern with different 
principal plane beamwidths can also be produced with a parabolic cylinder as shown 
in Fig. 7-40b, which has a parabolic cross section in one plane and a line cross section 
parallel to the reflector axis. The narrow beamwidth is in the plane containing the 
reflector axis and requires a feed that extends along the focal line. The comer re
flector antenna discussed in Sec. 5.5.3 is a simplified version of the parabolic cylinder 
that uses flat metallic sides. The parabolic torus of Fig. 7-40c is, in a sense, a curved 
version of the parabolic cylinder, having a parabolic and circular cross sections in 
the principal planes. A popu1ar application for the parabolic torus employs multiple 
feeds located along the focal arc to produce separate beams for receiving different 
satellites with a single earth terminal antenna. Aperture efficiency is sacrificed, but 
there is a cost savings over using several antennas. The spherical reflector of Fig. 
7-40d, with a circular cross section in all planes containing the reflector axis, pro
duces a pencil beam but with lower aperture efficiency than a parabolic version due 
to nonuniform aperture phase; equivalently, there is a focal region rather than a 
focal point. However, the feed can be moved over the focal region to scan the beam 
with lower gain loss than experienced when displacing a feed from the focal point 
of a parabolic reflector. The horn reflector antenna of Fig. 7-40e is formed by joining 
a hom to an offset parabolic reflector. It is very popular for terrestrial microwave 
communication links because of its low side and back lobes. 

Finally, we mention that shaped reflectors are used to produce shaped beams for 
either optimum power distribution in desired directions or to reduce power in di
rections of interference. Geometrical optics-based techniques are usually used for 
synthesizing shaped beams [57]. 

(a) Non-circular aperture 
parabolic reflector. 

Sphere 

Parabola 

Line 

(b) Parabolic cylinder. 

Hom 

.... Focal 
line 

(d) Spherical reflector. (e) Hom reflector. 

Figure 7-40 Other reflector antenna types. 
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Circle 

( c) Parabolic torus. 
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7.7 FEED ANTENNAS FOR REFLECTORS 

A reflector antenna system feed must be fed properly in order to realize maximum 
performance, such as high aperture efficiency. The feed is referred to as the primary 
antenna and the reflector is called the secondary radiator. This section presents 
design principles and the types of commonly used feed antennas. 

7.7.1 Field Representations 

The electric field from a feed antenna can be expressed in general, following the 
geometry of Fig. 7-25, as 

e-jf3rj A A 

E, = Vo - [UiO" cfJ,)Of + ViOf' cfJf)cf»,] (7-238) 
rf 

Rarely are Uf and Vf known for all angles. Instead, usually only the principal plane 
patterns are available: UiOf' cfJf = 0) = CE(Of) in the E-plane and Vf(O" cfJ, = 
90°) = C~Of) in the H-plane. Then the field from the feed is found approximately 
for any angle cfJf by interpolation. If the feed is purely linearly polarized, it can be 
modeled in terms of its principal plane patterns as 

e-jfjrj 
A A 

E, = Vo -- [CE(Of) cos cfJf Of - C~Of) sin cfJf cf»f] xrPolarized (7-239a) 
rf 

or 

YrPolarized (7-239b) 

As an example, the E-plane and H-plane of an xrPolarized short dipole are 

CE(Of) = cos Of' C~Of) = 1 xrPolarized short dipole - (7-240) 

As illustrated in Fig. 7-28 and with (7-206), cross-polarization is present in the ap
erture of an axisymmetric reflector fed with a dipole antenna and the resulting 
far-field patterns contain cross-polarization except in the principal planes. 

An axisymmetric reflector will have a rotationally symmetric secondary pattern 
and very low cross-polarization if it is fed with a rotationally symmetric feed pattern: 

CE(Of) = C~Of) balanced feed (7-241) 

A feed that creates such a pattern is referred to as a balanced feed. The field rep
resentations pf (7-239) for a balanced feed reduce to 

e-jfjrj 
A A 

Ei = Vo -- Ff(Of)[cOS cfJf Of - sin cfJf cf»f] 
rf 

e-jfjrj 

= Vo -- Ff(Of)v = Evv xrpolarized 
rf 

e-jfjrj 
A A 

EJ = Vo -- Ff(Of)[sin cfJf Of + cos cfJf cf»f] 
rf 

YrPolarized 

(7-242a) 

(7-242b) 

These correspond to vertical (v) and horizontal (h) feed polarizations with pure 
linear polarizations in the xfzr and Yfzrplanes, respectively. Note that they have 



350 Chapter 7 Aperture Antennas 

a rotationally symmetric pattern Ff(Of). Also, there is no cross-polarization since, 
for example, with the vertically polarized feed Ej • ii = Ev v . ii = o. 

The aperture electric field for a balanced xrPolarized feed from (7-205) is 

(7-243) 

This corresponds to the GO model of (7-198) and has no cross-polarization. How
ever, there will be a small amount of off-axis cross-polarization in the secondary 
pattern that is not accounted for here and arising from the axial currents (z-directed) 
on the surface of the reflector. 

7.7.2 Matching the Feed to the Reflector 

There are two equivalent viewpoints that can be used to select a feed for proper 
illumination of a reflector for high aperture efficiency: Matching the feed pattern to 
the reflector or matching of the feed antenna aperture distribution to the focal field 
distribution. We discuss these approaches in this section. 

As noted previously, the feed pattern is matched to the reflector when its pattern 
gives about a -II-dB edge illumination. The governing equation for axisymmetric 
reflectors, (7-208), can be solved using the popular cosq Of feed pattern model to 
determine the required half-power and -lO-dB beamwidths. The result is plotted 
in Fig. 7-41. These curves are very useful in reflector design. Also shown in Fig. 7-41 
is the reflector edge angle 00 from Fig. 7-26b. 

The focal field matching approach involves a plane wave incident on the reflector. 
In the limit of infinite frequency, the rays converge to the focal point. In practice, 
the received fields extend over a finite region near the focal point, resulting in a 
focal plane distribution (FPD). It turns out that the FPD is approximately the Fou
rier transform of the aperture plane distribution (APD), with increasing accuracy 
with larger FID [58]. So, the uniform APD created by the incident plane wave leads 
to a sin(u)/u form FPD and 100% aperture efficiency. The purpose of the feed is to 
capture the FPD. In fact, if the aperture distribution of the feed antenna placed in 
the focal plane matches the FPD, the aperture efficiency will be 100%. However, a 
feed of infinite extent would be required to collect all the fields. This "ideal feed" 
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for an axisymmetric parabolic reflector has a point phase center and pattern that is 
rotationally symmetric, extending over a cone only out to the reflector rim and 
compensating for spherical spreading loss. This is expressed functionally in nor
malized form in (7-228). The pattern discontinuity at the reflector rim (Of = (0 ) 

gives the required uniform APD and zero outside. This pattern is impossible to 
achieve. The Fourier transform gives a FPD with infinite extent, requiring an infi
nite-sized feed to realize. 

A classical feed for producing the purely linearly polarized aperture distribution 
as in (7-243), yielding low cross-polarization in the secondary pattern, is the Huy
gen's source. Its rotationally symmetric pattern leads to high efficiency when feeding 
an axisymmetric parabolic reflector. The development of the Huygen's source be
gins by reexamining the aperture fields created by a short dipole feeding a parabolic 
reflector. The electric fields of an xrPolarized short dipole in (7-206) have cross
polarized components as indicated in Fig. 7-28. This means that the total aperture 
electric field has outward curvature as shown in Fig. 7-42a; Opposite curvature fields 
as in Fig. 7-42b are created by a Yrdirected magnetic dipole (see Sec. 2.4.2) )at the 
focal point. The combination of crossed electrically-small electric and magnetic di
poles produces the purely linearly polarized field of Fig. 7 -42c. The Huygen's source 
aperture fields can be derived using (7-243) for a short dipole and their dual form 
for a magnetic dipole feed; see Prob. 7.7-4. The magnetic current required to pro
duce an electric field from the magnetic dipole equaling that for the electric dipole 
is found by equating the components of (l-72b) and (2-44), yielding 1m = 'TIL Prac
tical Huygen's sources are discussed in Sec. 7.7.4. 

(a) Aperture electric field when fed 
with short dipole. 

(b) Aperture electric field when fed with an 
electrically small magnetic dipole. 

( c) Aperture electric field when fed with 
crossed electric and magnetic dipoles. 

Figure 7·42 Aperture electric fields of an axisymmetric parabolic antenna with various 
feeds. 
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7.7.3 A General Feed Model 

A popular representation for feed patterns is the cosq 8f pattern given by 

(7-244) 

which for a balanced feed reduces to 

(7-245) 

The value of q (or q E and q H) is chosen to match the pattern of a real feed antenna 
at one point in addition to the unity beam peak: 

10g[Ff (8i)] 
q = log(cos 8i) (7-246) 

where 8j is the match point, such as the -3- or -10-dB pattern point or 80 , An 
advantage of using the simple pattern form of (7-245) is that it can be used to 
evaluate important parameters such as the feed antenna directivity: 

G
f 

= 2(2qE + 1)(2qH + 1) 
qE + qH + 1 

which reduces to 2(2q + 1) as in (7-231) for a balanced feed. 

(7-247) 

We now have all the tools to formulate a simple procedure for designing an 
axisymmetric reflector using the following steps: 

L Determine the reflector diameter. The diameter to achieve a required gain is 
found using (7-77) if an aperture efficiency value can be assumed. If the beam
width is specified, the diameter is found by solving the following for D: 

A 
HP = 1.18 D rad (7-248) 

which is a good approximation for reflectors with a -l1-dB edge illumination. 
2. Choose FID. The normal range of F/D values is 0.3 to 1.0. Higher values lead 

to better cross-polarization performance, but require a narrower feed pattern 
and, hence, physically larger feed antenna. 

3. Determine the required feed pattern. The edge illumination is specified for a 
desired performance and the q-value for a cosq 8f feed model is found by 
solving (7-233) for q: 

log [ EI( 1 + 16(;/D)2) ] 
q= 

10g[ cos( 2 tan-
1 4(~D») ] 

(7-249) 

EI = 0.28( -11 dB) is used for optimum gain. 

The final step in the complete design process is to select a feed antenna that ap
proximates the cosq Of pattern with the q-value found from (7-249). The next two 
subsections address feed design. This subsection is closed with a comprehensive 
example. 
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Figure 7·43 Aperture field distribution for 
axisymmetric parabolic reflector of Example 
7-9 (dashed curve) along with the parabolic
squared-on-a-pedestal distribution with C = 
0.28 (solid curve). 
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Design of an Axisymmetric Reflector Antenna 

Suppose that a high-gain, narrow beam antenna is required at 10 GHz. The axisymmetric 
parabolic reflector antenna is a good choice. To achieve a 10 half-power beamwidth, the 
required diameter follows from (7-248) as 

D = 1.18A = 1.18(0.03 m) = 2.0 m 
'1T '1T 

HP 1800 1 . 1800 

The FID is chosen to be 0.5 for low cross-polarization. Solving (7-249) for the optimum case 
o~ EI = ~.28 g!ves a value of q near 2. The edge illumination value is vermed-1lSing (7-208) 
WIth (Jo - 53.1 . , 

EI = -FT - Lsph = 20log(cosq (Jo) - 20Iog[(1 + cos (Jo)/2] 

= -8.86 - 1.93 = -10.79 dB = -11 dB 

The aperture distribution based on (7-208) is plotted in Fig. 7-43 along with a parabolic
squared taper on a pedestal with C = 0.28. The agreement suggests that the parabolic-squared 
tapered circular aperture model works well for reflectors. The illumination efficiency follows 
from (7-232) for q = 2 as Bi = 0.82. The spillover efficiency from (7-230) is 
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§: 
~ -30 

Bs = 1 - cos2q+1 (Jo = 1 - coss 53.e = 0.92 

6, degrees 

Figure 7-44 Pattern for the 2-m 
axisymmetric parabolic reflector 
antenna of Example 7-9 computed 
using the PRAC code. 
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So, 

s, = s;lss = 0.82/0.92 = 0.89 

This is consistent with Table 7-lh for the parabolic-squared on a -ll-dB pedestal distribu
tion. The radiation pattern in the 45° plane computed using PRAC (see Appendix G) is 

. shown in Fig. 7-44. See Prob. 7.7-3 for gain evaluation. 

7.7.4 Feed Antennas Used in Practice 

The ideal feed of (7-228) produces a uniform amplitude and phase distribution that 
compensates for spherical spreading loss and does not have spillover. However, it 
cannot be realized in practice. A practical feed is smaller than a few wavelengths 
in diameter and has a broad pattern, which can usually be modeled with a cosq ()f 

pattern. If high aperture efficiency is desired, a feed is selected that has the following 
characteristics: 

1. The feed pattern should be rotationally symmetric, or balanced, as in (7-245). 
2. The feed pattern should be such that the reflector edge illumination is about 

-11 dB, as discussed in Sec. 7.7.2. 
3. The feed should have a point phase center and the phase center should be 

positioned at the focal point of the reflector. 
4. The feed should be small in order to reduce blockage; it is usually on the order 

of a wavelength in diameter. 
5. The feed should have low cross-polarization, usually below - 30 dB. 
6. The above characteristics should hold over the desired operational frequency 

band. 

Usually, the feed is responsible for limiting the performance of a reflector antenna 
system. 

The simplest feed antenna is a dipole, which is often combined with some type 
of metallic backing to reduce direct feed radiation in the direction of the reflector 
main beam. This not only reduces aperture efficiency, but also leads to significant 
cross-polarization since it is the unbalance in the principal plane patterns that most 
strongly influences cross-polarization, as seen in (7-205). Dipoles are widely used as 
feeds for reflectors operating in the UHF range. Aperture efficiency is, however, 
low. For example, the illumination efficiency of the dipole-fed reflector in Fig. 7-29 
is only 24%. At frequencies above a few GHz, waveguide and small horn antennas 
are used. 

The open-ended rectangular waveguide and rectangular horn antennas operating 
in the dominant TElO mode, discussed in Secs. 7.2 and 7.4, respectively, are used as 
feeds. Circular waveguides and conical horns operating in the dominant TEll mode 
are also used as feeds and provide more symmetric principal plane patterns. Next, 
we discuss these two feed antennas, followed by a discussion of multimode feeds. 

The open-ended circular waveguide has cross-polarization below -30 dB. It is 
small in size, with diameters from 0.8 to 1.15A and -10-dB beamwidths of about 
140 to 104°, respectively. The E- and H-plane beamwidths are not greatly different 
[32]. Equal principal plane beamwidths occur for a diameter of 0.96..\ where 
BW -10 dB = 118°. This provides a good match to a reflector with ()o = 59°, or 
FID = 0.44. An axisymmetric parabolic reflector with this feed has 8i = 0.74 [32]. 

Conical horn antennas behave similarly to pyramidal horn antennas and display 
optimum gain with 52 to 56% aperture efficiency [59]. The half-power beamwidths 
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under the condition of optimum gain are HPE = 1.05A1df and HPH = 1.22A1df [60], 
which can be used with the cosq Of feed model to perform reflector design. 

The simple feeds discussed above operate in their dominant mode (TElO for rec
tangular and TEll for circular) and have unbalanced principal plane patterns. This 
is due to the markedly different amplitude distributions that are uniform in the E
plane and taper to zero in the H-plane. Since the aperture phase errors caused by 
the spherical phase fronts are strongly frequency-dependent, equal principal plane 
patterns can be obtained only over a narrow frequency range. Wider bandwidth
balanced feeds with low cross-polarization can be achieved by introducing higher
order modes, leading to a multimode horn feed. 

There are several forms of multimode feed horns [59]. Here, we consider the 
most popular form, the dual mode (conical) horn or Potter horn [61]. The operating 
principle of the dual mode hom is similar to the Huygens' source of Fig. 7-42. In 
addition to the dominant TEll mode of the conical hom, a TMll mode is generated 
internal to the hom that has little effect on the H-plane pattern, but with proper 
amplitude and phase will alter the TEll mode field distribution in the E-plane to 
be nearly like that in the H-plane. The electric fields of the separate modes as well 
as their combination are shown in Fig. 7-45a. Note that the modes reinforce in the 
central region of the feed aperture and cancel around the aperture perimeter, giving 
the desired circular symmetry and pure linear polarization. Conversion from the 
TEll mode to the TMll mode can be accomplished with an iris, dielectric ring, flare, 
or, as shown in Fig. 7-45b, with a step. Proper TMll mode amplitude is controlled 
by the step size and phase is controlled by the distance d. The hom diameter must 
be greater than 1.3A and has HP = 1.26A1df ; thus, HP < 550 and the feed is usually 
used with large FID reflectors [59]. Bandwidths of 10% are typical. 

The limited bandwidth of the dual mode hom can be overcome while still achiev
ing axial beam symmetry, low side lobes, and low cross-polarization by using a 
hybrid mode feed. Here, the mixture of TEll and TMll modes occurs in a natural 
way and propagates with a common phase velocity, forming what is known as a 
hybrid HEll mode. This leads to bandwidths of 1.6: 1 or more. The most popular 
hybrid mode feed is the corrugated (conical) horn. Some variation of the corrugated 
hom is used as the feed for most of today's microwave reflector antennas. There is 
no exact formulation for the corrugated hom, but considerable design data are 
available [59, 62]. The basic principle is to provide the same boundary conditions 
around the inside of the hom. This is accomplished using corrugations (or grooves 

1Mll TEll and 1Mll 

(a) Hom aperture electric field distribution. 

\ 
I 
I 

Figure 7-45 The dual mode feed 
(b) A dual mode hom that uses a step to generate the 1Mll mode. hom antenna. 
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Figure 7-46 The corrugated feed hom antenna. 

or teeth) as shown in Fig. 7-46. When the corrugation depths de are a quarter
wavelength, the short circuit at the bottom (B) is transformed to an open circuit at 
the surface (A), choking off current. If there are several corrugations per wave
length, the surface appears to be uniform. The axial current conditions are equiv
alent to no azimuthal magnetic field. Similarly, an azimuthal electric field is not 
possible due to the shorting effect of the teeth edges. Thus, all fields decay to zero 
at the walls, yielding symmetric hom aperture fields and, consequently, a far-field 
pattern from the hom that is symmetric down to as low as -25 dB. This symmetry 
along with low side lobes leads to low spillover when the hom is used as a feed. 

The corrugated hom in Fig. 7-46 is often called a scalar horn because of its field 
direction independence. Horns with flare angles a from 0 to 90° are used in practice, 
but the term scalar hom is usually reserved for the large flare angle cases, which we 
consider further. 

The corrugated hom has the desirable feature for feed antennas of a phase center 
that is stable with frequency. Of course, the phase center of the feed is positioned 
at the focal point of a reflector system for maximum gain. The phase center of the 
corrugated hom is at the hom aperture center for small tl. and moves along the axis 
toward the throat as tl. increases, becoming fixed at the hom apex for tl. > 0.7>.. [59, 
Chap. 15]. It can be shown from the geometry in Fig. 7-46 that 

d. a 
tl. = -L tan-

2 2 
(7-250) 

A simple model is not available for the patterns of corrugated horns, but curves 
relating the beamwidth of the feed to its geometry (df and a) are available [27]. 
Also, the following equation can be used to design a corrugated hom feed: 

BW -12 dB = 0.8 a (7-251) 
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PROBLEMS 

7.1-1 An ideal dipole with an infinitesimal current centered along the z-axis has only a 
8-component of E. If this uniform current element is now rotated to line up with the x-axis, 
there will be both 8- and «p-components. Make the necessary changes to the far-zone E 
expression for the z-directed current case to obtain the far-zone E expression for the 
x-directed current case. Sketch the E and H field orientations (not the pattern) for the 
x-directed ideal dipole in the xz- and yz-planes. 
7.1-2 Use the principle of duality to derive (7-5) and (7-6) from (7-3) and (7-4), respectively. 
7.1-3 Show that (7-24) follows from (7-22) and (7-23). 



7.1·4 Show how (7-26) follows from (7-6). 
7.1·5 Show how (7-26) follows from (7-17). 
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7.1-6 If the incident field in Example 7-1 is x-polarized, write radiation field Eq, and the 
pattern F( 0). Your answer will be that of (4-17) with a coordinate change. Is the appropriate 
boundary conditiqn for Eq, satisfied on the conducting plane? 
7.1·7 Derive (5-73). 
7.2·1 Derive (7-34). 
7.2·2 Use geometric arguments to prove that du dv = cos 0 dO, where dO = sin 0 dO de/>; 
that is, sketch a hemisphere and project the intersection of the differential dO with the 
hemisphere onto the uv-plane. 
7.2·3 For the open-ended waveguide of Example 7-3: 

a. Numerically evaluate the pattern expressions to verify the results in Fig. 7-10. Plot the 
two computed patterns. 

b. Numerically evaluate and plot the E-plane patterns of (7-57b) and (7-58b). (Experi
mental data are available in [4].) 

c. Find the HPs for the free-space case and compare to that computed using (7-42). 
Explain the differences. 
7.2-4 The open-ended waveguide of Fig. 7-9 can be more accurately modeled by including 
the reflection coefficient at the aperture f and the waveguide phase constant {3g = 2'1Tlllg, 
where llg = A/V1 - (A/2a)2. The aperture fields are given by [4] 

and 

where Zo = w, .. t!{3g. 
a. Derive complete expressions for the far-field electric field components. Use the mag

netic and electric current equivalent current formulation. 
b. Write the normalized E- and H-plane pattern expressions. 
c. Write the normalized obliquity factor in the principal planes for the case when the 

waveguide is matched (f = 0) and the guide phase velocity is that of free space. 
7.3·1 Prove (7-63). 
7.3·2 Prove that the uniform amplitude aperture excitation yields the highest directivity of 
all uniform phase excitations. Hint: Use (7-66) and the Schwarz inequality 

for any functions f and g. Let g = 1 and f equal the aperture field. 
7.3·3 Show that the aperture taper efficiency is j for a rectangular aperture with a uniform 
amplitude distribution in one direction and a cosine-squared distribution in the other. 
7.3·4 A rectangular aperture (Lx by Ly) has a field distribution that is cosine-tapered in both 
the x- and y-directions. Derive the directivity expression. What is the aperture taper effi-

. ? Clency. . .. 
7.3·5 cOmpute the directivity in decibels for a red~~ar aperture with Lx ~ lOll and Ly 
20ll for (a) Ii completely uniform aperture illumillation·and (b) a cosine amplitude taper in 
one direction and a uniform taper in the other aperture direction. 
7.3·6 Evaluate the aperture taper efficiency for a triangular tapered, rectangular aperture 
distribution where . 

Ea(x', y') = [1- 2t!]x, !x'i s Lx, 
2 

L !y'!s...!. 
2 

7.3·7 Strictly speaking, is the uniform aperture distribution physically realizable? Why? 
7.3-8 An antenna operating at 150 MHz has a physical aperture area of 100 m2

, a gain of 
23 dB, and a directivity of 23.5 dB. Compute (a) effective aperture A., (b) maximum effective 
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aperture A.m, (c) aperture efficiency sap' (d) radiation efficiency en and (e) aperture taper 
efficiency St. 

7.3-9 Verify the last of (7-94). 
7.3-10 The general antenna gain relation of (7-77) includes a frequency-squared dependence. 
However, the class of frequency-independent antennas displays nearly constant gain over 
large frequency variations. Explain this apparent paradox. 
7.3-11 A hom antenna with a 185.5 x 137.4 em rectangular aperture has the following mea
sured parameter values at 0.44 GHz: HP£' = 30°, HPH • = 27°, and G = 15.5 dB. 

a. Compute the aperture efficiency. 
b. Estimate the gain from the measured half-power beamwidths. 

7.3-12 Repeat Prob. 7.3-11 for a hom with a 28.85 x 21.39 cm aperture and HP£' = 12°, 
HPH" = 13°, and G = 21.1 dB at 6.3 GHz. 
7.3-13 A 3.66-in (12-ft) diameter circular parabolic reflector operates at 460 MHz. The mea
sured parameters of this antenna are G = 22.2 dB and HP£, = HPH • = 12S. Estimate the 
gain using both (7-97) and (7-95). 
7.3-14 Estimate the gain of a circular parabolic reflector operating at 28.56 GHz in two ways: 

a. Using only its size, which is 1.22 m (4 it) in diameter. 
b. Using only the measured half-power beamwidths, which are HP£' = 0.605° and 

HPH" = 0.556°. 

7.3-15 a. Prove (7-86) for a separable distribution using (7-72) and Prob. 4.2-11. 
b. Using sap = sapxSapy and assuming er = 1, write expressions for Bapx and Sapy" 

c. For a general aperture distribution, show that 

1 [f I lEal dS r 
St = Ap I I IEal2 dS 

7.3-16 Show that the directivity-beamwidth product for a uniform phase rectangular aperture 
with a cosine amplitude taper in the H-plane and uniform amplitude in the E-plane is 35,230 
degZ. 
7.3-17 A geostationary satellite is 42,000 km from the center of the earth. If the -3-dB 
pattern points fall near the edge of the earth, find an approximate value for the spacecraft 
antenna'gain. Note that the result is independent of frequency. 
7.3-18 A Gaussian power pattern of half-power beamwidth HP in degrees is 

Pn(6) = e-(4In2)(81HP)2 

Derive the following approximate directivity expression for narrow beam Gaussian patterns: 

D = 36,407 
HpZ 

7.3-19 Hom antennas used as feeds for reflectors have patterns that are well approximated 
by 

0$ 6 $ 'Tf/2 

a. Derive the directivity expression D = 2(2q + 1). 
b. Compare directivity values computed· using (7-92) and (7-94) for q = 0, 1, 5, 10, and 

50; tabulate the results. 
7.4-1 Derive the expression for RH in (7-100). 
7.4-2 Derive the H-plane sectoral hom radiation field expression (7-106) to (7-108) by chang
ing to complex exponentials and then completing the square in the exponents in the inte
grand. 
7.4-3 In the H-plane pattern expression of (7-117) and (7-118) for an H-plane sectoral hom: 

a. Show that Sl follows from sl of (7-109). 
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b. Show that the phase term (7T/8t)[(AIA) sin (J + 112]2 follows from the corresponding 
term in (7-108). 
7.4-4 Derive the directivity formula of (7-120) for an H-plane sectoral hom from (7-66). The 
numerator in (7-66) can be evaluated using (7-106) through (7-108). 
7.4-5 Write a computer program to evaluate Fresnel integrals. Compute C(x) and S(x) for 
x = 0, 1, 2, 3, 4, and 5. Tabulate the values along with those from a math table, giving the 
deviation from the known values. 
7.4-6 The H-plane pattern for an H-plane sectoral hom arises from the first integral in 
(7-106). 

a. First evaluate this integral for a no phase error condition. 
b. Show that the on-axis value of the H-plane pattern relative to the on-axis value of the 

zero phase error case is given by 

c. Evaluate this for t = 1,~, i, and! and compare to the values from Fig. 7-13. 
7.4-7 An H-plane sectoral hom antenna has an axial length of 5A and a flare half-angle aH 
of 12.6°. 

a. Plot the polar plot of the H-plane radiation pattern in decibels. 
b. Compute the directivity function W~b using (7-120) and compare to that obtained 

from Fig. 7-14. 
c. Since the aperture is not large relative to a wavelength, use the zero phase error di

rectivity formula of (7-74) to compute W~b. 
7.4-8 Design an optimum H-plane sectoral hom antenna with 12.15-dB gain at 10 GHz. It is 
fed with a WR90 waveguide. 

a. Find the hom dimensions employing Fig. 7-14. 
b. Draw the H-plane hom geometry to scale. 
c. Use (7-120) to compute the directivity as a check. 

7.4-9 Repeat Prob. 7.4-8(a), except use (7-121) in (7-120) instead of Fig. 7-14. 
7.4-10 Derive the E-plane sectoral hom far-zone electric field expression of (7-129). 
7.4-11 Show how the E-plane pattern magnitude expression for an E-plane sectoral hom of 
(7-132) follows from (7-129). 
7.4-12 Use physical reasoning to explain why the phase error parameters of optimum 
E-plane and H-plane sectoral horns are different. 
7.4-13 An E-plane sectoral hom antenna is attached to a WR90 waveguide. Determine the 
hom dimensions for a half-power beamwidth of 11° in the E-plane and an optimum gain of 
14.9 dB at 10 GHz. 
7.4-14 An E-plane sectoral hom has an E-plane aperture height of 24.0 em and a half-flare 
angle of 16'so.1t is attached to a WR284 waveguide. Compute the gain at 3.75 GHz (a) using 
(7-134a) and (b) using (7-139). 
7.4-15 Derive (7-141) by starting with (7-77) and using Bap = Bt4~. 
7.4-16 Start with A = 18.61 cm and verify all hom dimensions given in Example 7-7. 
7.4-17 The aperture efficiency in Fig. 7-20 for the pyramidal hom of Example 7-7 is based 
on the aperture quadratic phase error approximation. 

a. Find the aperture efficiency by the direct evaluation of (7-12Oc) and (7-134c) from 8 
to 13 GHz to verify Fig. 7-20. Then repeat, using the exact phase errors (7-123) and (7-137). 
Compare these results. 

b. Evaluate aperture efficiency at 8, 10, and 13 GHz using the approximate formulas in 
(7-149) and (7-150). Compare to results from (a); tabulate values. 
7.4-18 Explain why an optimum hom is designed for about 50% aperture efficiency at a 
frequency near the low end of its operating band as in Example 7-7. 
7.4-19 Design an optimum gain pyramidal hom antenna connected to a WR90 waveguide 
with 20-dB gain at 10 GHz. (a) Give all hom dimensions, and (b) evaluate the directivity at 
10 GHz using the exact phase errors. 
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7.4-20 A manufactured standard gain hom antenna operates from 18 to 26.5 GHz and has 
a WR42 waveguide input. The gain is 24.7 dB at 24 GHz. 

a. Use optimum gain design principles to determine the hom geometry values in centi
meters. 

b. Plot the E- and H-plane polar patterns in decibels including the (1 + cos 6)/2 factor. 
c. Determine the half-power beamwidths from pattern calculations and compare to the 

simple formula values. 
d. Evaluate the gain at the design frequency using the exact phase errors. Give the ap

ertun~ efficiency values. 
e. Compare the gain to that calculated using the approximation in (7-95) for both beam

width values found in (c). 
7.4-21 Repeat Prob. 7.4-20 for a pyramidal hom designed for optimum operation at 1 GHz 
and a gain of 15.45 dB. It is connected to a WR975 waveguide with a = 9.75 in. = 24.765 cm 
and b = 4.875 in. = 12.3825 cm. 
7:4-22 For Example 7-7, compute the half-power beamwidths using line source models from 

/Chap. 4 for the same amplitude tapers as in the hom aperture. Explain why there are devi
I ations from the values in Example 7-7. 

7.4-23 Derive the following relationship that must be satisfied for a physical realizable 
pyramidal hom antenna: 

7.4-24 A square main beam horn antenna. It is often desirable to have equal principal plane 
half-power beamwidths. This problem develops a design technique for a so-called square 
main beam pyramidal hom. If optimum design techniques under the condition of a square 
main beam are used, the resulting hom dimensions will render a hom that cannot be con
structed. To avoid this problem, we can design for a square main beam and aim for near 
optimum conditions. To do this we first determine the aperture dimensions that give the 
desired beamwidths and optimum operation. Then the axial lengths are adjusted to provide 
a physically realizable structure. This will probably not move the operating point too far from 
optimum. Follow this procedure to design a square main beam hom at 8 GHz with 12° 
beamwidths and fed by a WR90 waveguide. 

a. Determine AI A and BI A. 
b. Use the results of Prob. 7.4-23 for adjusting the axial lengths. Do this to keep the 

fractional increase or decrease of both the same, that is, use 

and 

and solve for the constant f. 
c. Evaluate the final phase error parameters t and s. 
d. Give the hom dimensions in centimeters. 
e. Evaluate the gain. 
f. Compute the aperture efficiency. 

7.5-1 Write the radiated electric field expression analogous to (7-168) using the equivalent 
current formulation that includes both electric and magnetic surface current densities. 
7.5-2 Verify that the uniform circular aperture pattern of (7-170) is unity for 6 = O. 
7.5-3 Derive the pattern expression f(6, n, C) in Table 7-1b for a parabolic taper on a ped
estal. 
7.5-4 For a parabolic-on-a-pedestal circular aperture distribution, (a) derive (7-181) using· 
(7-66), and (b) evaluate 8, for n = 1 and 2 for a -lO-dB edge taper. 
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7.5-5 For a tapered circular aperture, (a) prove that c = c"cy = V;:;;/2, and (b) show by 
examining the values in Table 7-1b that DBcir = 39,000 deg2

• 

7.6-1 Derive (7-199a). 
7.6-2 By vector diagram sketches, show that the components of the incident and reflected 
electric fields tangent to a parabolic reflector cancel and that (7-200) holds. 
7.6-3 Plot the edge illumination in decibels for a circular parabolic reflector due to spherical 
spreading loss only (i.e., the feed is isotropic) as a function of FID from 0 and 1. 
7.6-4 A commercially available parabolic reflector antenna operating at 2.1 GHz has an 
aperture diameter of 1.83 m (6 ft). Compute the gain in decibels. 
7.6-5 A commercially available parabolic reflector antenna operating at 11.2 GHz has an 
aperture diameter of 3.66 m (12 ft). Compute the gain in decibels. 
7.6-6 Analyze the reflector in Example 7-8 using a reflector computer code (see Appendix 
G). Model the feed using a cosq Of pattern with a 10-dB beamwidth of 104°. Tabulate the 
values for HP, SLL, G, and sap- Include values for the canonical distribution approach. Plot 
the pattern in decibels. 
7.6-7 A commercial axisymmetric reflector antenna used for Ku-band satellite reception 
(11.95 GHz midband) is 2.4 m in diameter and has FID = 0.37. Assuming a cosq Of feed 
pattern, (a) use a canonical aperture distribution to determine reflector performance, and 
(b) use a reflector code (see Appendix G) to evaluate performance. Tabulate results from 
(a) and (b) including G, HP, and SLL. 
7.6-8 Use a reflector code (see Appendix G) to determine the following performance param
eters for an offset parabolic reflector with D = 100A, H = 70A, FlDp = 0.466, .pf = 34.72°, 
and a cosq Of feed with q = 13.0897: (a) gain, (b) SLL, (c),XPOL peak location, (d) XPOL 
peak value in decibels relative to the main beam peak. (e) Plot the pattern in decibels out 
to 3°. 
7.6-9 A popular commercial offset parabolic reflector antenna for receiving direct broadcast 
television (12.45-GHz midband) has the following geometric parameters: D = 45.70 cm 
(18 in.), F = 26.23 em, Dp = 94.00 cm, and H = 24.15 cm. The feed has a lO-dB beamwidth 
of 40.4° and is aimed 49.5° from the reflector axis. Use a computer program to evaluate the 
radiation pattern in the principal planes. Summarize G, HPs, and SLLs in tabular form. 
7.6-10 Derive (7-224) and (7-226). 
7.6-11 Derive (7-230) and (7-231). 
7.6-12 Prove that the ideal feed of (7-228) produces 100% aperture efficiency. 
7.6-13 (a) Derive an expression for the aperture efficiency of an axisymmetric reflector fed 
with an isotropic feed antenna, and (b) evaluate for FID = 0.25, 0.5, and 1. 
7.6-14 Derive the illumination efficiency expression (7-232) for a cosq Of feed pattern. 
7.6-15 A geostationary satellite transmits at 4 GHz using a parabolic reflector antenna. The 
peak of the beam is directed toward the center of the earth disk and the - 3dB pattern points 
fall on the edge of the earth. Find the gain in decibels and the diameter of the spacecraft 
antenna in meters. (Earth diameter = 6,400 km; distance from the center of Earth to orbit 
= 42,000 km.) 
7.6-16 This problem serves to verify the claim that the -11-dB edge illumination yields about 
Si = 0.82 under a variety of axisymmetric reflector system cases. For cos2 Of feed patterns as 
in (7-229) and values of q = 1,2, and 3, find the FID value of the optimum gain axisymmetric 
reflector. Tabulate the following for each q value: FID, 20o , feed BW -lOdB, S., Si found using 
(7-232), and S,. 
7.6-17 Compute the blockage efficiency for a reflector of optimum gain for AJAp = 0.1, 1, 
2, 5, and 10%. 
7.6-18 A subreflector in a Cassegrain dual reflector has a diameter that is 10% of the main 
reflector diameter. Find the aperture blockage efficiency assuming optimum operation. 
7.7-1 Find the half-power and -10-dB beamwidths of a cosq Of feed pattern required to 
produce an edge illumination of -11 dB in an axisymmetric reflector with FID = 0.4. Give 
the value of q. 
7.7-2 Plot the aperture electric field amplitude distribution for an axisymmetric reflector with 
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FID = 0.3 and a cos2 Of feed pattern. Also, show on the same plot the parabolic-squared 
aperture distribution with the same edge illumination. 
7.7-3 For the reflector of Example 7-9, (a) calculate the gain in decibels using aperture ef
ficiency, and (b) use a reflector code to find the gain and compare to the value from (a). 
7.7-4 Derive the aperture electric field expression for the Huygens' source of Fig. 7-42. 
7.7-5 A commercial offset parabolic reflector antenna with a diameter of 1.8 m is used for 
Ku-band satellite communications. It is just fully offset (that is, h = 0) and FlDp = 0.305. 
The feed has a -lO-dB beamwidth of 76.8°. For the middle of the transmit band at 14.25 GHz, 
(a) determine the feed pointing angle that produces nearly equal edge illumination at the 
upper and lower reflector edges. (b) Use a reflector code to evaluate the reflector perfor
mance. (c) Find a canonical distribution that approximates the aperture distribution. Tabulate 
values from (b) and (c) for as many of the following parameters as possible: G, HP, SLL, 
XPOL, and Bap' 

7.7-6 An optimum gain conical hom is used to feed an axisymmetric parabolic reflector with 
FID = 0.44. Using HP = 1.14df lA as an average beamwidth expression, find the dflA value 
for maximum illumination efficiency. 
7.7-7 Derive (7-247). 
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Antenna Synthesis 

Thus far in this book, attention has been focused on antenna analysis and design. 
The analysis problem is one of determining the radiation pattern and impedance of 
a given antenna structure. Antenna design is the determination of the hardware 
characteristics (lengths, angles, etc.) for a specific antenna to produce a desired 
pattern and/or impedance. Antenna synthesis is similar to antenna design and, in 
fact, the terms are occasionally used interchangeably. However, antenna synthesis, 
in its broadest sense, is one of first specifying the desired radiation pattern and then 
using a systematic method or combination of methods to arrive at an antenna con
figuration that produces a pattern which acceptably approximates the desired pat
tern, as well as satisfying other system constraints. Hence, antenna synthesis, in 
general, does not depend on an a priori selection of the antenna type. Unfortunately, 
there is no single synthesis method that yields the "optimum" antenna for the given 
system specifications. There are, however, several synthesis methods for different 
classes of antenna types. In this chapter, we discuss the more useful synthesis meth
ods in current use. The discussion serves as an introduction to the topic of synthesis 
and should provide a foundation for studying more advanced treatments [1-3]. 

8.1 THE SYNTHESIS PROBLEM 

8.1.1 Formulation of the Synthesis Problem 

We will pose the antenna synthesis problem as one of determining the excitation of 
a given antenna type that leads to a radiation pattern which suitably approximates 
a desired pattern. The desired pattern can vary widely depending on the application 
and has the variables are listed in Table 8-1. To illustrate, consider a communication 
satellite in synchronous orbit that is required to generate separate antenna beams 
for the western United States and for Alaska. Two main beams are required, both 
shaped for nearly uniform illumination of each region. Also low side lobes may be 
specified to minimize interference over other regions of the earth, but higher side 
lobes could be permitted for directions not toward the earth. This type of pattern 
has multiple shaped main beams and a shaped side-lobe envelope. 

The antenna itself can take many forms as listed in Table 8-1. Antenna type refers 
to the geometry of the antenna and consists of continuity, shape, and size. The 
performance of an antenna is used to define the antenna classes in Fig. 1-6 and 
includes the performance parameters listed in Table 1-1. Performance parameters 
other than pattern shape can be included in the synthesis problem specifications. In 
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Table 8-1 Antenna Synthesis Variables 

Antenna Type Variables 

Continuity 
Continuous 
Discrete-array 

Shape 
Linear 
Planar 
Conformal 
Three-dimensional 

Size 

Radiation Pattern Variables 

Main beam region 
Narrow main beam 

Single beam 
Multiple beams 

Shaped beam 
Side-lobe region 

Nominal side lobes 
Low side lobes 
Shaped side lobes 

this chapter, we consider the problem of pattern synthesis. The remaining perfor
mance parameters are considered elsewhere in the book. A general synthesis pro
cedure would yield the antenna type and its excitation that produces the best ap
proximation to specified performance values including the desired pattern shape. 
No such general synthesis method exists. Instead, synthesis methods have been 
developed for each antenna type. The discussion of synthesis in this chapter is di
vided between continuous and discrete (array) antenna types. Before addressing 
these methods, we present further general remarks. 

If the radiation electric field components Eo and E", are specified in the synthesis 
problem, a secondary synthesis problem can be formulated in terms of antenna 
aperture field transform components. For example, the aperture magnetic equiva
lent surface current solution of (7-26) can be solved, giving 

Px • e-j /3r -1 cos </J sin </J Eo 

[ ] [ . ]-1[ ] 
Py . = (lP 27Tr) -cos () sin </J cos () cos </J E", 

(8-1) 

This can be used to obtain Px and Py from specified functions Eo and E",. The 
probiem is then of synthesizing desired functions Px and Py , which are Fourier 
transforms of the aperture electric field components; see (7-18). The process is sim
ilar for each of Px and Pr Therefore, we let f«(), </J) be the normalized pattern factor 
for either and frame our discussions using f«(), </J). As another example, consider a 
line source along the z-axis. If Fd «() is the normalized desired radiation .pattern, 
then the desired pattern factor is 

(8-2) 

This chapter discusses synthesis of the pattern function f( (), </J) that provides an 
approximation to the desired pattern f i (), </J). The pattern synthesis techniques will 
be presented for one-dimensional formulations with a geometry yielding f( (). That 
is, the continuous form (line sources) and the discrete form (linear arrays) will be 
treated. However, these results can be applied to two-dimensional antennas such 
as planar aperture and planar array antennas. Direct application of the methods is 
possible if the two-dimensional aperture distribution is separable (see Sec. 7.2.2). 
Then the synthesized pattern function f is used to represent each principal plane 
pattern. Synthesis methods can be separated by antenna or pattern type. Only a few 
methods exist that can be applied to a variety of antenna and pattern types [4]. 
Usually, synthesis methods for shaped beam patterns are completely different from 
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those for low side-lobe, narrow beam patterns, so we will separate the methods by 
pattern type. Line source and linear array synthesis principles with applications to 
shaped beam patterns are detailed in Secs. 8.2 and 8.3. Low side-lobe, narrow main 
beam methods are presented in Sec. 8.4. 

8.1.2 Synthesis Principles 

The radiation electric field from a line source of current (actual or equivalent) along 
the z-axis and of length L is given by (4-1) for the geometry of Fig. 1-14a. For 
synthesis problems, we are only interested in the relative pattern variations. Fur
thermore, the element factor g(O) = sin 0 is accounted for separately; for narrow
beam, broadside line sources, it is negligible. The normalized pattern factor of a line 
source follows from (4-31) as1 

1 fLI2 . 
f(O) = - i(z)eJ{3Z cos 8 dz 

A -L12 
(8-3) 

where i(z) is the normalized form of the current function I(z), and it is usually 
normalized such that (8-3) produces a pattern f(O) that is unity at its maximum. The 
linear phase shift that scans the main beam is contained in i(z); for example, see 
(4-3). For convenience, we define 

w=cosO and 
z 

s=-
A 

and w is related to u in Chap. 4 through u = ({3L12)w. Then (8-3) becomes 

f
Ll2A 

f(w) = i(s)e j2
'ITWS ds 

-Ll2A 

(8-4) 

(8-5) 

This equation forms the relationship between the relative current distribution i(s) 
and the normalized pattern factor f( w). 

Since the current distribution i(z) extends only over the length L, [that is, i(s) is 
zero for lsi> LI2,\], the limits of the integral in (8-5) can be extended to infinity, 
giving 

(8-6) 

This is recognized as a Fourier transform. The corresponding inverse Fourier trans
form is 

i(s) = f:,., f(w)e- j2
'ITSw dw (8-7) 

(See Prob. 8.1-1). 
It is important to understand the requirements on a current distribution in order 

to achieve a pattern shape. This is useful in synthesis and in finding explanations 
for pattenyabnormalities. The (linear) Fourier transform relationship between the 
current arid pattern developed in Sec. 4.3 can be used to infer the general properties 
shown in Table 8-2. These principles also apply to arrays. 

The current distribution and the pattern functions can be described mathemati-

IPrequently, tl1e z-axis is selected to be normal to tl1e line source, in which case cos 8 in (8-3) becomes 
sin 8. 
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Table 8-2 Symmetry Properties of Current Distributions and Patterns 

Definitions: 

i(s) = ir(s) + jii(S) 
i(s) = li(s)lei</>(s) = A(s)ei</>(s) 
i(s) = ie(s) + iis) 

i.(.-s) = ie(s), io( -s) = -io(s) 
li( -s)1 = li(s)1 

Properties: 

Pattern 

1. Real pattern 
f(w) = fr(w) + jO 

Real and imaginary 
Amplitude and phase 
Even and odd 

Symmetric 

Required Current Distribution 

i( -s) = i*(s): 
A(-s) = A(s) Sym. amp. 
cfJ( -s) = -cfJ(s) Odd phase 

2. Symmetric pattern 
If( -w)1 = If(w)1 

A(s) symmetric and cfJ(s) even; that is, i(s) even 
or 

3. Asymmetric pattern 

If( -w)1 * If(w)1 

A(s) asymmetric and cfJ(s) constant 

A(s) symmetric and q,(s) odd, nonzero 
or 

A(s) asymmetric and cfJ(s) nonconstant 

cally in terms of real and imaginary, amplitude and phase, or even and odd parts 
as indicated in Table 8-2. A current or pattern function is said to be symmetric if 
its magnitUde is mirror-imaged about the origin. Property 1 states that a real-valued 
pattern results if and only if the current amplitude is symmetric and the phase is odd. 
Real patterns are often used in synthesis for mathematical simplicity, but in general 
a pattern can be complex-valued. A symmetric pattern is obtained if either of the 
two conditions on the current shown in Property 2 of Table 8-2 is satisfied. Note 
the important special case that a real current distribution produces a symmetric pat
tern. This follows from the fact that a current with a symmetric amplitude and zero 
phase satisfies the first condition of Property 2. Allowing phase to float by synthe
sizing a power pattern If(w)j2 instead of a field pattern f(w) introduces an extra 
degree of freedom, qut changes the nature of the synthesis problem from linear to 
nonlinear; see [1] for a discussion of power. pattern synthesis methods. It is ques
tionable that this additional problem complexity is warranted; so we confine our
selves to real patterns. 

Often, an asymmetric pattern is required. Property 3 in Table 8-2 shows that an 
asymmetric pattern can be obtained only through the use of aperture phase control. 
An important application is the steering of a symmetric narrow beam pattern off 
broadside. This is achieved by a linear phase taper, which is an odd phase function. 

8.2 LINE SOURCE SHAPED BEAM SYNTIIESIS MEmODS 

8.2.1 The Fourier Transform Method 

The Fourier transform pair relationship for the pattern and current of (8-6) and 
(8-7) suggests a synthesis method. If fAw) is the desired pattern, the corresponding 
current distribution id(s) is found rather easily from (8-7) as 

id(s) = J:oo fd(w)e-j27r.YW dw (8-8) 



8.2 Line Source Shaped Beam Synthesis Methods 369 

This is very direct, but unfortunately, the resulting id(S) will not, in general, be 
confined to lsi ::5 Ll2>.. as required; it will usually be, in fact, of infinite extent. An 
approximate solution can be obtained by truncating id(S), giving the synthesized 
current distribution as follows: 

!
iiS ) 

i(s) = 
o 

L 
lsi ::5 -2>.. ' 

L Isl>-
2>" 

(8-9) 

The current i(s) produces an approximate pattern f(w) from (8-6). The current ia(s) 
extending over all s produces the pattern fd(W) exactly. 

The Fourier transform synthesized pattern yields the least mean-square error 
(MSE), or least mean-squared deviation from the desired pattern, over the entire 
w-axis. The mean-squared error 

MSE = f~<x> If(w) - fd(w)12 dw (8-10) 

with f(w) corresponding to i(s) in (8-9), is the smallest of all patterns arising from 
line sources of length L. The Fourier transform synthesized pattern, however, does 
not provide minimum mean-squared deviation in the visible region. 

Fourier Transform Synthesis of a Sector Pattern 

A sector pattern is a shaped beam pattern that, ideally, has uniform radiation over the main 
beam (a sector of space) and zero side lobes. Such patterns are popular for search applications 
where vehicles are located by establishing communications or by a radar echo in the sector 
of space occupied by the antenna pattern main beam. As a specific example, let the desired 
pattern be 

or, equivalently, 

cos-1 C :s; 8 :s; cos-1 ( -c) 

elsewhere 

Iwl :s; c 

elsewhere 

(8-11a) 

(8-11b) 

fd(W) is shown in Fig. 8-1a by the dashed curve. Using (8-11b) in (8-8) and (8-9) gives 

.( ) _ 2 sin(2'7TCs) 
l s - C 2'7TCS ' 

L Isl:5 -
2A 

(8-12) 

If this sin (x)/x function were not truncated, its Fourier transform (its pattern) would be 
exactly the sector pattern of (8-11). The actual pattern from (8-6) using (8-12) is 

(8-13) 

where Si is the sine integral of (F-13). Alternate means of evaluating f(w) include direct 
numerical integration or numerical Fourier transform. This synthesized sector pattern is plot
ted in Fig. 8-1a for c = 0.5 and L = lOA. The pattern is plotted in linear form, rather than 
in decibels, to emphasis the details of the main beam. Note the oscillations about the desired 
pattern on the main beam, called ripple, and the nonzero side lobes. This appearance of main 



370 Chapter 8 Antenna Synthesis 

1.0 1 
1 
1 
1 
1 

0.5 

luw) 
1 

i(s) 
1.0 

(a) The synthesized pattern (solid curve) and the (b) The current distribution. 
desired sector pattern (dashed curve). 

Figure 8-1 Fourier transform synthesis of a sector pattern using a lOA line source 
(Example 8-1). 

beam ripple and side lobes is typical of any synthesized pattern. The current distribution of 
(8-12) is plotted in Fig. 8-1b. 

8.2.2 The Woodward-Lawson Sampling Method 

A particularly convenient way to synthesize a radiation pattern is to specify values 
of the pattern at various points, that is, to sample the pattern. The Woodward
Lawson method is the most popular of the sampling methods [5, 6]. It is based on 
decomposition of the source current distribution into a sum of uniform amplitude, 
linear phase sources: 

L lsi ::5 -
2"\' 

The pattern corresponding to this component current, from (8-6), is 

. f n (w) = an Sa [ 7T ~ (w - W n) ] 

(8-14) 

(8-15) 

where the sampling function Sa(x) is defined as Sa(x) = sin(x)lx. This component 
pattern has a maximum of an centered at W = W n. The current component phase 
coefficient Wn in (8-14) controls the location of the component pattern maximum, 
and the current component amplitude coefficient an controls the component pattern 
amplitude. 

In the Woodward-Lawson method, the total current excitation is composed of a 
sum of 2M + 1 component currents as 

where 

n 
Wn = LI"\" 

(8-16a) 

Inl ::5 M, (8-16b) 
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The pattern corresponding to this current is 

M M [L ] 
few) = n'];M fn(w) = n'];M an Sa 7T A (W - Wn) 

n~M an sa[ 7T(~ W - n) ] (S-17) 

At pattern points W = Wn = nAIL, we have few = Wn) = an. Thus, the pattern can 
be made to have specified values an, called pattern sample values, at the pattern 
locations Wn of (S-16b), called sample points. The pattern sample values are chosen 
to equal the values of the desired pattern at the sample points: 

an = fd(w = wn) (S-lS) 

The Woodward-Lawson synthesis procedure is very easy to visualize. The current 
distribution required to producec a pattern with values an at locations W n is that of 
(S-16). 

The Woodward-Lawson sampling method can be made more flexible by noting 
that as long as adjacent samples are separated by the sampling interval.:lw = AIL, 
the pattern values at the sample joints are still uncorrelated, that is, (S-lS) holds. 
The total number of samples is chosen such that the visible region is just covered; 
samples located outside the visible region could lead to superdirective results. Since 
the visible region is of extent 2 and .:lw = AIL, the number of samples 2M + 1 is 
on the order of 2/(AlL), or M is on the order of LlA. 

Woodward-Lawson Line Source Synthesis of a Sector Pattern 

The sector pattern of Example 8-1 is now to be synthesized with a 10-wavelength-Iong line 
source using the Woodward-Lawson method. Sampling this pattern according to an = 

fiw = wn ) with sample locations Wn = nAIL = O.ln gives the values in Table 8-3. The sample 
value at the discontinuity (w = 0.5) could be selected as 1, 0.5, or 0 according to the specific 
application. Using a±5 = 1 gives the widest main beam, whereas a±5 = 0 gives the narrowest. 

Table 8-3 Sample Locations and Sample 
Values for a lOA Woodward-Lawson Sector 

Pattern (Example 8-2) 

Sample Location Pattern Sample 
n Wn Value an 

0 0 1 
±1 ±0.1 1 
±2 ±0.2 1 
±3 ±0.3 1 
±4 ±OA 1 
±5 ±0.5 0.5 
±6 ±0.6 0 
±7 ±0.7 0 
±8 ±0.8 0 
±9 ±0.9 0 
±10 ±1.0 0 
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1.0r 
I 
I 
I 
I 

In this case, we choose a:!:5 = 0.5 as a compromise. The synthesized pattern is computed 
using the sample values and locations of Table 8-3 in (8-17) and is plotted in Figure 8-2a. 
The sample points are indicated by dots. 

To illustrate the sampling nature of the Woodward-Lawson method, two sampling func
tions from the sum in (8-17) are shown in Fig. 8-2b for sample locations W-l = -0.1 and Wo 

= o. Note that when one sampling function is maximum, the other is zero, thus making the 
samples independent. Further, each sampling function is zero at all sample locations W n = 
nAt L, except at its maximum. When all samples are included, the value of the total synthe
sized pattern at locations W n is completely determined by the Sa function centered at that 
location. This is the beauty of the Woodward-Lawson sampling method. 

Note that the Woodward-Lawson pattern of Fig. 8-2a is a better approximation to the 
desired pattern (in the visible region) than that of the Fourier transform method in Fig. 
8-la, both generated from aID-wavelength line source. Detailed comparisons of all the sector ' 
pattern examples are presented in Sec. 8.3.3. 

The current distribution corresponding to the sector pattern of this example is plotted in 
Fig. 8-2c. It was obtained from (8-16). Note the similarity to the current distribution in Fig. 
8-lb for the Fourier transform method. This occurs because the Fourier transform of any 
pattern is the antenna current distribution. Since the patterns in Examples 8-1 and 8-2 are 

j{w) 

1 
I 
IfJw) 
I . 

0.5 

" 1.0 I, 
I, 

Sa[lOlt(w + 0.1)]:' Sa(lOltw) 
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__ '"<:'1~...L-J.....l--'--I-J....l..--L...LJ.--\-___ w = cos 8 1.0 

-1.0 -,8 -.6 -,4 -.2 0.2 0.4 0.6 0.8 1.0 

(a) The synthesized pattern (solid curve) and the desired 
pattern (dashed curve). The dots indicate 
the sample values and locations. 

0.5 

(c) The current distribution corresponding to the 
synthesized pattern. 

(b) Two component patterns at sample 
locations w_l = -{).l and Wo = O. 

Figure 8-2 Woodward-Lawson synthesis of 
a sector pattern using a IDA line source 
(Example 8-2). 
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both close to a sector pattern, their Fourier transforms (currents) must be close to that of an 
ideal sector pattern, which is sin( 1TS)/1TS in these examples. 

8.3 LINEAR ARRAY SHAPED BEAM SYNTHESIS METHODS 

In this section, the Fourier series and Woodward-Lawson methods for equally 
spaced linear arrays are discussed. These two important pattern synthesis methods 
are the array counterparts of the Fourier transform and Woodward-Lawson meth
ods of the previous section. Before presenting these methods, we model the array 
configuration for use with any synthesis method. 

Consider an equally spaced linear array along the z-axis with interelement spac
ings d. For simplicity, the physical center of the array is located at the origin. The 
total number of elements in the array P can be either even (then let P = 2N) or 
odd (then let P = 2N + 1). For an odd element number, the element locations are 
given by 

Zm = md, Iml:5 N (8-19) 

and P = 2N + 1. The corresponding array factor is 
N 

f(w) = 2: imej2'1T1n(dIA)W (8-20) 
m=-N 

where im are the element currents and again w = cos fJ. This expression is similar 
to (3-54). 

For an even number of elements, the element positions are 

2m - 1 
Zm = 2 d, 

2m -1 
Z-m = - 2 d, -N:5 -m:5 -1 

and P = 2N. The corresponding array factor is 
N 

f(w) = 2: (Lme-j '1T(2m-l)(dIA)W + imej '1T(2m-l)(dIA)W) 

m=l 

for P even. 
For comparison to a line source, the total array length is defined as 

L = Pd 

(8-21) 

(8-22) 

(8-23) 

This definition applies to both the even and odd element cases, and it includes a 
distance d/2 b~yond each end element. 

8.3.1 The Fourier S~ries Method 

The array factor resulting from an. array of identical discrete radiators (elements) 
is, of course, the sum over th~ currents for each element weighted by the spatial 
phase delay from each element to the far-field point. This array factor summation 
can be made to be of a form that is very similar to a Fourier series, just as the 
radiation integral for a continuous source resembles a Fourier transform (see Sec. 
8.2.1). To see how this correspondence comes about, we first observe that a function 
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fd(W), the desired pattern function, can be expanded into a Fourier series in the 
interval - Al2d < W < A/2d as 

~ 

f d( w) = 2: bme j2mn(dIA)W (8-24) 
m=-oo 

where 

d JM2d . b = - f (w)e-J2mn(dIA)W dw 
m A -M2d d 

(8-25) 

If we identify d as the spacing between elements of an equally spaced linear array 
and W = cos () where (J is the angle from the line of the array, the sum in (8-24) is 
recognized as the array factor of an array with an infinite number of elements with 
currents bm • 

An infinite array is, of course, not practical, but truncating the series (8-24) to a 
finite number of terms produces the following approximation to fd(W): 

N 

few) = 2: b
m

e j2mn(dIA)w (8-26) 
m=-N 

If we let the currents of each element in the array equal the Fourier series coeffi
cients, that is, 

Iml:s N (8-27) 

then (8-26) is identical to (8-20), the array factor for an array with an odd number 
of elements. 

The Fourier series synthesis procedure is, then, to use element excitations im equal 
to the Fourier series coefficients bm calculated from the desired pattern fd, as in 
(8-25). The array factor f arising from these element currents is an approximation 
to the desired pattern. This Fourier series synthesized pattern provides the least 
mean-squared error [see (8-10)] over the region -2d1A < W < 2d1A. If the elements 
are half-wavelength spaced (d = Al2), this region is exactly the visible region 
(-1 < W < 1, or 0 < () < 1T). 

A similar line of reasoning leads to the results for an even number of elements. 
In this case, the Fourier series coefficient currents are 

d JM2d . i = b = - f (w)e-l',,·(2m-l)(dIA)w dw 
m m A -M2d d , 

m;;::: 1 

d JM2d . L = b_ = - f (w)eJ'1T(2m-l)(dlA)w dw 
m m A -M2d d , 

(8-28) 

-m:s -1 

for P even. The synthesized pattern is given by (8-22). Note that if N is infinite, 
(8-22) together with (8-28) is the Fourier series expansion of f d; that is, 
few) = fd(W). 

Fourier Series Synthesis of a Sector Pattern 

For an equally spaced linear array with an even number of elements and c < Al2d, the sector 
pattern of (8-11) in (8-28) yields excitation currents 

im = Lm = 2 ~ c sa[ 7T(2m. - 1) ~ c J. 1 $; m $; N (8-29) 
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Table 8-4 Array Positions and Currents for a Fourier Series 
Synthesized Linear Array of 20 Half-Wavelength Spaced Elements 

for a Sector Pattern (Example 8-3) 

Element Number Element Position Excitation Current 
m zm im 

±1 ±0.25A 0.4502 
±2 ±0.75A 0.1505 
±3 ±1.25A -0.0900 
±4 ±1.75A -0.0643 
±5 ±2.25A 0.0500 
±6 ±2.75A 0.0409 
±7 ±3.25A -0.0346 
±8 ±3.75A -0.0300 
±9 ±4.25A 0.0265 
±10 ±4.75A 0.0237 

Since these currents are symmetric, the array factor of (8-22) reduces to 

f(w) = 2 ~1 im cos[ 71'(2m - 1) ~ w] (8-30) 

which is a real function. Note this is a special case of symmetry Property 1 in Table 8-2. 
The specific case of c = 0.5, d/A = 0.5, and 20 elements (N = 10) has an array length L = 

Pd = lOA and excitation currents from (8-29) given by 

1 :s; m :s; 10 (8-31) 

These excitation values are listed in Table 8-4, together with the element positions from 
(8-21). When these are used in the pattern expression (8-30), the pattern shown in Fig. 8-3 
is produced. 

1.0
1 

-

1 
1 
1 
1 
1 

0.5 

Figure 8-3 Fourier series 
synthesized array factor for a 
20-element, A12 spaced linear 
array (Example 8-3). The 

L.ooo.....a~IC...I..!..!.......L......-1~-L~~~.L...J.....:.LJG.::!W!I:lo.-..Jw = cos 8 desired pattern (dashed curve) 
o 0.2 0.4 0.6 0.8 1.0 is a sector pattern. 
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8.3.2 The Woodward-Lawson Sampling Method 

The Woodward-Lawson sampling method for linear arrays is analogous to the 
Woodward-Lawson sampling method for line sources (see Sec. 8.2.2). In the array 
case, the synthesized array factor is the superposition of array factors from uniform 
amplitude, linear phase arrays: 

f( ) = ~ sin[(PI2)(w - W n )(21TIA) d] 
W n=-M an P sin[!(w - W n)(21TIA) d] 

where the sample values are 

and the sample points are 

Inl S; M, Iwnl S; 1.0 

The element currents required to give this pattern are found from 

1 M 
im = - 2: a

n
e-j2'1T(Zm'A)Wn 

Pn=-M 

(8-32) 

(8-33) 

(8-34) 

(8-35) 

These results hold for arrays with either an even or odd number of elements. 

Woodward-Lawson Array Synthesis of a Sector Pattern 

Again, the sector pattern of (8-11) with c = 0.5 is to be synthesized, this time with a 
20-element, half-wavelength spaced linear array using the Woodward-Lawson method. The 
sample locations from (8-34) are Wn = O.ln. Thus, the sample locations and values are the 
same as for Example 8-2 and are given in Table 8-3. Using these and element positions Zm 
from (8-21) in (8-35) yields the array currents of Table 8-5. The pattern can be generated 
from either the Woodward-Lawson pattern expression of (8-32), or by direct array compu
tation using (8-30), which is the version of (8-22) for the symmetric case, and the array 
parameters of Table 8-5. The pattern is plotted in Fig. 8-4. 

Table 8-5 Array Element Currents and Positions Synthesized from the 
Woodward-Lawson Method for a Sector Pattern (Example 8-4) 

Element Number Element Position Excitation Current 
m Zm im 

±1 ±0.25A 0.44923 
±2 ±O.75A 0.14727 
±3 ±1.25A -0.08536 
±4 ±1.75A -0.05770 
±5 ±2.25A 0.04140 
±6 ±2.75A 0.03020 
±7 ±3.25A -0.02167 
±8 .±3.75A -0.01464 
±9 ±4.25A 0.00849 
±10 ±4.75A 0.00278 



8.3 Linear Array Shaped Beam Synthesis Methods 377 

[f(w)1 

0.5 
: Figure 8-4 Woodward-
I Lawson synthesized array 
: factor for a 20-element, Al2 
I spaced linear array (Example 
: 8-4). The desired pattern 

.."",.",....o.£.Jl.....:...1 ...L~L.....-..l~-L.~.l......L..Jl:~""""'.",..w = cos e (dashed curve) is a sector 
-1.0 --{).5 0 0.5 1.0 pattern. 

8.3.3 Comparison of Shaped Beam Synthesis Methods 

Most shaped beam antenna patterns have three distinct types of pattern regions: 
side lobe, main beam, and transition. The side-lobe region is easily recognized, and 
the side-lobe level, SLL, is defined from 

SLL = 2010 Ivalue o~ the highest. side-lobe peak I 
g maxunum of deslfed pattern (8-36) 

over the side-lobe region. The quality of fit to the desired pattern fd(W) by the 
synthesized pattern f( w) over the main beam is measured by the ripple R, which is 
defined as 

dB (8-37) 

over the main beam. Also of interest is the region between the main beam and side
lobe region, referred to as the transition region. In many applications, such as di
rection finding, it is desirable to have the 'main beam fall off very sharply into the 
side-lobe region. To quantify this, transition width T is introduced and defined as 

T = Iw /=0.9 - W /=0.11 (8-38) 

where w /=0.9 and w /=0.1 are the values of w where the synthesized pattern f equals 
90 and 10% of the local discontinuity in the desired pattern. For unsymmetrical, 
single beam patterns, there are two transition regions with different transition 
widths. Transition width is analogous to rise time in time-signal analysis. 

The shaped beam synthesis methods we have discussed in this and the previous 
section can be compared rather easily using SLL, R, and T. The sector pattern results 
of Examples 8-1 to 8-4 are presented in Table 8-6. A few general trends can be 
extracted from the table. The Woodward-Lawson methods (for both line sources 
and arrays) tend to produce low side lobes and low main beam ripple at some 
sacrifice in transition width. On the other hand, Fourier methods yield somewhat 
inferior side-lobe levels and ripples. The Fourier series synthesized pattern gives 
very sharp rolloff from the main beam to the side-lobe region; that is, small tran
sition width. 
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Table 8-6 Comparison of Synthesized Sector Patterns (c = 0.5, L = 10'\) 

Side-Lobe 
Example Figure Level, Ripple, Transition 

Method Type Number Number SLL (dB) R (dB) Width, T 

Fourier 10,\ line source 8-1 8-1a -21.9 0.83 0.0893 
transform 

Woodward- 10,\ line source 8-2 8-2a -29.8 0.27 0.1303 
Lawson 

Fourier series 20-element Al2 8-3 8-3 -22.6 0.87 0.0941 
spaced array 

Woodward- 20-element Al2 8-4 8-4 -29.6 0.27 0.1343 
Lawson spaced array 

8.4 LOW SIDE-LOBE, NARROW MAIN BEAM METIIODS 

The synthesis methods presented in the previous two sections are most useful for 
shaping the main beam of an antenna pattern. Another major class of pattern syn
thesis methods is that for achieving a narrow main beam accompanied by low side 
lobes. Patterns of this type have many applications, such as in point-to-point com~ 
munications and direction finding. In this section, we discuss the two most important 
narrow main beam, low side-lobe methods: the Dolph-Chebyshev method for linear 
arrays and the Taylor line source method. These two methods are closely related 
and the Dolph-Chebyshev method is presented first to simplify the development. 

8.4.1 The Dolph-Chebyshev Linear Array Method 

In Sec. 3.5, several excitations of equally spaced, linear rays were examined. It was 
found that as the current amplitude taper from the center to the edges of the array 
increased, the side-lobe level decreased, but with an accompanying increase in the 
width of the main beam. In most applications, it is desirable to have both a narrow 
main beam as well as low side lobes. It would, therefore, be useful to have a pat
tern with an optimum compromise between beamwidth and side-lobe l~vel. In 
other words, for a specified beamwidth the side-lobe level would be as low as pos
sible; or vice versa, for a specified side-lobe level the beamwidth would be as 
narrow as possible. In this section, a method for achieving this is presented 
for broadside, linear arrays with equal spacings that are equal to or greater than a 
half-wavelength. 

As might be expected, optimum beamwidth-side-Iobe level performance occurs 
when there are as many side lobes in the visible region as possible and they have 
the same level. Dolph [7) recognized that Chebyshev polynomials possess this prop
erty, and he applied them to the synthesis problem. It is important to be familiar 
with Chebyshev polynomials, so we shall give a brief treatment of them before 
proceeding to synthesis. 

The Chebyshev (often spelled "Tchebyscheff") polynomials are defined by 

{

(-1)n cosh(n cosh-1Ixl), 

Tn (x) = cos(n cos-1 x), 
cosh(n cosh-1 x), 

x <-1 

-1 < x < 1 

x>1 
(8-39) 
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A few of the lower-order polynomials are 

To(x) = 1 

Tl(X) = X 

T2(x) = 2X2 - 1 

T3(X) = 4X3 - 3x 

T4(X) = 8x4 - 8X2 + 1 

Higher-order polynomials can be generated from the recursive formula 

Tn+1(x) = 2xTn(x) - Tn-1(x) 

(8-40) 

(8-41) 

or by letting 8 = cos-1 x and expanding cos m8 in powers of cos 8. For example, 
T3(X) = cos(3 cos-1 x) = cos 38 = 4 cos3 8 - 3 cos 8 from (D-13). Hence, T3(X) = 
4x3 - 3x. A few polynomials are plotted in Fig. 8-5. 

Some important general properties of Chebyshev polynomials follow from (8-39) 
or Fig. 8-5. The even-ordered polynomials are even, that is, Tn( -x) = Tn(x) for n 
even, and the odd-ordered ones are odd, that is, Tn{ -x) = -Tn (X) for n odd. All 
polynomials pass through the point (1, 1). In the range -1 :5 x :51, the polynomial 
values lie between -1 and 1, and the maximum magnitude is always unity there. 
All zeros (roots) of the polynomials also lie in -1 :5 x :5 1. 

The equal amplitude oscillations of Chebyshev polynomials in the reg!onJxJ ~_1_ 
is. fiiedesrrea-prop~ityfor equal side lobeS. Also; thej>::2IiI!9miaL~;ifureJ>lJpe
functionsmakes themsuitable for array factors since an arrayJac~or can be_written 
a!.-~~fyii()I!!~I Tii~ __ ~nnectlon bet."'een array~ -~nd~Chebyslley __ p()!ynoIl1ials is. 
established by considering a symmetrically excited~ broadside array for which (see 
'fable 8-2)- . - - -..-

(8-42) 
--._- - - - --

Symmetrical_e~fitlltion leads to a real-valued array factor that, from (8-20) and 
(8=22f,·~n by -------. ..- _. ---

f( "') = N m=l (8-43) lio + 2 f im cos m'" P odd 

211 im cOs[(2m -1) £] P even 

Figure 8-5 Chebyshev 
polynomials To(x),. T1(x), T2(x), 
T3(x), and T4(X). 
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where 1/1 = 27T(dIA)w. This array factor (for odd or even P) is a sum of cos(ml/l/2) 
terms f~ 1. But each term containing cos(ml/l/2) can be written as a 
sum of terms with powers of cos( 1/1/2) up to m, through the use of trigonometric 
identities. Therefore, the array factor is expressible as a sum of terms with powers 
of cos( 1/1/2) up to P - 1. 

!!Y~!!~I.lKlln appropriate transformation_bet\Veen x and 1/1, the array factor and 
Che~~!t~v polynomial Will be identical. The transformation -.. . .. . 

and the correspondence 

x=x cos!!!. 
o 2 

~(I/I) =T~~l{XO ~os£)_ 

(8-44) 

(8-45) 

will yield a polynomial in powers of cos( 1/1/2) matching that of the array factor.T1l~ 
main beam maximum value of R occurs for () = 90°, or 1/1 = 0, for a broadside array.2 
Then (8;44YTtidicates that x ,: x~ at the mafubeam maxiImiiii:the-visT6fe-region 
extends from (J = 0° to 180°, or 1/1 = 27T(dIA) to -27T(dIA). These limits correspond 
to x = Xo cos(7TdIA); for half-wavelength spacing, the limits are x = O. Thus, for 
d = Al2, the visible region begins at x = 0, or (J = 0°, and x increases as (J does until 
Xo (the main beam maximum point) is reached and retraces back to x = 0, or (J = 
180° (see Fig. 8-6). 

The main beam-to-side lobe ratio R is. the value of the array factor at the main 
beam maximum, since the side-lobe level magnitude is unity (see Fig. 8-6). The side
lobe level is thus lIR, or 

SLL = -20 log R dB (8-46) 

Evaluating (8-45) at the main beam maximum gives 

R = Tp-1(xo) = cosh[(P - 1) cosh-1 xo] (8-47) 

Figure 8-6 Chebyshev polynomial 
T4(X), 

2-fhe symbol f is usually reserved for a pattern normalized to a maximum value of unity, but for the 
Dolph-Chebyshev array, it is more convenient to normalize the array factor f to a maximum value of R. 
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from (8-39). Or, solving for Xo> we get 

Xo = COSh(p ~ 1 cosh-1 R) (8-48) 

The design procedure can now be summarized. For a given side-lobe ratio, R can 
be determined from (8-46), leading to Xo from (8-48). The array factor is then given 
by (8-45), or it can be computed from (8-43) directly from the current values. The 
excitation currents are found by comparison between the array factor of (8-43) and 
the Chebyshev polynomial of (8-45). This synthesis procedure will be illustrated 
in Example 8-5. The currents are difficult to find by this method for arrays larger 
than a few elements. However, direct solution techniques and tabulated values are 
available [8]. 

The Dolph-Chebyshev array design procedure provides the lowest side-lobe pat
tern for a specified beamwidth. However, these solutions only depend on the num
ber of elements, not their spacing (and thus total array length). Practical design 
seeks the narrowest beamwidth solution within the Dolph-Chebyshev family. This 
result is obtained by including as many side lobes as possible in the visible region 
without letting the grating lobe emerge to a level above the design side-lobe level. 
A general expression for the optimum spacing of the Dolph-Chebyshev array, with 
isotropic elements, that gives the narrowest beamwidth possible for a specified side
lobe level and given number elements is [8] 

[ 1] cos-1 -

dopt=A 1-
17 

'Y broadside (8-49a) 

[ 1] cos-1 -
.A 'Y 

doPt =2" 1- 17 endfire (8-49b) 

where 

(8-49c) 

An i~ere.sting result is_that t~ir.~vJ.!y}sj4~ntic::_al for broad~ic.k_an~Lelldfire 
operation f~J)Qt1!half:~ayelengthand optiIl1u1l1_~p"acj._~$s [2J .. Although the beam
width-iS -broader at endfire than at broadside, the maiii-beam is a fan beam at 
broadside, leading to the same solid angle (and,-ihus, the same directivity)aSfor 
the pencil~shaped endfire_beam. -.. - . --

The half-power beamwidth of a Dolph-Chebyshev array, in general, is given by 

HP = 17 - 2 cos-1 .ph broadside (8-50a) 
f3d 

HP = cos-1
( 1 - ;~) endfire (8-50b) 

where 

(8-50c) 
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and an approximate form for the broadside case is 

j[;;) A 
HP"" - In(2R) -

7T L 
broadside (8-50d) 

This can be rewritten with a factor that shows the beam broadening relative to the 
uniform case,that is, HP ",. 0.886A1L; the beam broadening factor is 

bHP = J; In(2R) 10.886 = 0.637Yln(2R) (8-50e) 

The following approximate formula gives directivity using the half-power beam
width at broadside found from (8-50a) or (8-50d) [10]: 

(8-51) 

This directivity result can be used for general situations. In fact, for optimum spac
ings directivity is exactly the same at endfire and broadside. Thus, the half-power 
beamwidth of (8-50a) or (8-50d) for broadside should be used in (8-51) for all scan 
cases. 

Before closing this discussion of low side-lobe. arrays with two .~2mmples, we point 
out that arbltrariIy.highdlrectlV1ty=r;agowbeamwidth) can be obtalflea-Uom an 
~ay of fixed length. Howe~er, this requires curreniswith~~ry)~igh~ampli!.~~e~_!~ 
alternating signs [11]. This is ~l~~~~y}mpr~~t~~ar a_1!d lea<!s to narrow bandwidth and 
a high sensitivity to the a~c~racy __ ?!.e~Ciiati()? -- ---

A Five-Element, Broadside, -20-dB Side-Lobe, 
Half-Wavelength Spaced Dolph-Chebyshev Array 

For a five-element array (P = 5, N = 2), the array factor from (8-43) is 

f(I/I) = io + 2il cos 1/1 + 2~ cos 21/1 (8-52) 

where 1/1 = 27T(dl>.) cos (J = 7T cos (J for d = Al2. Using cos(21/112) = 2 cos2(I/I12) - 1 from 
(D-12) and cos(41/112) = 8 cos4(I/I12) - 8 cos2(I/I12) + 1 from (D-14), the array factor can be 
written as 

f( 1/1) = (io - 2il + 2i2) + (4il - 16i2) cos2 ~ + 16i2 cos4 ~ (8-53) 

And from (8-40), 

T4(X) = 1 - 8X2 + 8x4 = 1 - 8x~ cos2 ~ + 8x! cos4 ~ (8-54) 

where (8-44) was used in the second step. Now, the currents are found by successively equat
ing the coefficients of like terms of (8-53) and (8-54). From the cos4( 1/112}term, 

(8-55) 

The cos2
( 1/112) term yields 

(8-56) 

using (8-55). The final term gives 

io = -2i2 + 2il + 1 = 3x! - 4x~ + 1 (8-57) 
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-20 

-30 
Figure 8-7 Dolph-Chebyshev 
synthesized array factor for a five-

-40 element, M2 spaced, broadside array 
-1.0 --{).8 --{).6 --{).4 --{).2 0 0.2 0.4 0.6 0.8 1.0 with -20-dB side lobes (Example 

w = cos8 8-5). 

using (8-55) and (8-56). The current values will be completely determined when Xo is eval
uated. This is accomplished by first finding the main beam-to-side lobe ratio from (8-46) 
using the specified -20-dB side-lobe level; 

R = 1O-sLI.J20 = 10 

Then from (8-48) with P = 5 and R = 10, 

Xo = 1.293 

The element currents from (8-55) to (8-57) with (8-59) are 

;2 = L2 = 1.3975, it = Ll = 2.2465, 

(8-58) 

(8-59) 

;0 = 2.6978 (8-60) 

These currents yield a main beam maximum of R = 10 and unity side lobes. Normalizing 
these to unity edge currents gives a 1: 1.61 : 1.93: 1.61 : 1 current distribution. The currents of 
(8-60) in (8-52) lead to the pattern in Fig. 8-7, which was normalized to 0 dB on the main 
beam maximum. The half-power beamwidth from (8-50a) is 23.7°, which was also found by 
direct evaluation of the polar pattern in Fig. 3-23d. The directivity for equi-phased, half
wavelength spaced arrays can be obtained from (3-93). For this example, the directivity is 

D = --:;2-- = 4.69 

L i~ 
m=-2 

The directivity found from (8-51) is 4.72. 

Optimum lO-Element, -30-dB Side-Lobe Dolph-Chebyshev 
EndJire A"ay 

Using P = 10 and R = 10-<-30)/20 = 31.62 in (8-49a) yields 

dopt = 0.4292,\ 

The element current amplitudes are [8] 

1 :1.67:2.60:3.41 :3.88:3.88:3.41 :2.60:1.67: 1 

(8-61) 

(8-62) 

(8-63) 

These with interelement phase shift a = - f3d cos (0°) = -154S yield the pattern in Fig. 8-8. 
The half-power beamwidth from (8-50a) for broadside operation in 7.58° and the approxi-
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_--r_~OdB 

~f---+--+--+--I z 

Figure 8·8 Polar pattern for the optimum 
endfire Dolph-Chebyshev, 10 element 
-30-dB side-lobe array of Example 8-6. 

mation of (8-50d) gives 7.67°. The directivity cannot be computed as in (8-61), which holds 
only for half-wavelength spaced elements; instead, (8-51) is used with HPbroad = 7.58° 
(or 7.67°), giving D = 15.00 (or 14.83). The actual half-power beamwidth from (8-50b) is 
HPend = 29.8°. 

8.4.2 The Taylor Line Source Method 

Although the Dolph-Chebyshev array does yield the highest directivity and nar
rowest beamwidth, the constant side-lobe envelope leads to. a .high. re~ctive en~ 
condition, eSl'e_~ally fo~ la.rge arrl!Ys. This m~ans high:9,orJ()\V bandwidth,··oper
~!ion [3]. This situation can be avoided by first designing a line source Wi:thnearly 
constant side lobes and using the current values at element locations in an array 
configuration that produces a very similar pattern; see Prob. 8.4-10. 

The optimum narrow beam pattern from a line source antenna occurs when all 
side lobes are of equal level, just as in the array case. The required functional form, 
as we have seen, is that of the Chebyshev polynomial. The Chebyshev polynomial 
T ~x) has N - 1 equal level "side lobes" in the region -1 < x < 1, and for Ixl > 
1, its magnitude increases monotonically. A change of variables will transform the 
Chebyshev polynomial into the desired pattern form; that is, with a zero slope main 
beam maximum at x = 0 and equal level side lobes. The new function resulting 
from the variable change is 

(8-64) 

where a is a constant and 

L L 
x=-cos(J=-w 

A A 
(8-65) 

At the pattern maximum, 

(8-66) 

which is the main beam-to-side lobe ratio. A plot of (8-64) for N = 4 is shown in 
Fig. 8-9; it is the transformed version of Fig. 8-6. 
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Figure 8·9 Transformed 
Chebyshev polynomial Ps(x) = 
T4(Xo - a2x2). Values of a = 
0.55536 and Xo = 1.42553 
corresponding to Example 8-6 
were used. 

From (8-39), we have in the side-lobe region 

P2N(X) = cos[N cos-1(xo - a2x 2)], (8-67) 

The zeros of this function occur when the cosine argument equals (2n - 1)7T/2, or 
when the values of x are as follows: 

1 J (2n - 1)7T 
Xn = ±~ Xo - cos 2N ' In/ ;::: 1 (8-68) 

where the plus sign is used for zero locations on the positive x-axis and X-n = -xn • 

In the main beam region, from (8-39), 

P 2N(X) = cosh[N COSh-l(xo - a2x 2
)], /xo - a2x 2

1 > 1 (8-69) 

The main beam maximum value of P2N is R and occurs for x = 0; see (8-65) and 
(8-66). Solving (8-69) for Xo at the main beam maximum yields 

Xo = COSh(~ cosh-1 R) (8-70) 

It is convenient to introduce A such that 

so then 

1 
A = - cosh-1 R 

7T 

7TA 
x = cosh-

o N 

(8-71) 

(8-72) 

In order to have all side-lobe levels equal, we let N approach infinity, but simulta
neously the argument of P2N is changed to keep the first nulls stationary, thus leaving 
the beamwidth unchanged. For large N, Xo = cosh( 7TAIN) :::::: 1 + ~(7TAIN)2 and 

(2n - 1)7T 1 1 [(2n - 1)7T)2 
cos 2N :::::: -2 2N 
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and using these in (8-68) gives 

x = ±! ~ v' A 2 + (n - ! )2 
n a v2N 2 , 

N~oo 

By letting 

'TT 
a=--

v2N 

the first zero location remains fixed as N increases. Then 

Xn = ±v' A 2 + (n - !)2 

(8-73) 

(8-74) 

(8-75) 

The pattern factor is a polynomial in x with an infinite number of roots Xn and 
can be expressed as a product of factors (x - xn) for n from - 00 to + 00. And since 
X-n = -Xn , the pattern is 

'" '" II (X2 - x~) = II [X2 - A2 - (n - !?] 
n=l n=l 

(8-76) 

Normalizing this to unity at x = 0 gives 

n [1 
- ~; = f>:] cos(1tVx' - A') 

f(x) = '" [ A2 ] = cosh'TTA 
II 1 + ( _ 1)2 
n=1 n 2 

(8-77) 

The last step above utilizes the closed-form expression for the infinite products. 
Using (8-65) and (8-71) in (8-77) gives the pattern in w as 

cos { 'TTv'[(L/A)W]2 - A2} 
f(w) = R (8-78) 

Note that this is normalized to unity at the maximum (w = 0) and oscillates between 
-11R and lIR in the side-lobe region. For large w, the argument of the cosine 
function in (8-78) is approximately 'TTwsL/ A, so the zero locations of the pattern are 
Wn = ±A(n - !)IL or Xn= ±(n - !), and thus they are regularly spaced. Also note 
that for w < MIL, the cosine argument of (8-78) is imaginary and since cos(j(J) = 
cosh (J, (8-78) is more conveniently expressed as 

w) _ cosh { 'TTv' A2 - [(L/A)wY} 
f( - cosh'TTA (8-79) 

This pattern is that of the ideal Taylor line source [12]. It is a function of A that is 
found from the side-lobe level; see (8-46) and (8-71). The line source is "ideal" in 
the sense that equi-Ievel side lobes extend to infinity in pattern space, thus leading 
to infinite power. The required source excitation, in tum, must possess infinite power 
and, in fact, will have singularities at each end of the line source. 

An approximate realization of the ideal Taylor line source, referred to as the 
Taylor line source, nearly equals the first few side lobes but has decreasing far-out 
side lobes [12]. The decaying side-lobe envelope removes the infinite power diffi-
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culty encountered with the ideal Taylor line source. The Taylor line source pattern 
is again a polynomial in x, but with zero locations given by 

X 
__ {±UYA2 + (n - ~)2 1 ::5 n < n 

n ±n n ::5 n < 00 
(8-80) 

The zeros for n < n are those of the ideal line source in (8-75) scaled by the factor 
u. The far-out side lobes for n 2: n are located at the integer x positions. The zero 
arrangement for a sin( Trx)l7rx pattern is x = ±n for n 2: 1, so the Taylor pattern 
far-out side lobes are those of the sin( Trx)/Trx pattern. The scaling parameter u is 
determined by making the zero location expressions in (8-80) identical for n = n, 
which yields 

n 
u = -;:.=;;======;:=;; 

YA 2 + (n - ~i 
(8-81) 

From the zero locations of (8-80), we write the approximate Taylor line source 
pattern as 

f(x A n) = sin TrX n 1 - (xlxn )2 
" TrX n=l 1 - (xln)2 

(8-82) 

The side lobes are nearly constant at the value lIR out to x = n and decay as lIx 
beyond x = n. The pattern in terms of w = cos () is 

f(w, A, n) = sin(TrLwIA) n' 1 - (wlwn)2 
TrLwlA n=l 1 - (LwIAn)2 

where the pattern zero locations on the w-axis are 

w = j±-i; (1 YA 2 + (n - !)2 

n A 
+-n -L 

with u given by (8-81). 

(8-83) 

(8-84) 

The Taylor line source is actually a pattern ·of the Woodward-Lawson family. 
We show how this comes about and also determine the sample values and locations. 
First, assume that the required source excitation can be expanded in a Fourier series 
as 

The corresponding pattern from (8-18) is 

L lsi ::5 -
2A 

f(w) = n~~ an sa[ ( w - -i; n) ~ Tr ] 

where the sample locations are identified as 

A 
W S =-n 

n L 

(8-85) 

(8-86) 

(8-87) 
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The infinite expansion of (8-86) gives the exact pattern if the sample values are (see 
Prob. 8.4-7) 

an = f(w = w~) = f(n, A, n) (8-88) 

But the pattern zeros correspond to the sample locations of (8-87) for Inl ~ n since 
Xn = n, or Wn = (AlL)n for Inl ~ n from (8-80). Thus, 

an = 0 for Inl ~ n (8-89) 

Using (8-88) and (8-89) in (8-86) gives the pattern expression 

n-1 [ L J 
f(w) = n=~+l f(n, A, n) Sa (w - W~) A 7r (8-90) 

The required current distribution from (8-85) is 

A [n-1 ( A )] i(s) = I 1 + 2 ~1 f(n, A, n) cos 27rI ns (8-91) 

The coefficients fen, A, n) are the samples of Taylor line source pattern for x = n 
and n < n. They are found from 

{ 

[(n - 1)!F n-1 ( n2) --~--'--=--- [I 1 - -
f(n, A, n) = (n - 1 + n)!(n - 1 - n)! m=l x;' 

o· 

Inl <n 

Inl ~n 
(8-92) 

and f( -n, A, n) = f(n, A, n). Tables of the coefficient values are also available [13, 
Appendix I]. These coefficients together with (8-90) and (8-91) determine the Tay
lor line source pattern and current. 

The half-power beamwidth expression is obtained rather easily for the ideal pat
tern. Evaluating (8-79) at the half-power points yields 

(8-93) 

Solving this gives the two solutions 

. A [ (R )2J1I2 WHP = ± L7r (cosh-1 R)2 - cosh-1 v'2 (8-94) 

The half-power beamwidth in w is then 

A2 [ (R )2]112 
HPWj = 21wHPI = L7r (cosh-1 R)2 - cosh-1 v'2' (8-95) 

The angle from broadside is 'Y = () - 90°, so w = cos () = cos( 'Y + 90°) = -sin 'Y 
and 'Y = -sin-1 w. The half-power beamwidth based on the ideal Taylor line source 
is 

(8-96) 
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where WHP+ and WHP- are the two solutions of (8-94). The beamwidth for the ap
proximate Taylor line source is given approximately by [13] 

HPw "'" uHPw; 

and in Oby 

A 10-Wavelength Taylor Line Source with -25-dB Side Lobes 
andii = 5 

The side-lobe ratio is 

From (8-71), 

Then from (8-81), 

R = 1O-sLu20 = 101.25 = 17.7828 

1 
A = - cosh-1 R = 1.13655 

Tr 

Ii 
u = y 1 = 1.07728 

A2 + (n - 2)2 

(8-97) 

(8-98) 

(8-99) 

(8-100) 

(8-101) 

If we use values of A and u, the zero locations Xn can be calculated from (8-80), and then 
the sample coefficients follow from (8-92) as given in Table 8-7. The sample locations from 
(8-87) are also tabulated. The pattern and current distribution can now be computed from 
(8-90) and (8-91) with the sample values and locations of Table 8-7. The resulting pattern 
and current distribution are plotted in Fig. 8-10. The side-lobe decay envelope for the far
out side lobes of the pattern is shown in Fig. 8-lOa. The half-power beamwidths from (8-95) 
to (8-98) are 

HP wi = 0.0978, HPi = 5.606° (8-102) 

and 

HP w = 0.1054, HP = 6.039° (8-103) 

In this case, the ideal Taylor line source beamwidth is very close to that of the approximate 
Taylor line source. The half-power beamwidth HPw is indicated in Fig. 8-lOa. 

Table 8-7 Sample Values and Locations for the 
Taylor Line Source of Example 8-7 

(L = 10'\, Ii = 5) 

an = f(n, A, Ii) 
n = f(n, 1.13655, 5) w' n 

0 1.000000 0 
±1 0.221477 ±0.1 
±2 -0.005370 ±0.2 
±3 -0.006621 ±0.3 
±4 0.004917 ±0.4 
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(a) The synthesized pattern. (b) The current distribution. 
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Figure 8-10 A lOA Taylor line source with -25-dB side lobes and n = 5 (Example 8-7). 

8.5 PERSPECTIVE 

5 

This chapter introduced several techniques for synthesizing both shaped main beam 
and low side-lobe radiation patterns. The methods were chosen for their simplicity 
and because they are in widespread use. Many other techniques have been devel
oped and, with foundations laid in this chapter, the student can pursue more ad
vanced approaches. We mention a few here. 

The array factor for an equally spaced array can be written as a polynomial in 
the variable Z = eN. Properties of the array polynomial can be related to its roots 
[14, 15]. Modem techniques exist to derive the array polynomial, and associated 
array excitation, for synthesizing custom-shaped patterns [16]. There are also tech
niques for synthesizing narrow main beam, low side-lobe patterns for planar arrays 
and apertures [2, 3]. 

We close by mentioning one technique that can be applied to all antenna types 
and patterns. The iterative sampling method [4] is an extension of the Woodward
Lawson method that can be applied to apertures or arrays, planar or linear. It can 
be used for shaped main beams and/or low side lobes as well as other custom pattern 
types. It is based on the simple concept of adding correction beams similar to the 
Woodward-Lawson component patterns, positioned and weighted to reduce the 
deviation of the actual pattern from the desired pattern. This is done successively 
until the desired effect is achieved, such as reducing ripple on the main beam or 
lowering side lobes. 
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PROBLEMS 

8.1-1 If g(t) and G(w) are a Fourier transform pair, then 

G(w) = r~ g(t)e-j
"" dt and 1 J~ g(t) = - G(w)ei"" dw 21T -~ 

If g, t, G, and ware replaced by f, u, i, and 21TS, respectively, show that (8-6) and (8-7) follow from the above equations. 
8.1-2 Decomposing a linear current distribution i(s) into real/imaginary and even/odd parts and applying the Fourier transform, give the following pattern expression: 

f(W) = 2 L~ fire(s) cos 2'7TWS - iio(S) sin 2'7TWs] ds 

+ j2 L~ [iie(S) cos 21TWS + i,o(s) sin 21TWSJ ds 

Use this to prove the following: (a) Property 1 in Table 8-2, and (b) Property 2 in Table 8-2 by first forming the magflitude of f(w). ; , ' . 
8.2-1 A narrow pencil beam pattern represented by a delta function is scanned to the location () = 53.1°. Find the required current distributiori using Fourier line source synthesis. 8.2-2 Use (8-6) to find the pattern from a uniforrh'amplitude, zero phase line source of length L centered on the z-axis. , 
8.2-3 Derive the current distribution id(S) required to e~act1y produce the sector pattern of 
(8-11b). 

! '. 

8.2-4 a. Derive the Fourier transform synthesis pattern:of (8-13) for a sector pattern. 
b. Plot this pattern, thus verifying Fig. 8-1aJ, Numerical integration of the Fourier transform via computer may be easier than using (8-1i~)"1 

8.2-5 Derive (8-15). ; , 
8.2-6 Repeat the Woodward-Lawson synthesis of the sector pattern of Example 8-2, but this time for a five-wavelength line source. 

a. Plot the pattern in linear, rectangular form as a function of w. 
b. Plot the current distribution. 
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8.2-7 A cosecant pattern (see Prob. 1.6-7 for a discussion of the cosecant pattern) is given 

by 

o ~ w ~ 0.1 

0.1 ~ w ~ 0.5 

elsewhere 

Use the Woodward-Lawson method to synthesize an approximation to this pattern for a lOA 

line source. 
a. Plot the pattern in linear, rectangular form together with the desired pattern as a 

function of w . 
. b. Plot the required current amplitude and phase. 

8.3-1 Discuss the conditions on fiw) such that it can be represented by the Fourier series 

in (8-24). 
8.3-2 Derive the Fourier series coefficient expression in (8-25). 

8.3-3 Derive the element current expression (8-29) for the Fourier series synthesis of a sector 

pattern. 
8.3-4 Synthesize a sector pattern with c = 0.5 using the Fourier series method as in Example 

8-3 for an array of 20 elements that are spaced O.M apart. 

a. Determine the element locations and current values. 

b. Plot the radiation pattern in linear, rectangular form as a function of w. 

8.3-5 Repeat Prob. 8.3-4 for an array of 10 elements and half-wavelength spacings. 

8.3-6 Use the Fourier series synthesis method to synthesize a sector pattern with c =1).5 for 

an array of 21 half-wavelength spaced elements. Derive the general element current expres

sion and evaluate for each element. Plot the pattern. Compare pattern parameters to the 20-

element array result of Example 8-3. 
8.3-7 Repeat the cosecant pattern synthesis as in Prob. 8.2-7, using the Fourier series method 

for a 20-element, half-wavelength spaced array. 

8.3-8 Show that the Woodward-Lawson sampling method pattern of (8-32) arises from the 

array factor with the currents of (8-35) for: 

a. An odd number of elements. Hint: Use (8-19) and (8-20). 

b. An even number of elements. Hint: Use (8-21) and (8-22). 

8.3-9 Verify the array element positions and currents of Table 8-5 for the Woodward-Law

son synthesized sector pattern of Example 8-3. 

\ 8.3-10 Repeat the Woodward-Lawson synthesis as in Example 8-4 for a 10-element 

half-wavelength spaced array. 
8.3-11 A collinear array of 18 half-wave dipole antennas is to be used to synthesize a sector 

pattern with a main beam sector over the region 70° ~ 6 ~ 110°, that is, Fd(6) = lover this 

region and zero elsewhere. 
a. For 0.65A spacings, determine the input currents required for Woodward-Lawson syn

thesis of the complete pattern. Account for the element pattern. 

b. Plot the total array pattern in linear, polar form as a function of 6. 

8.3-U Repeat Prob. 8.3-11 for a cosecant desired pattern, where Fi6) is 1 for 80° 5 6 ~ 90°, 

cos 800/cos 6 for 0° ~ 6 ~ 80°, and zero elsewhere. Use 18 pattern samples. 

8.4-1 For the five-element, broadside, -20-dB side-lobe, half-wavelength spaced Dolph

Cltebyshev array of Example 8-5: 
a. Obtain the pattern plot in logarithmic, rectangular form as a function of w. , 

b. Verify the side-lobe level and beamwidth from your pattern calculations. 

8.4-2 Design a Dolph-Chebyshev broadside array of five, half-wavelength spaced elements 

for - 30-dB side lobes. 
a. Verify the current distribution as given in Fig. 3-23e. 

b. Compute the directivity. 



Problems 393 

8.4-3 Design a broadside Dolph-Chebyshev array with six, 0.6.\ spaced elements for -25-dB 
side lobes. 

a. Obtain the element currents. 
b. ~lot the pattern in logarithmic, rectangular form. 

8.4-4 Design a low side-lobe, broadside collinear array of half-wave dipoles. Use isotropic 
elements to design a Dolph-Chebyshev array with eight elements for the narrowest beam
width and -20-dB side lobes. Evaluate and plot the patterns in polar-dB form with and 
without the element pattern. 
8.4-5 Derive the ideal Taylor line source pattern results of (8-76) and (8-77). 
8.4-6 Show how the approximate Taylor line source pattern of (8-82) follows from the zero 
locations. 
8.4-7 The sampling theorem from time-signal analysis states that a signal g(t) is exactly re
constructed from the time samples g(mI2B) as 

where B is the highest frequency component of the signal. Draw the appropriate analogies 
to antenna theory to obtain the sampled data pattern expression of (8-86). 
8.4-8 Verify (8-94). 
8.4-9 Compute the sample values an of Table 8-7 for the Taylor line source of Example 8-7. 
8.4-10 Compute the half-power beamwidth values for the Taylor line source of Example 8-7. 
Compare your answers to those of (8-102) and (8-103). 
8.4-11 An array antenna can be designed by choosing the element current excitations at the 
corresponding points of the continuous current from a line source synthesized for the desired 
pattern. This is illustrated in this problem with a narrow main beam, low side-lobe pattern. 
The Taylor line source of Example 8-7 has current values appropriate for a 20-element array 
given in the table. 

Array Excitations 
for Problem 8.4-11 

m Zm im 

:!:1 :!:0.25 0.14234 
±2 ±0.75 0.13833 
±3 ±1.25 0.13127 
±4 ±1.75 0.12175 
±5 ±2.25 0.10935 
±6 ±2.75 0.09429 
±7 ±3.25 0.07891 
±8 ±3.75 0.06676 
±9 ±4.25 0.05980 
±10 ±4.75 0.05720 

a. Use these current values to obtain the array factor of the corresponding linear array. 
b. Compare and comment on the half-power beamwidths and side-lobe levels of the array 

and line source patterns. 
8.4-12 Design an eight-wavelength Taylor line source (n = 7) with -30-dB side lobes. 

a. Obtain and tabulate the sample values and locations. 
b. Plot the pattern in rectangular-logarithmic form as a function of w. 
c. Plot the current distribution. 
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8.4-13 Evaluate ufor several values of Ii for the case of a -25-dB side-lobe level. Using HP W 

= uHP Wi' explain the half-power beamwidth behavior as a function of Ii. 
8.4-14 Design an optimum broadside Dolph-Chebyshev array with 10 elements and -20-dB 
side lobes. With the same array geometry, find the element currents by sampling a 
-20-dB Taylor line source (Ii = 8) current distribution with the same length. Plot the po
lar-dB patterns for both arrays and compare for (a) isotropic elements and (b) collinear half
wave dipoles along the line of the array. 
8.4-15 Effect a/mutual coupling on array synthesis. Use a moment method code to evaluate 
the array of Example 8-5; see Chap. 10 and Appendix G. Use resonated half-wavelength 
dipoles parallel to the x-axis with centers along the z-axis with voltage sources proportional 
to the desired currents. Compute the xz-plane pattern and compare to that of the example. 
Tabulate the side-lobe levels and currents for the two approaches. 
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Antennas in Systems and 
Antenna Measurements 

Antennas are used in communication, radar, and radiometer systems. These system 
topics as well as antenna measurements are discussed in this chapter. A knowledge 
of how antenna measurements are made is valuable for interpreting measured data. 
Also, the study of antenna measurements increases understanding of quantities such 
as pattern, gain, and polarization. 

9.1 RECEIVING PROPERTIES OF ANTENNAS 

Antennas are used to receive signals from distant sources by converting the arriving 
power density to a current on a transmission line that connects to a receiver. It is 
important to carefully account for all losses since the signals are often very weak. 
Essential to this is proper modeling of the receiving antenna. This section addresses 
various receiving antenna models and discusses losses associated with the system 
configuration, including polarization and impedance mismatch losses. Several basic 
definitions that will be useful are found in Sees. 1.8 and 1.9. 

The signal power received by an antenna is proportional to its gain in the direction 
of the signal, as will be developed in (9-54): 

G( 0, </1) = GIF( 0, </1) 12 (9-1) 

For receiving antennas, gain is better expressed in terms of effective aperture by 
generalizing (2-89): 

(9-2) 

Effective aperture AiO, </1) is a very important antenna parameter that can be 
thought of as the "collecting area" of the antenna. It is a measure of the ability of 
an antenna to collect power from space around the antenna and deliver it to a 
terminating device. It depends on the direction of arrival of the incident wave, so 
for a signal arriving at the antenna from direction (0, </1), the effective aperture is 
Ae(O, </1) and AeIF(O, </1)12

• For a wave arriving from the direction of the radiation 
pattern maximum, Ae(Omax, </1max) = Ae since the maximum of IF(O, </1W is 1. Al
though effective aperture is more intuitive for receiving antennas, it also applies to 
transmitting antennas. 

395 
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The power received by an antenna with effective aperture Aer from (2-93) is 
Pr = SAer when the pattern maximum is aimed toward the incoming signal. Ohmic 
losses on the antenna are included in Aer; however, the effects of polarization and 
impedance mismatch are not. The definitions of gain and effective aperture could 
be modified to include mismatch effects. However, the gain value would then only 
be useful for those particular operating conditions. The power delivered to load 
attached to the receiving antenna from (2-96) is 

(9-3) 

The polarization efficiency p is nearly 1 in most system applications since adjust
ments can be made to achieve an approximate polarization match between the 
incoming wave and the receiving antenna. Impedance match may be more difficult 
to achieve. Thus, losses due to impedance mismatch are usually present in opera
tional systems, so the impedance mismatch factor q is usually less than 1. Also, when 
performing gain measurements, care must be taken to impedance match the test 
antenna. We now discuss impedance and polarization mismatch factors in more 
detail. 

Impedance Mismatch. The power delivered to the load resistor RL from Fig. 2-18b 
is 

1 2 1 1V12 
. Pv = 2 IIAI RL = 2 (RA + RL)2 + (XA + X L)2 RL (9-4) 

Maximum power will be transferred toRL when a conjugate impedance match 
exists: 

conjugate match (9-5) 

Then 

(9-6) 

The fraction of power delivered, or impedance mismatch factor, is, in general, given 
by the ratio of (9-4) to (9-6): 

Pv 4RARL 
q=--= 

PVmax (RA + RLf + (XA + X L)2 
(9-7) 

When matched as in (9-5), this reduces to q = 1. In the usual situation of a trans
mission line with characteristic impedance Zo connected to the antenna, 

4RAZo 
(9-8) 

In many cases, the antenna impedance is not known, but instead the voltage 
standing wave ratio (VSWR) has been measured. Since the magnitude of the re
flection coefficient can be found from VSWR, the fraction of power traveling down 
the line is 

q = 1 - Irl2 

= 1 _I ZO - ZA 12 = 1 _ [VSWR - 1J2 
ZO + ZA VSWR + 1 

(9-9) 
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When the antenna is matched to the transmission line, VSWR = 1 and ZA = Zm 
giving q = 1 that indicates there is no mismatch loss. For a large mismatch (and 
large value of VSWR), q approaches zero. Antenna gain for a given polarization 
reduced by impedance mismatch (i.e., qG) is directly measurable and is called re
alized gain. 

Polarization Mismatch. Polarization principles were introduced in Sec. 1.10 and 
we can use them to determine polarization mismatch. The polarization efficiency 
(or polarization mismatch factor) varies from 0 to 1 as the incoming wave and re
ceiving antenna vary from completely mismatched in polarization to completely 
matched. A complete match (p = 1) exists when the wave and antenna polarization 
states are identical. A complete mismatch (p = 0) occurs when the wave and an
tenna are cross-polarized. Examples of cross-polarized states are orthogonal linear 
states such as horizontal and vertical linear polarizations, and right-hand and left
hand circular polarizations. 

The interaction of the incident wave electric field EI with the receiving antenna 
is facilitated by the concept of vector effective length of an antenna b, which is defined 
through 

(9-10) 

VA is the open circuit voltage across the antenna terminals, which follows from Fig. 
2-18 with ZL removed. The receiving antenna relation of (9-10) applies to any an
tenna and is very intuitive. The dot product gives the projection of the incident field 
vector Ei in volts per meter onto the vector effective length b in meters, resulting 
in the output voltage VA in volts. For example, if both the wave and antenna are 
linearly polarized and aligned, maximum output voltage will result. Vector effective 
length describes both the phase and polarization properties of the antenna. The 
complex conjugate is used because b is associated with the transmitting case and 
(9-10) is a receiving relationship. That is, the complex conjugate acts to reverse the 
reference direction; see Prob. 9.1-4. 

Vector Effective Length of an Ideal Dipole 

As an example, consider the radiation electric field of an ideal dipole, which from (l-72a) is 

jwpJ e-;{3r A 

E = - - ~z sin 80 (9-11) 
41T r 

Since h contains information on the size of the antenna and the angular dependence of the 
radiation pattern, we can write 

where 

jwpJ e-;pr 
E=--h 

41T r 
(9-12) 

(9-13) 

Note that the dimension of h is length and this equation has the obvious interpretation that 
the effective length of the ideal dipole is the projection of the physical length viewed from 
the angle 8. This, however, is not true in general. The vector effective length of a small loop 
antenna is treated in Prob. 9.1-5. 
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Polarization information for the wave and antenna is contained in EI and h, re
spectively, and polarization efficiency can be determined from them. Received 
power is proportional to the terminal voltage squared, which from (9-10) is lEi. h*12. 
Normalizing yieds the fraction of power received 

_ lEI. h*12 _ IAI A*12 
P - IEIj21hl2 - e • h (9-14) 

where ei and h are the complex unit vectors for the incident wave and antenna 
vector length, respectively. el represents the polarization state of the incident wave 
and equals that of the distant transmitting antenna ht if the intervening propagation 
medium does not depolarize the wave. Based on (9-14), a receiving antenna with 
vector length h is said to be polarization-matched (i.e., co-polarized) or orthogonally 
polarized (i.e., cross-polarized) to the incoming wave when 

lei. h*1 = 1 

el
• h* = 0 

co-polarized 

cross-polarized 

(9-1Sa) 

(9-1Sb) 

Polarization mismatch is easily evaluated using (9-14) because the wave and an
tenna polarizations are expressed in their own relative coordinates. That is, the wave 
polarization is expressed in xy-coordinates with the z-axis in the direction of wave 
propagation, and the antenna state uses xy-coordinates as shown in Fig. 9-1. The 
z-axis for antenna coordinates is directed away from the antenna since antenna 
polarization is always defined for transmission. Note that tilt angles are taken rela-

y y 

Wave 
¢::= z ---;;Y 

x 

Receiving antenna (LP) Incoming wave (LP) 

(a) LP antenna and LP wave 

y 

I 

¢::= z 
Wave 

x 

y 

I r L-90
o 

~oo 

Receiving antenna (RHCP) Incoming wave (RHCP) 

(b) RHCP antenna and RHCP wave 

Figure 9-1 Illustration of reception of an incident wave with electric field EI by a receiving 
antenna. 
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tive to the receiving antenna x-axis; see adn Fig. 9-1a. Then the wave and antenna 
polarizations written in the form of (1-190) are 

ei = cos I'i i + sin I'i ej8i y 
Ii = cos I' i + sin I' e j8 y 

(9-16a) 

(9-16b) 

where (I'i' 8i ) and (I', 8) are the polarization parameters associated with the incom
ing wave and the antenna in the arrival direction; see Fig. 1-24. The process of 
evaluating polarization efficiency is illustrated with the following examples. 

Reception of an LP Wave with an LP Antenna 

A linearly polarized (LP) incident wave with a tilt angle of Ti illuminates an LP antenna at 
tilt angle T as shown in Fig. 9-1, where a dipole is used to illustrate a general LP antenna. 
The wave arrives normal to the plane of the dipole antenna (xy-plane), corresponding to the 
usual operating situation for a receiving antenna. The angles 'Yi and 'Y equal Ti and T, respec
tively, in the LP case; these follow from (1-191) with e = 0 and Bi = O. Substituting these 
values in (9-16) permits evaluation of (9-14) as follows: 

p = lei. h*12 = I(cos Ti X + sin Ti y) • (cos T X + sin T yW 

= Icos Ti cos T + sin Ti sin TI2 = cos2( Ti - T) 

= COS2{aT) (9-17) 

Thus, polarization efficiency is a function only of the relative tilt angle aT when both the 
wave and antenna are LP. When aT = 0°, the wave and antenna are aligned (e.g., EI is parallel 
to the dipole). The wave and antenna are copolarized; that is, they are polarization-matched 
and p = 1. When the wave and antenna are orthogonal, aT = 90° and (9-17) yields p = O. 
Then the receiving antenna produces no output and the wave and antenna are cross-polar
ized. This is an idealized result because in practice, most antennas have some response to a 
wave state cross-polarized to their nominal co-polarized state. 

Reception of CP Wave with a CP Antenna 

Examination of circular polarization (CP) r~veals the power of the complex vector formation 
of polarization states and the rote 6f thb Fgmplex conjugate in (9-14). Consider a right-hand 
circular polarization (RHCP) receiving l'llitenna illustrated in Fig. 9-1b as crossed dipoles 
with a quarter-wave delay line. When opetated as a transmitting antenna, this antenna has 
a polarization state in the + z-direction given by 

h
A 1 (A .A) =- X-]Y 

V2 
RHCP (9-18) 

since the magnitudes of the x- and y-components are equal and the y-component lags the 
x-component by 90°. This result also follows from (9-16b) with 'Y = 45°, 8 = -90°; see Sec. 
1.10. Similarly, for a RHCP incident wave 

AI 1 (A .A) e =- X-]Y 
V2 

RHCP (9-19) 

The polarization efficiency from (9-14) is then 

p = lei. h*12 = 1_1_ (x - m. --.!.... (x _ jy)*1
2 

= 1 
V2 V2 

(9-20) 
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and the wave is perfectly matched to the antenna. Note that the wave and antenna polari
zations are expressed in their own coordinate systems as shown in Fig. 9-1b, with the 
z-direction for the wave and antenna polarizations taken in the wave propagation direction 
and in the direction of radiation when the antenna transmits, respectively. An analogy for 
the use of relative coordinates is two people being "matched" when shaking hands if they 
use their right hands. In the same fashion, a RHCP wave is matched to a RHCP receiving 
antenna. The result in (9-20) can also be explained by examining how the antenna responds 
to the incoming wave. The x-dipole produces a voltage of 1L1800; the 180° is included because 
of the opposite reference direction of the x-axes of the wave and antenna. The y-dipole is 
excited by 1L90° and its output is delayed by 90° due to the quarter-wavelength section, 
producing a net 1L180° excitation at the connecting transmission line terminals. Combining 
the voltage from the two dipoles gives 2L180°, indicating complete reinforcement of the 
x- and y-components. Therefore, the antenna is matched to the wave. Note that if the wave 
is left-hand CP, then the phase of the y-component of the wave is +90° rather than -90° and 
there is complete cancellation at the transmission line. For LHCP, the sign of the y-term in 
(9-19) would be positive and p = 0, indicating a cross-polarized situation. 

Reception of an LP Wave by a CP Antenna 

Now suppose the LP wave of Fig. 9-1a is incident on the CP antenna of Fig. 9-1b. The 
polarization efficiency is evaluated using el from Example 9-2 and h from Example 9-3: 

p = lei. h*12 = I (cos Ti i + sin Ti y). Jz (i - jy)*1

2 

= ~ Icos Ti + j sin Til
2 = ~ (9-21) 

Thus, one-half of the power available from an LP wave is lost when received by a CP antenna. 
The same is true for a CP wave and an LP antenna. In most system applications, this 3-dB 
loss is significant and an antenna matched to the wave must be used. On the other hand, 
there are operational links with one antenna linear and the one circular. For example, if a 
spacecraft has a linearly polarized antenna, the effects due to spacecraft motion or Faraday 
rotation in the ionosphere on the incoming linearly polarized wave orientation angle will not 
lead to power level fluctuations if a circularly polarized receive antenna is used. Even though 
a 3-dB signal loss is encountered, the received signal remains constant. 

9.2 ANTENNA NOISE TEMPERATURE AND RADIOMETRY 

Receiving systems are vulnerable to noise and a major contribution is the receiving 
antenna, which collects noise from its surrounding environment. Antenna noise and 
radiometry are introduced in this section. In most situations, a receiving antenna is 
surrounded by a complex environment as shown in Fig. 9-20. Any object (except a 
perfect reflector) that is above absolute zero temperature will radiate electromag
netic waves. An antenna picks up this radiation through its antenna pattern and 
produces noise power at its output. The equivalent terminal behavior is modeled in 
Fig. 9-2b by considering the radiation resistance of the antenna to be a noisy resistor 
at a temperature TA. The antenna temperature TA is not the actual physical tem
perature of the antenna, but is an equivalent temperature that produces the same 
noise power P NA as the antenna operating in its surroundings. The noise power 
available from the noise resistor R, in bandwidth Af at temperature TA is 

(9-22) 
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(a) Antenna receiving noise from directions (9,41) 
producing antenna temperature TA• 

Figure 9·2 Antenna temperature. 

where 

PNA = available power due to antenna noise (W) 
k = Boltzmann's constant = 1.38 X 10-23 J K-1 

T A = antenna temperature (K) 
fl.! = receiver bandwidth (Hz) 

(b) Equivalent model. 

Such noise is often referred to as Nyquist or Johnson noise. The system noise power 
PNis calculated using the total system noise temperature Tsys in place of TA in (9-22) 
with Tsys = TA + T" where Tr is the receiver noise temperature. 

There are two motivations for studying the noise performance of antennas: for 
noise corruption to communications and active remote-sensing systems and for 
noise calculations of passive remote-sensing systems. In most communications and 
active remote sensing systems, the noise power level must be sufficiently below the 
signal level for proper operation. This is especially challenging in long distance 
communication systems with weak signals. In these cases, the system is evaluated 
through "carrier-to-noise ratio," which is determined from the signal power and the 
system noise power: 

(9-23) 

where PN = kTsys fl.!. 
A second reason for studying antenna temperature is for radiometry (passive 

remote sensing). A radiometer picks up noise from "hot" objects and can form an 
image by scanning through a noise scene with a narrow beam antenna. An example 
is a satellite microwave radiometer viewing precipitation on the earth's surface from 
space. Water particles are lossy and produce noise, just as does a noise resistor. In 
the radiometer case, noise from the desired passive object acts as the "signal" and 
is compared to undesired noise due to the background scene and receiver noise. 

Noise power is found by first evaluating antenna temperature. As seen by Fig. 
9-2a, T A is found from the collection of noise through the scene temperature dis-



402 Chapter 9 Antennas in Systems and Antenna Measurements 

tribution T( 0, l/J) weighted by the response function of the antenna, the normalized 
power pattern P(O, l/J). This is expressed mathematically by integrating over the 
temperature distribution: 

1 ('IT (2'IT 
TA = OA Jo Jo T(O, l/J)P(O, l/J) dO (9-24) 

Figure 9-2a illustrates an earth terminal antenna looking at the sky, but (9-24) is 
completely general. The form of (9-24) can be rationalized by examining a few 
special cases. If the scene is of constant temperature To over all angles, To comes 
out of the integral and then 

T ('IT (2'IT T 
TA = 0: Jo Jo P(O, l/J) dO = 0: OA = To (9-25) 

This is an expected result. The antenna is completely surrounded by noise of tem
perature To and its output antenna temperature equals To independent of the an
tenna pattern shape. For the case of a discrete source of small solid angular extent 
Os and constant temperature Tn if the antenna beam is directed toward its center 
and is broad compared to the source, P(O, l/J) "'" 1 over the source and then (9-24) 
reduces to 

Os 
TA = OA Ts small discrete source (9-26) 

In general, antenna noise power PNA is found from (9-22), using TA from (9-24) 
once the temperature distribution T(O, l/J) is determined. Of course, this depends 
on the scene, but in general, T( 0, l/J) consists of two components: sky noise and 
ground noise. Ground noise temperature in most situations is well approximated 
for soils by the value of 290 K. Surfaces that are highly reflective have a ground 
temperature close to the temperature of the reflected sky noise. Smooth surfaces 
have high reflection for near-grazing incidence angles. 

Unlike ground noise, sky noise is a strong function of frequency. Sky noise is 
made up of atmospheric, cosmic, and man-made noise. (See [1] for a review of 
natural radio noise and [2] for a discussion of antenna noise.) Atmospheric noise 
increases with decreasing frequency below 1 GHz and is primarily due to lightning, 
which propagates over large distances via ionospheric reflection below several MHz. 
Atmospheric noise increases with frequency above 10 GHz due to water vapor and 
hydrometer absorption; these depend on time, season, and location. It also increases 
with decreasing elevation angle. Atmospheric gases have strong, broad spectral 
lines, such as water vapor and oxygen lines at 22 and 60 GHz, respectively. 

Cosmic noise originates from discrete sources such as the sun, moon, and "radio 
stars" as well as our galaxy, which has strong emissions for directions toward the 
galactic center. Galactic noise increases with decreasing frequency below 1 GHz. 
Man-made noise is produced by power lines, electric motors, etc., and usually can 
be ignored except in urban areas at low frequencies. Sky noise is very low for 
frequencies between 1 and 10 GHz, and can be as low as a few K for high elevation 
angles. 

Of course, the antenna pattern strongly influences antenna temperature; see 
(9-24). The ground noise temperature contribution to antenna noise can be very 
low for high-gain antennas with low side lobes in the direction of the earth. Broad 
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beam antennas, on the other hand, pick up a significant amount of ground noise as 
well as sky noise. A figure of merit used with satellite earth terminals is GITsys , 
which is the antenna gain divided by system noise temperature usually expressed 
in dBIK. It is desired to have high values of G to increase signal and to have low 
values of Tsys to decrease noise, giving high values of GITsys. 

Direct Broadcast Satellite Reception 

Example 2-3 is revisited here for noise calculations. The receiver uses a 67-K noise temper
ature low-noise block downconverter. This is the dominant receiver contribution and, when 
combined with antenna temperature, leads to a system noise temperature of Tsys = 125 K. 
The noise power in the effective signal bandwidth t::..j = 20 MHz is 

PN =\JcTsys t::..j 
= 1.38 X 10-23 • 125 . 20 X 106 = 3.5 X 10-14 

= -134.6 dBW (9-27) 

Thus, the carrier-to-noise ratio from (9-23) and (9-27) is 

CNR (dB) = PD (dBW) - PN (dBW) = -116.9 - (-134.6) = 17.7 dB (9-28) 

where the received power value from (2-102) was used for PD' This is a reasonable margin 
for proper operation. 

9.3 RADAR 

We now turn our attention to radar. Suppose an airplane is the target of a radar as 
shown in Fig. 9-3. We assume that the transmit and receive antennas are collocated, 
forming a monostatic radar, and are pointed such that the pattern maxima are di
rected toward the target. The power density incident on the target is then 

(9-29) 

where (2-89) and (2-92) were used. The power intercepted by the target is propor
tional to the incident power density, so 

(9-30) 

where the proportionality constant (J'is the radar cross section ReS (m2
) and is the 

equivalent area of the target based on the target reradiating the incident power 
isotropically. Although the incident power pi is not really scattered isotropically, 
we are only concerned about the power scattered in the direction of the receiver 

I. Transmitter ~ Target 

~L----=----~ Receiver ~ -- ~ 
~E---R--_ .. Figure 9·3 Radar example. 
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and can assume the target scatters isotropically. Because pi appears to be scattered 
isotropically, the power density arriving at the receiver is 

pi 
SS = 47TR2 

The power avaihtble at the receiver from (2-93) is 

Combining the above four equations gives 

A uSi 
AerAet u 

Pr = er 47TR2 = Pt 47TR2 A 2 

(9-31) 

(9-32) 

(9-33) 

which is referred to as the radar equation. Using (2-89), we can rewrite this equation 
in a convenient form as 

(9-34) 

If the transmitting and receiving antennas are identical as is usually the case, 
GrGt = G 2

• Polarization and impedance mismatch effects are included using (9-3). 
Combining (9-30) and (9-31) forms a definition of radar cross section: 

47TR2ss 
u= Si (9-35) 

which is the ratio of 47T times the radiation intensity R 2ss in the receiver direction 
to the incident power density from the transmitter direction. Radar cross section 
for complex shaped scattering objects is a function of many variables, including 
incidence angle, frequency, polarization, and scattering angle. 

Range of a Monostatic Radar 

The operational distance R for a radar is called the range. It depends on several parameters 
of the radar. In this example, we find the range for a radar with the following typical param
eter values: 

Pt = 100 kW 

. Gt = Gr = 40 dB = 104 

j=3GHz 

(T = 1 m2 

Pr = -100 dBm = 10-13 W 

The maximum range for the radar is found by solving (9-34) for R: 

[ 
>'?G2(T ]1/4 [ (0.1)2(104)(1)]114 

R = Pt (41T)3P
r 

= 10
5 

(41T)3(1O 13) = 149.8 km 

9.4 RECIPROCITY AND ANTENNA MEASUREMENTS 

The remainder of this chapter is devoted to antenna measurements. This study 
provides a deeper understanding of antennas, allows one to interpret measured data, 
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and serves as an introduction to those who desire to make antenna measurements. 
The principles introduced here also apply to broader situations such as scattering 
measurements, but are directly primarily toward antenna measurements. The pri
mary measured antenna characteristics are radiation pattern, gain, polarization, and 
impedance. The first three of these are discussed in the following sections. Imped
ance is usually measured with a network analyzer and was discussed in Secs. 1.9 
and 5.3. 

In this section, we show that the radiation pattern of an antenna is the same 
whether it is used as a transmitting antenna or receiving antenna. Reciprocity allows 
the calculation or measurement of an antenna pattern in either the transmit or 
receive case, whichever is more convenient. Practical considerations for the mea
surement of antenna patterns are also discussed in this section. 

In order to show that transmit and receive patterns are identical, it is necessary 
to discuss reciprocity theorems. There are several forms reciprocity theorems take 
for electromagnetic field problems. We consider two forms of reciprocity for use in 
antenna problems. The Lorentz reciprocity theorem is discussed first. Let sources 
J a and Ma produce fields Ea and Ha and sources J b and Mb produce fields Eb and 
H b • See Fig. 9-4. The frequencies of all quantities are identical. The Lorentz reci
procity theorem that is derivable from Maxwell's equations (see Prob. 9.4-1) states 
that for isotropic media, 

(9-36) 

The left-hand side is the reaction (a measure of the coupling) of the fields from 
sources b on sources a, and the right-hand side is the reaction of the fields from 
sources a on sources b. This is a very general expression, but it can be put into a 
more usable form. Let sources b consist of only an ideal electric dipole of vector 
length p located at point (xp, YP' zp). Since the ideal dipole can be represented as 
an infinitesimal source and Mb is zero, (9-36) becomes1 

Eixp, YP' zp) • P = I I I (Eb • Ja - Hb • Ma) dv' (9-37) 
Va 

This expression allows calculation of the electric field from sour~es a by evaluating 
the integral using known sources J a and Ma and known ideal dipole fields Eb and 
Hb of (1-69) and (1-68), evaluated at the location of sources a. This can be performed 
for various orientations p of the ideal dipole, which is acting as a field probe. 

Volume va Volume Vb 

Figure 9-4 Source configuration for the 
Lorentz reciprocity theorem. 

lThe ideal dipole current could be written as Jb = c5(x - xp) c5(y - yp) c5(z - zp)p. This together with 
Mb = 0 in (9-36) yields (9-37). 
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The Lorentz reciprocity theorem can also be used to derive a second reciprocity 
theorem using terminal voltages and currents. Suppose sources a and b are antennas 
excited with ideal (infinite impedance) current generators la and lb' Since no mag-
netic sources are present, (9-36) reduces to . 

f f f Eb • Ja dv' = f f f Ea· Jb dv' (9-38) 

For pedectly conducting antennas, the electric fields will be zero over the antennas; 
however, voltages will be produced across the terminals. Taking the current to be 
constant in the terminal region and using the concept of IE . de = - V, we see that 
(9-37) becomes 

(9-39) 

where V~c is the open circuit voltage across the terminals of antenna a due to the 
field Eb generated by antenna b and, similarly, Vb is the open circuit voltage at 
antenna b due to antenna a. Open circuit voltages have been used because of the 
infinite impedances of the generators. Rearranging (9-39) leads to a statement of 
reciprocity in circuit form 

V OC V OC 
_a =_b 

lb la 
(9-40) 

Several factors affect the voltage appearing at one antenna due to another an
tenna that is excited: the specific antennas used, the medium between the antennas 
with perhaps other objects present, and the relative. orientation of the antennas. We 
can represent the general situation entirely in terms of circuit parameters using the 
following, which holds for any linear passive network: 

Va = Zaala + Zablb 

Vb = Zbala + Zbblb 

(9-41a) 

(9-41b) 

where Va, Vb, la, and lb are the terminal voltages and currents of antennas a and b. 
If antenna a is excited with a generator of current la, the open circuit voltage ap
pearing at the terminals of antenna b is VbI1b=O' The transfer impedance Zba from 
(9-41b) with lb zero is 

(9-42) 

If antenna b is excited with a generator of current lb' the open circuit voltage ap
pearing at the terminals of antenna a is VaI1a=o. The transfer impedance Zab is, from 
(9-41a) with la zero, 

Z _ Val 
b -

a lb Ia=O 
(9-43) 

Comparing (9-42) and (9-43) to (9-40), we see that 

(9-44) 

where Zm is the transfer (or mutual) impedance between the antennas. This can 
also be shown from the circuit formulation of (9-41) if the individual impedances 
are linear, passive, and bilateral. (See Probs. 9.4-3 and 9.4-4). This, in turn, is true 
if the medium and the antennas are linear, passive, and isotropic. 
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The significance of these results is now explained using the model of Fig. 9-5. If 
an ideal current source of current I excites antenna a, the open circuit voltage at 
the terminals of b from (9-42) is 

(9-45) 

If the same source is now applied to the terminals of antenna b, the open circuit 
voltage appearing at the terminals of antenna a from (9-43) is 

Val/.=o = IZab 

But Zab = Zba, so the preceding two equations yield 

val/.=o = Vb11b=0 = V 

(9-46) 

(9-47) 

Thus, the same excitation current will produce the same terminal voltage indepen
dent of which port is excited, as illustrated in Fig. 9-5. In other words, reciprocity 
states that the source and the measurer can be interchanged without changing the 
system response. The same is true of an ideal voltage source and short circuit ter
minal currents. These are familiar results from network theory. 

The self-impedances of the antennas from (9-41) are 

Z = Val 
aa Ia Ib=O 

(9-48) 

Vbl Zbb =-
Ib 1.=0 

(9-49) 

If antennas a and b are widely separated, which is the usual operating situation, Zaa 
and Zbb are much greater than Zab = Zba = Zm. Thus, the input impedance to 
antenna a, for example, from (9-41a) is 

Va Ib 
Za = T = Zaa + Zab I = Zaa 

a a 
(9-50) 

Thus, if an antenna is isolated so that all objects including other antennas are far 
away and the antenna is lossless, the self-impedance equals its input impedance. 

1- - - - - - ---- - - - -, 

a~u ______ ;j :. IcdL--__ -I~ V 
(a) Two-port representation of a 

two-antenna system. 
(b) Antenna a excited with current source I. 

V~l..----_~l 
(c) Antenna b excited with current source 1. 

Figure 9-5 Reciprocity for antennas. The output voltage V is the same in (b) and (c) for 
the same input current l. 
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Suppose antenna a is excited (i.e., acting as a transmitter) and the voltage pro
duced at the terminals of antenna b is measured with an ideal voltmeter. If the 
antennas are separated so that they are in each other's far field, the transfer im
pedance Zba is actually the far-field (or radiation) pattern of antenna a if antenna 
b is moved around a on a constant radius as shown in Fig. 9-6a. As antenna b is 
moved, it is maintained with the same orientation and polarization relative to an
tenna a. The output voltage of b as a function of angle around antenna a gives the 
relative angular variation of the radiation from antenna a, that is, its radiation pat
tern. Examining (9-42), we see that this is really Zba (Ia is constant). Thus, Zba as a 
function of angle is the transmitting pattern of antenna a. If now antenna b is excited 
and antenna a acts as a receiver, the terminal voltage of antenna a is the receiving 
pattern of antenna a as antenna b is again moved around at a constant distance 
from antenna a; see Fig. 9-6b. Thus, Zab as a function of angle is the receiving pattern 
of antenna a. Since the transfer impedances are identical, we can conclude that the 
transmit and receive patterns of an antenna are identical. This is an important con
sequence of reciprocity. 

The equality of the transmit and receive patterns of an antenna is not an unex
pected result. This can be seen through the relation G( e, cp) = 41TAl e, cp)/ A.z of 
(9-2), which relates the receiving characteristic of the antenna Ae(6, cP) for an in
coming plane wave from angle (6, cP) to the gain pattern value G(6, cP) in the di
rection (6, cP) when the antenna transmits. The reciprocal property is of major prac
tical importance. It permits the test antenna to be used in either a receive or transmit 
mode during pattern measurements. In practice, pattern measurements are usually 
made with the test antenna used in reception. 

\ 
\ 
\ \ 'f vgc(8,1/1) 

\ 
\ , , 
I 
I 
I , , 

I r> rff 

(a) The transmitting pattern of antenna a is Zba (8,1/1) = Vf:(8,1/1)/la' 

(b) The receiving pattern of antenna a is Zab (8,1/1) = V::'(8,1/I)/lb' 

Figure 9-6 Antenna pattern 
reciprocity. The transmitting and 
receiving patterns of an antenna 
are identical because Zab( 6, cf» = 
Zba(6, cf» = Zm(6, cf». 
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It is important to note that reciprocity, as illustrated in Fig. 9-5 or through (9-44), 
is a general result. Also, in the case when the antennas are far removed from each 
other, Zm((), cf» is the far-field pattern. Of course, if an antenna contains any non
reciprocal components, reciprocity does not hold. An example is a ferrite isolator 
included in the antenna system. 

9.5 PATTERN MEASUREMENT AND ANTENNA RANGES 

An antenna pattern is a graphical representation of the field magnitude at a fixed 
distance from an antenna as a function of direction. With the antenna at the origin 
of a spherical coordinate system, radiation fields E and H are perpendicular to each 
other and both are transverse to the direction of propagation r. Also, the field 
intensities vary as r- 1

• In antenna pattern discussions, electric field is used, but 
magnetic field behavior follows directly since its intensity is proportional to the 
electric field and its direction is perpendicular to E and r; see (1-107). 

The radiated electric field is both a vector and a phasor. In general, it has two 
orthogonal components, E9 and Eq,. These components are complex-valued and 
their relative magnitude and phase determine the polarization; see Sec. 1.10. For 
simple antennas, only one component is present. For example, the ideal dipole 
parallel to the z-axis has only an E9 component as shown in Fig. 1-10. Measurement 
of the radiation pattern in this case is conceptualized by moving a receiving probe 
around the antenna as it transmits a constant signal a fixed distance away, r. The 
probe's orientation is maintained parallel to E9 as shown in Fig. 9-7. The output of 
the probe varies in direct proportion to the intensity of the received field component 
arriving from direction ((), cf». The pattern ofthe ideal dipole is sin (); see Fig. 1-10. 
In general, antennas will have both E9 and Eq, components and patterns are cut 
twice, once with the probe oriented parallel to E9 and once with it parallel to Eq,. 

Although we have conceptualized the measurement of a radiation pattern by 
moving a receiver over a sphere of constant radius, this is obviously an impractical 
way of making such measurements. The important feature is to maintain a constant 
large distance between the antennas and to vary the observation angle. This is 
accomplished by rotating the test antenna, or antenna under test (AUT), as illustrated 
in Fig. 9-8. By reciprocity, it makes no difference if the test antenna is operated as 
a receiver or transmitter, but usually the test antenna is used as a receiving antenna 
and we adopt this convention. The fields from the motionless source antenna pro
vide a constant illumination of the test antenna whose output varies with its angular 
position. This leads to the rule that it is the pattern of the rotated antenna that is 
being measured. 

z 

f----y 

Figure 9-7 Pattern measurement conceptualized by 
movement of a probe antenna over the surface of a 
sphere in the far field of the antenna. 
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Source Test Antenna 

Figure 9-8 Radiation pattern measurement. The pattern 
of antenna a is proportional to the terminal voltage Va. 
which is a function of the angular position of antenna a 
during rotation. 

A complete representation of the radiation properties of an antenna would, of 
course, require measuring the radiation at all possible angles (e, cp). This is rarely 
attempted and fortunately is not necessary. For most applications, the principal 
plane patterns are sufficient. See Fig. 1-10 for an illustration of the principal plane 
patterns using an ideal dipole. 

There are many ways of displaying antenna patterns. For example, a principal 
plane pattern could be plotted in polar or rectangular form. In addition, the scale 
could be either linear or logarithmic (decibel). All combinations of plot type and 
scale type are used: polar-linear, polar-log, rectangular-linear, and rectangular-log. 
Figure 9-9 shows the same radiation pattern plotted in these four ways. Generally 
speaking, log plots are used for high-gain, low side-lobe patterns and linear plots 
are used when the main beam details are of primary interest. These antenna pattern 
representations can be recorded directly using commercially available measuring 
and recording equipment. When more detailed information is required, the results 
of several planar cuts can be put together to make a contour plot. It is important 
to appreciate that measured patterns are usually not perfectly symmetric even 
though the antenna structure appears to be symmetric and also nulls are often 
partially filled. 

(a) Polar-linear. 

e 1.0 r--"1--r---.---r-~..,....,r--T--'-----'--'--' 
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(b) Polar-logarithmic. 
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t:i -10 a i -w 
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-180 -120 -60 0 60 120 180 
Angle, degrees Angle, degrees 

(c) Rectangular-linear. (d) Rectangular-logarithmic. 

Figure 9-9 Illustration of the four antenna pattern plot types using the same pattern. 
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A facility used to measure antenna radiation characteristics is referred to as an 
antenna range. Often, the same range can also be used to measure scattering char
acteristics such as radar cross section. The entire measurement facility consists of 
the space (indoor or outdoor) for the source and test antennas, antenna positioners, 
a transmitter, a receiving system, and data display/recording equipment. In this 
section, we discuss the basic range l~youts; see [3] for a complete discussion of 
antenna measurement techniques. 

Table 9-1 lists the types of antenna ranges together with their characteristics and 
advantages and disadvantages. Most ranges are free-space ranges that are designed 

Table 9-1 Characteristics of Antenna Ranges 

Range Type Description Advantages Disadvantages 

FREE SPACE RANGES Effects of all surroundings 
are suppressed to 
acceptable levels. 

Far-field Ranges 
Elevated range Source and test antenna Low cost. Requires real estate. 

are placed on towers, May require towers. 
buildings, hills, etc. Outdoor weather. 

Slant range Either the source or test Low cost. Requires real estate. 
antenna is elevated. May require a tower. 

Outdoor weather. 

Anechoic chamber A room is lined with Indoors. Absorber and large room 
absorber material to are costly. 
suppress reflections. 

Compact Range The test antenna is Small space. A large reflector is 
illuminated by the required. 
collimated near field of 
a large reflector. 

Near-field Range The magnitude and phase Very small space. Accurate probe 
of the near field of the positioning is required. 
test antenna are Accurate amplitude and 
sampled and the far phase are required. 
field is computed. Time-consuming 

measurements. 
Computer-intensive. 

GROUND REFLECTION The ground between the Test tower is Outdoor weather. 
RANGE source and test short. 

antennas is reflective, Operates well 
enhancing the indirect at low 
ray that interferes with frequencies 
the direct ray, giving a (VHF). 
smooth test antenna 
illumination. 
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to have strong direct illumination of the test antenna with weak indirect illumina
tion. First, we consider far-field ranges in which the source antenna is far from the 
test antenna. This can be accomplished by elevating either both or one of the source 
and test antennas giving an elevated range or slant range. For all antenna ranges, 
the site around the test antenna affects pattern measurement accuracy. The guiding 
principle is to have the line of sight (direct) path between the source and test an
tenna unblocked and as high above the ground (or floor) as practical. This yields 
large values for the angles at and a r shown in Fig. 9-10. Then directive antennas 
will have indirect rays arising from specular reflection from the ground of reduced 
level because angles at and a r usually correspond to side-lobe directions. In the 
elevated range of Fig. 9-10, the source and test antennas are approximately the 
same height, ht = hr. The slant range is similar to the elevated range except that 
only the source is elevated, leaving the test antenna conveniently located near the 
ground. When indoor rooms are used for a far-field range, the walls must be lined 
with absorbing material to reduce reflections. Frequently, the absorber is pyramidal
shaped to eliminate flat surfaces that reflect rays toward the test antenna. 

In far-field ranges, the test antenna is located in the far field of the source antenna 
so that the incoming waves are nearly planar as indicated in Fig. 9-10. In fact, a 
common goal of all antenna ranges is to provide plane wave illumination of the test 
antenna. Deviations from uniform field illumination amplitude (i.e., magnitude) and 
phase across the test antenna aperture add to the inherent aperture taper of the 
test antenna, causing pattern measurement errors. In far-field ranges, the illumi
nation field amplitude variation is determined by the radiation pattern of the source 
antenna. The effect of increased amplitude taper imposed on the test antenna ap
erture is to reduce the measured gain and change the side lobes close to the main 
beam. If the source antenna pattern peak is centered on the test antenna, as it should 
be in all cases, and the amplitude taper created by the source antenna pattern is 
-0.25 dB at the edges of the test antenna aperture, there will be a directivity (and 
thus, gain) reduction of 0.1 dB [4]. That is, the pattern point at angle a/2 is 0.25 dB 
down from the peak; see Fig. 9-10. This is difficult to achieve for the wide variety 
of measurement situations on an antenna range, but in all cases the source antenna 
should be directed toward the test antenna and have a beamwidth that is as small 

Source Specular 
tower point 

(transmit) 

Figure 9-10 The elevated antenna range. 

D 

Test 
tower 

(receive) 
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as possible to reduce illumination of the surroundings and to increase the received 
signal for adequate dynamic range. At the same time, the source antenna should 
not have a beamwidth that is narrow enough to impose an amplitude taper across 
the test antenna. 

The instrumentation used with an antenna range varies from a simple signal 
source together with a relative power indicating subsystem to complete commer
cial systems with automatic data collection and display features. The signal 
source should be stable in power level and frequency. The receiving system 
should have a linear dynamic range of at least 40 dB. Both amplitude-only and 
amplitude-phase receiving systems are available. Also, a network analyzer can be 
used. 

Phase errors are due to the fact that to achieve a planar phase front from a finite
sized source antenna, the source must be an infinite distance away from the test 
antenna. The spherical waves from the source antenna cause a phase error across 
the test antenna extent of D that behave exactly as the far-field distance phase error 
discussed in Sec. 1.7.3. There we found that spherical waves deviate from parallel 
rays with a 22S phase error (A/16 distance error) at a distance of 2D2/A. Thus, we 
can say that a phase error of 22S is created by the phase front curvature over a 
test antenna of extent D at a separation distance of 

2D2 
rtf = - (9-51) 

A 

The extent of the source antenna need not be included for pattern measurements, 
but the measurement distance should be more than doubled when the source and 
test antennas are of the same size to preserve gain accuracy [5]. 

The measurement distance of (9-51) is adequate for moderate-to-high-gain an
tennas if high accuracy is not required in the side-lobe levels. In general, the effects 
of reducing the measurement distance from infinity is to fill in the nulls between 
side lobes, increase the peak of the side lobes (mainly near the main beam), broaden 
the main beam, and reduce the main beam peak (implying a directivity reduction) 
[6]. For example, an antenna with the first side lobe 30 dB below the main beam 
peak (SLL = -30 dB) when measured at an infinite distance from the source has 
an error of 3 dB for a measurement distance of 2D2/A; that is, the first side lobe is 
SLL = -27 dB [5,7]. Gain is reduced about 0.1 dB at the measurement distance 
of 2D2/A for typical high-gain antennas. In the case of broad main beam antennas, 
the measurement distance should also be at least that of (9-51) to ensure the ac
curate measurement of pattern ripple [8]. 

Electrically large antennas require very large measurement distances. For 
example, the Deep Space Network 70-m reflector antenna at Goldstone, CA, 
operating at 2.3 GHz requires a measurement distance from (9-51) of 75 km! 
Conventional techniques cannot be used to measure such an antenna. However, 
a source flown in an airplane or available from a satellite can be used. Or, noise 
from a strong "radio star" can be used as a source together with a radiometer 
receiver. 

The concept for the compact range is to place the test antenna close to a reflector 
antenna as shown in Fig. 9-11. This is possible because the near field of a reflector 
is collimated, giving a nearly flat phase front and an amplitude taper equal to that 
across the reflector aperture. Therefore, the phase error problem associated with 
far-field ranges is traded for an amplitude problem in a compact range. Improved 
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Test 
>--antenna 

(rotated) 

Figure 9·11 The compact range. 

performance is possible with a dual reflector. A disadvantage of the compact range 
is that the reflector must be large-about three times larger than the test antenna. 

The final antenna range type is the near-field range shown in Fig. 9-12:Here, the 
test antenna acts as a transmitter and the amplitude and phase are sampled at 
regular intervals in the near field of the test antenna. The samples are weighted 
equally by the receiver, providing uniform amplitude and phase across the test an
tenna as required for accurate measurements. Radiation properties such as the pat
tern are then computed using a Fourier transform [9]. Accurate probe positioning 
is required for accurate pattern computation. The near-field range offers the benefit 
of having the aperture distribution data available for diagnostic use. For example, 
a dead element in an array antenna can be located. 

The operating principle of the ground reflection range is completely different from 
that of free-space ranges. The source and test antenna heights are small and the 
ground between the towers is constructed to be flat and reflective, which causes the 
indirect ray to arrive with an amplitude close to that of the direct ray. The indirect 
ray path distance is not greatly different from that of the direct ray. This gives a 
slowly varying phase over the test region, which in tum gives a slowly varying in
terference pattern and a relatively constant field illumination over the test zone. A 
low test tower height is convenient for large test objects such as antennas on full
scale aircraft. 

Rotation positioners are required in most of antenna ranges. Often, a simple 
azimuth positioner (or "turntable") is sufficient. An elevation-over-azimuth posi
tioner as illustrated in Fig. 9-13a permits alignment with the source antenna placed 
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Figure 9·12 The near-field range. 
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Roll 

(a) Azimuth-over-elevation. (b) Model tower. 

Figure 9·13 Antenna positioners for antenna testing. 

at any height. Frequently, a model tower is used to position the test antenna over 
the axis of the rotation positioner; see Fig. 9-13b. Included with the model tower is 
a roll positioner that rotates the test antenna about its own axis for controlling the 
pattern cut. The source tower also often has a roll positioner for proper orientation 
of the source antenna polarization. 

9.6 GAIN MEASUREMENT 

Pattern measurement discussed in the previous section is a relative measurement 
that gives the angular variation of the test antenna's radiation. Gain is also needed 
to fully characterize the radiation properties of a test antenna. It is an absolute 
quantity and thus is more difficult to measure. Techniques exist to measure the gain 
of a test antenna with no a priori knowledge. However, most gain measurements 
are made using an antenna of known gain, called a standard gain antenna [4, Chap. 
12]. The technique is called the gain comparison (or gain transfer) method. A trans
mitter of fixed input power PI is connected to a suitable source antenna whose 
pattern peak is centered on the test antenna. Received power is measured for both 
the test antenna PT and the standard gain antenna Ps, as illustrated in Fig. 9-14 by 
placing each antenna on the test positioner, pointing toward the source for peak 
output, and recording the received power levels. The gain of the test antenna is 

Source 

Standard 
gain 
antenna 

Test 
antenna 
GT 

Figure 9·14 Measurement of the gain 
of a test antenna GT using the gain 
comparison method based on the known 
gain of a standard gain antenna Gs and 
GT = (PTIPs)Gs. From [10] © 1993. 
Reprinted by permission of Artech 
House, Inc., Boston, MA. 
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then easily computed from the gain of the standard gain antenna multiplied by the 
ratio of the received powers: 

PT 
GT = P

s 
GS 

This relation is more convenient when expressed in decibels: 

G T (dB) = PT (dBm) - Ps (dBm) + Gs (dB) 

(9-52) 

(9-53) 

This result is intuitive and simply says that the gain of the test antenna differs from 
that of the standard antenna by the difference in received powers from the test 
antenna and the standard antenna. A special case is when the received powers are 
equal (PT = Ps); then the gain ofthe test antenna is identical to that of the standard 
gain antenna. This result is also easily derived by evaluating (2-99) for both the test 
and standard antenna cases and subtracting; the terms involving distance R, fre
quency f, and transmit power Pt are constants and drop out, leaving (9-53). 

It is obvious from (9-53) that accurate gain measurement requires accurate power 
measurement. With modern receivers, this is often possible. An approach that does 
not rely on receiver linearity is the RF substitution method in which a precision 
attenuator is used to establish the power level change. That is, the attenuator is 
adjusted to bring the receiver to the same reading in both cases; then the difference 
in the corresponding attenuator settings equals PT (dBm) - Ps (dBm). Accuracy 
also depends directly on a knowledge of the gain of the standard gain antenna. 
Popular standard gain antennas are the half-wave dipole for UHF frequencies and 
below and the pyramidal horn for UHF frequencies and above. The gain of the 
dipole is 2.15 dB (see Fig. 2-6) and manufacturers of standard gain horns supply 
data on gain across the operating frequency range like Fig. 7-20. 

Note that the term gain is synonymous with absolute gain or peak gain. Gain and 
pattern data can be merged into a gain pattern by mUltiplying gain by the normalized 
pattern: 

G(O, <1» = GP(O, <1» = GIF(O, <1»1
2 (9-54) 

Expressed in decibels (by taking 10 log), the unit of dBi is often used, indicating 
that the pattern has been referenced to an isotropic antenna. 

Gain Measurement by Gain Comparison 

Suppose that a standard gain antenna has a gain of 63, or 18, dB. Following the measurement 
technique illustrated in Fig. 9-14, the measured powers are Ps = 3.16 mW or 5 dBm (5 dB 
above a milliwatt), and PT = 31.6 mW, or 15 dBm. The gain of the test antenna is then 
G T = (31.6/3.16)63 = 630, or in terms of decibels, 

GT (dB) = PT (dBm) - Ps (dBm) + Gs (dB) = 15 - 5 + 18 = 28 dB (9-55) 

9.6.1 Gain Measurement of CP Antennas 

If good-quality circularly polarized (CP) source and standard gain antennas are 
available, the gain comparison method of Fig. 9-14 can be used. Frequently, though, 
the gain of elliptically polarized antennas is measured by using two orthogonal 
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linearly polarized (LP) antennas, or customarily one LP antenna used in two or
thogonal orientations. Suppose the gains are measured for vertical and horizontal 
LP cases. These partial gains, GTh and GTh , are combined to give the total gain 
[10,11]: . 

GT (dB) = 1010g(GTv + GTh) [dBic] (9-56) 

This is referred to as the partial gain method. Any perpendicular orientations can 
be used because the power in an elliptically polarized wave is contained in the sum 
of any two orthogonal components. As a side note, we observe that a CP antenna 
performs this sum instantaneously. Therefore, the gain in (9-56) is relative to an 
ideal CP antenna. The unit dBic indicates gain relative to an isotropic, perfect CP 
antenna. Gain measurement accuracy depends on the purity of the source antenna. 
An LP standard gain antenna usually has an axial ratio of 40 dB or better and does 
not contribute significantly to gain error. 

Calculation of Gain Using the Partial Gain Method 

Figure 9-15 gives two patterns measured with an LP source antenna and a nominally CP test 
antenna, which is a cavity-backed spiral antenna operating at 1054 MHz. Also shown is the 
pattern of a standard gain hom, which has a gain at 1054 MHz of 14.15 dB based on the 
manufacturer's gain curve. The receiver gain setting and the source power were constant 
during these measurements. The peak gains for vertical and horizontal polarizations then are 

GTv (dB) = 14.15 - 16.1 = -1.95 dB, GTh (dB) = 14.15 - 13.25 = 0.9 dB (9-57) 

because the vertical and horizontal LP pattern peaks are 13.25 and 16.1 dB below the stan
dard gain hom pattern peak, respectively. Then 

and (9-56) gives 

- - Gainref. 
--Eh 

---- Ev 

GTv = 10-1.95/10 = 0.64, GTh = 10°·9/10 = 1.23 (9-58) 

GT (dB) = 10 log(O.64 + 1.23) = 2.71 dBic (9-59) 

8= 0" 

Figure 9-15 Illustration of 
measurement of the gain of a CP 
antenna using the partial gain 

-I--+---'I-~~-.l.r=--+--I--If--+--!- 8= 90° method; see Example 9-7. The 
patterns are for an LP standard 
gain hom (long dashed curve) and 
the nominally CP antenna with the 
source vertically (solid curve) and 
horizontally (short dashed curve) 
polarized. From [10] © 1993. 
Reprinted by permission of Artech 
House, Inc., Boston, MA. 
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9.6.2 Gain Estimation 

Frequently, gain can be estimated based on a knowledge of the pattern and the 
antenna operation. Since directivity is a pattern quantity, we can use pattern data 
to estimate directivity. That is, directivity from (1-146b) varies inversely with beam 
solid angle, D = 4'7T/!lA' It is possible to record many pattern cuts and numerically 
integrate the pattern using (1-143) to find !lAo A simpler approach is to use the 
principal plane pattern half-power beamwidths to estimate beam solid angle. To do 
this, we first find beam efficiency from main beam solid angle!lM using (7-85): 

!lM 
BM=-

!lA 
(9-60) 

The main beam so~id angle is well approximated as the product of the half-power 
beamwidths in the principal planes: 

!lM"'" HPEHPH (9-61) 

Then directivity can be estimated by combining these results: 

D = 4'7T = 4'7TBM = 4'7TBM 41,253BM 
!lA !lM HPEHPH HP~HP~ 

(9-62) 

where HP~ and HPHo are the half-power beamwidths in the E- and H-planes ex
pressed in degrees. Often, it is assumed that all power is in the main beam, giving 
BM = 1; see (7-94). Antennas, in practice, have a nonnegligible amount of power in 
the side lobes; a typical value for B~is 0.63. If no loss is present, er = 1 and the 
gain for antennas encountered in practice from (9-62) from (7-95) is 

G = erD "'" D "'" 26,000 
HP~HPHo 

(9-63) 

See Sec. 7.3 for fuore discussion on gain. It must be emphasized that this very 
approximate formula should be used for rough estimates when the only data avail
able are the half-power beamwidths. 

9.7 POLARIZATION MEASUREMENT 

Quite often, the polarization of an antenna can be inferred from the geometry of 
the active portion of the antenna. For example, the ideal dipole in Fig. 1-10 is vertical 
linearly polarized since the radiating element is oriented vertically. For gain and 
co~polarized pattern measurements, the test antenna should be illuminated with a 
wave of the expected polarization of the antenna: in this case, a vertical linearly 
polarized wave. Real antennas always have a certain amount of power in the po
larization orthogonal to the intended polarization. For the practical realization of 
the ideal dipole, there will be a small amount of horizontal linear polarization. Such 
cross-polarization arises from horizontal currents flowing on the antenna vr nearby 
structures. Thus, a complete antenna measurement set includes characterization of 
the polarization properties of the test antenna. This is often accomplished by making 
pattern cuts in the E- and H-planes of the test antenna with it both co-polarized 
and cross-polarized to the source antenna. This is illustrated in Fig. 9-16 for the case 
of a nominally LP test antenna and an LP source antenna. Of course, the cross
polarized patterns will be much lower in level than the co-polarized patterns, and 
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E-plane 
co-polarized 

E-plane 
cross-polarized 
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Figure 9-16 Illustration of copolarized and cross-polarized pattemmeasurement. The 
source antenna is LP and the test antenna operating in the receiving mode is nominally LP 
and is rotated about its axis. From [10] © 1993. Reprinted by permission of Artech House, 
Inc., Boston, MA. 

will be zero for a perfect LP test antenna. Co- a!1d cross-polarized patterns for 
reflector antennas are discussed in Sec. 7.6.5. 

There are three measurement techniques used to characterize an antenna that is 
elliptically polarized but has an axial ratio that is not large (i.e., the polarization 
state is not close to pure LP). These methods are discussed in the remainder of this 
section [10]. 

9.7.1 Polarization Pattern Method 

A polarization pattern is the amplitude response of an antenna as it is rotated about 
its roll axis. It can be measured at any fixed pattern rotation angle. The Tesulting 
pattern shown in Fig. 9-17 is a polar plot of the response of the test antenna as a 
function of the relative angle a between the illuminating LP wave orientation and 
a reference orientation of the antenna. Either the LP source antenna is rolled while 
the test antenna is stationary or vice versa. I~ is easier to explain the polarization 
pattern method with the test antenna operated as an elliptically polarized trans
mitting antenna and the receiving antenna as ;alinearly polarized probe. Reciprocity 
permits us to do this. The tip of the instant~eous electric field vector from the test 
antenna lies on the polarization ellipse and rotates at the frequency of the wave; 
that is, the electric vector completes f rotations around the ellipse per second. The 
output voltage of the LP probe is proportional to the peak projection of the electric 
field onto the LP orientation line at angle a. This is the distance OP in Fig. 9-17 
projected from the tangent point T on the ellipse. The locus of points P as the LP 
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Major 
axis 

--~~------~~~--~--~------x 

Figure 9-17 Polarization pa.ttern (solid 
curve) of an elliptically polarized test 
antenna. It is the response of an LP 
receiving probe with orientation angle 
a to a transmitting test antenna with 
the polarization ellipse shown (dashed 
curve). From [10] © 1993. Reprinted 
by permission of Artech House, Inc., 
Boston,MA. 

probe is rotated is fatter than the ellipse, which is also shown in Fig. 1-24. Of course, 
for a CP test antenna both curves in Fig. 9-17 are circular. 

Note that the maximum and minimum of the polarization pattern are identical 
to the corresponding maximum and minimum of the polarization ellipse when scaled 
to the same size. Although the measured polarization pattern does not give the 
polarization ellipse, it does produce the axial ratio magnitude of the antenna po
larization. It is also obvious from Fig. 9-17 that the tilt angle of the ellipse is deter
mined as well. The polarization pattern gives the axial ratio magnitude IARI and tilt 
angle 7' of the polarization ellipse, but not the sense. The sense can be determined 
by additional measurements. For example, two nominally CP antennas that are 
identical except for sense can be used as receiving antennas with the test antenna 
transmitting. The sense of the antenna with the greatest output is then the sense of 
the test antenna. 

The polarization pattern method in many cases is a practical way to measure 
antenna polarization. If the test antenna is nearly circularly polarized, the axial ratio 
is near unity and measured results are insensitive to the purity of the LP probe. If 
the test antenna is exactly circular, tilt angle is irrelevant. In the case of a test 
antenna that is nearly linearly polarized, axial ratio measurement accuracy depends 
on the quality of the LP probe, which must have an axial ratio much greater than 
that of the test antenna. 

9.7.2 Spinning Linear Method 

The spinning linear (or rotating source) method provides a rapid measurement tech
nique for determining the axial ratio magnitUde as a function of pattern angle. The 
test antenna is rotated as in a conventional pattern measurement while an LP probe 
antenna (usually transmitting) is spun. The spin rate of the LP antenna should be 
such that the test antenna pattern does not change appreciably during one-half 
revolution of the LP antenna while the test antenna rotates slowly. An example 
pattern is shown in Fig. 9-18, which is a pattern of a helix antenna. Superimposed 
on the antenna pattern are rapid variations representing twice the rotation rate of 
the probe antenna. For logarithmic (dB) patterns as in Fig. 9-18, the axial ratio is 
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Figure 9·18 Axial ratio measurement as a 
function of pattern angle using the spinning 
linear method. The axial ratio is the 
difference in decibels between adjacent peaks 
and nulls. The test antenna is a helix antenna 
operating at X-band and the source is a 
rotating LP antenna. From [10] © 1993. 
Reprinted by permission of Artech House, 
Inc., Boston, MA. 

the difference between adjacent maxima and minima at each angle. For example, 
at a pattern angle of 30° counterclockwise from the main beam axis, the maximum 
and minimum pattern envelopes are about -8 and -10 dB, corresponding to a 2-dB 
axial ratio. 

Sense cannot be obtained using the spinning linear method. Tilt angle could, in 
theory, be obtained if probe orientation information were known accurately at the 
pattern points, but this is usually not done in practice. 

9.7.3 Dual-Linear Pattern Method 

A method related to the spinning linear method is the dual-linear pattern method. 
In this method, two patterns are measured for orthogonal orientations of the LP 
probe source antenna so that they align with the major and minor axes of the test 
antenna polarization ellipse. Figure 9-19 illustrates the resulting patterns for the 
same sample antenna as in Fig. 9-18 for the spinning linear method. For the same 
example pattern point at 30° counterclockwise from the beam peak, the two linear 

OdB 

Figure 9·19 Axial ratio measurement as a 
function of pattern angle using the dual
linear pattern method. The axial ratio is the 
decibel difference between the two patterns 
that represent planes containing the major 
and minor axes of the test antenna 
polarization ellipse. The test antenna is 
identical to that in Fig. 9-18. From [10] 
© 1993. Reprinted by permission of 
Artech House, Inc., Boston, MA. 
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pattern values are -8 and -10 dB, again giving a 2-dB axial ratio value. Of course, 
the gains and other equipment settings must remain constant during the entire mea
surement period. 

9.8 FIELD INTENSITY MEASUREMENTS 

A very small receiving antenna can be used as a field probe. Probes are used when 
it is necessary to measure the spatial amplitude distribution of electromagnetic 
fields. The probe must be small relative to the structure whose fields are being 
measured in order to minimize the disturbances introduced by the probe itself. The 
electrically small dipole, in any of its practical forms discussed in Sec. 2.1, is used 
to probe electric fields. The small loop is used as a magnetic field probe. 

Receiving antennas are also used to measure absolute field intensity. For example, 
it is often necessary to know the field intensity at a fixed distance from a transmit 
antenna. The antenna pattern can, of course, also be measured by moving a receiv
ing probe around the transmitter at a fixed distance from it in the far field; this gives 
the relative field intensity variation. Such measurements are often required because 
the effects of terrain and the real earth surface are difficult to include in calculations. 
If the gain of the measuring antenna is known (it usually is) and the voltage devel
oped across its terminals is measured, the field intensity incident upon the measuring 
antenna can be calculated. We now discuss this. 

The same model as in Fig. 2-18b is used to derive field intensity. The power 
delivered to the terminating load is 

P D = ! !VA12 = V~,rms 
2 RL RL 

(9-64) 

where VA,rrns = !VAI/V2 since VA is a peak quantity. The field form of the delivered 
power expression from (9-3) and (2-88) is 

(9-65) 

Equating these two relations yields 

(Ei )2 _ V~,rms 1 _ V~,rms 47T - 11--- - 11----
rms pqRL Ae pqRL GA2 (9-66) 

where (2-89) was used for Ae. Converting wavelength to frequency using A = elf 
and expressing the relation in decibels by taking 10 log of both sides gives 

E!ms (dB/LV/m) = VA,rms (dB/LV) + 20 log f (MHz) - G (dB) 

- 10 log RL - 10 logp - 10 log q - 12.8 
(9-67) 

This expression permits easy calculation of electric field intensity E!ms in decibels 
relative to 1 /LV/m, using the voltage VA,rms in decibels relative to 1 /LV, measured 
at the terminals of a probe antenna with gain G. Gain loss due to mispointing can 
also be included. For example, suppose the probe antenna has 6-dB gain and is 
pointed so that the incoming wave arrives from a direction on the receiving antenna 
pattern that is 2 dB below its maximum. Then 4-dB gain is used in (9-67) rather 
than the peak gain of 6 dB. 
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Sensitivity of an FM Receiver 

As an example, suppose the antenna and transmission line. input impedances are both 300 n. 
Then (9-67) becomes [11] 

E~ (dBp.V/m) = 20 log f (MHz) - G (dB) + VA,rms (dBp.V) - 37.6 (9-68) 

To be specific, consider a typical FM broadcast receiver with a sensitivity of 1 p. V; that is, 
minimum satisfactory performance is produced when the value of VA,rms is 1 p.V, or 0 dBp.V. 
The most popular antenna for FM receivers is the half-wave folded dipole (see Sec. 5.2) that 
has a real impedance of about 300 n and a gain of 2.15 dB. At a frequency of 100 MHz, the 
incident field intensity required for minimum satisfactory performance from (9-68) is 
0.25 dBp.V/m, or 1.03 p.V/m. 

At frequencies below 1 GHz, antenna measurements are made by illuminating 
the test antenna with a known field intensity and measuring the terminal voltage. 
Antenna factor is used to quantify this measurement. Antenna factor K is defined 
as the ratio of the field intensity illuminating the antenna to the received voltage 
across the antenna terminals: 

Ei 
K = - (m-l) 

VA 
(9-69) 

This is an electric field antenna factor; a corresponding one involving magnetic field 
intensity is also in use. Antenna factor is often used to determine receiver sensitivity. 
Then, (9-69) in decibel form using (9-67) becomes 

E~ (dBpV/m) = receiver sensitivity = VA,rms (dBpV) + K (dB/m) (9-70a) 

where 

K (dB/m) = 20 log[f (MHz)] - G (dB) - 10 log RL 

- 10 logp - 10 log q - 12.8 
(9-70b) 

It is common to specialize this definition to RL = 50 fl, since that is the normal 
receiver input impedance. Antenna factor includes impedance mismatch effects and 
antenna gain. The polarizations of the wave and antenna are usually assumed to be 
matched (i.e., q = 0), which is the customary measurement situation. 

Sensitivity of an FM Receiver 

We repeat Example 9-9 using antenna factor. Substituting RA = Zo = 300 n, G = 1.64 and 
A = 3 m in (9-70b) gives 

K = 20Iog(loo) - 2.15 - 10 log(3OO) - 0 - 0 - 12.8 = 0.28 dB/m = 1.03 m-1 (9-71) 

Then for a I-p.V sensitivity, (9-70a) gives 

E~ = 0 dBp.V + 0.28 dB/m = 0.28 dBp.V/m (9-72) 

which is the result we obtained in Example 9-9. 
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PROBLEMS 

9.1-1 Show that (9-8) follows from (9-9). 
9.1-2 A transmitting antenna is not matched to the impedance of a connecting transmission 
line. The radiation intensity, or equivalently the power density at a specified distance, is 
reduced from the perfect impedance match case. Compute this reduction in decibels for 
mismatch situations that produce VSWR values on the transmission line of 1.01,1.2,2, and 10. 
9.1-3 Find the complex unit vector e for a right-hand elliptically polarized wave with an axial 
ratio of 2 dB and tilt angle 'T = 45°. Then compute the polarization efficiency for receiving 
antennas with the fOllowing polarizations: (a) horizontal linear, (b) vertical linear, (c) right
hand circular, (d) left-hand circular, (e) right-hand elliptical with AR (dB) = 2 and 'T = 45°, 
and (f) left-hand elliptical with AR (dB) = 2, and 'T = 135°. 
9.1-4 Justify the complex conjugate appearing in (9-10) by setting up an xy-coordinate system 
with the z-axis directed toward the antenna. Refer hand E to the x- and y-axes. Recall that 
the polarization state of an antenna is the polarization of the wave radiated by the antenna 
when it is transmitting. 
9.1-5 Derive the vector effective length expression 

h = -j/3JLeffNS sin (J c'f, 

for a small loop antenna oriented in the xy-plane with N turns, effective relative permeability 
JLeff' and single tum area of S. Make use of (2-53). 
9.3-1 A monostatic radar system (i.e., the transmitter and receiver are in the same location) 
illuminates a target which is a resonant half-wave dipole that has a radar cross section of 
approximately 0.85,\2. The radar operates at 10 GHz, the~range is 1000 m, the gain of the 
transmit and receive antennas is 20 dB, and the transmit power is 1000 W. Compute the 
received power. 
9.4-1 Let sources Ja , Ma, J b and Mb all be of the same frequency in a linear medium. The 
following steps lead to the Lorentz reciprocity theorem: 

a. Maxwell's equations for sources a are 

v x Ea = -jwpHa - M" 

V x u.. = jwsEa + Ja 

Similar equations can be written for sources b. Manipulate these four equations and use the 
vector identity (C-19) to show that 

V· (Ea x Hb - Eb X Ha) = Eb • Ja + u... Mb - Hb • Ma - Ea' Jb 
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b. Integrate the above equation over a volume v enclosing all sources, employ the diver
gence theorem (C-23) for the left-hand side, and let the volume extend to infinity. Then the 
fields arriving at the surface of the volume behave like spherical waves, and the TEM wave 
relationships can be employed to show that the left-hand side is zero, leading to a proof of 
(9-36). 
9.4-2 Use the reciprocity theorem form of (9-37) to show that the distant field of any finite 
electric current distribution in free space can have no radial component. 
9.4-3 Since any two-port network can be reduced to an equivalent T section, the general 
antenna system of Fig. 9-5a can be modeled as shown in the figure. First, excite terminals a 
with a current source Ia and find the open circuit output voltage VbI1b=O' Then, excite terminals 
b with a current source Ib and find the open circuit output voltage VaII.=o. From these rela
tionships, find Zba and Zab; they will, of course, be equal. 

9.4-4 Write the voltage equations for the network representation of Prob. 9.4-3 and compare 
to (9-41) to show that the T network impedances are Zl = Zaa - Zm, Z2 = Zbb - Zm, and 
Z3 = Zm· 
9.4-5 If antennas a and b are identical, how is the network of Probs. 9.4-3 and 9.4-4 simplified? 
9.4-6 Reciprocity can also be shown with voltage generators and short circuit currents: 

a. Drive terminals a of the network in Prob. 9.4-3 with a voltage generator Va and short 
circuit terminals b. Find the expression of Va1hlvb=O in terms of Zt. Z2, and Z3.Then drive 
terminals b with voltage source Vb while short circuiting terminals a. Find Vbllalv.=o. It should 
equal VaI1blvb=o. 

b. Find the same transfer impedance expressions in terms of Zaa, Zbb, Zab, and Zba from 
(9-41). Show that they are equal if Zab = Zba' 

c. Using Zl = Zaa - Zm, Z2 = Zbb - Zm, and Z3 = Zm from Prob. 9.4-4, show that the 
transfer impedance expressions of (a) are the same as those of (b). 
9.4-7 Using the model of Fig. 9-5a, excite antenna a with voltage Va and prove that the power 
received in antenna b, which is terminated in load RL , is proportional to IZml2 for antenna b 
in the far field of a. 
9.5-1 Anechoic chamber design. An anechoic chamber with a separation distance between 
the source and test antenna of 7 m is to be used to measure the pattern of a 2-dB gain 
antenna. Measurements are to be made from 1 to 12 GHz and a receiver dynamic range of 
45 dB is required for the pattern. The receiver has a sensitivity of -110 dBm at 1 GHz and 
-95 dBm at 12 GHz. The transmitter power is 10 dBm. Find the gain of the source antenna 
(constant over the band) in order to keep the received signal power above the receiver 
sensitivity by the dynamic range. 
9.6-1 Absolute gain measurement. Gain can be measured without referencing to a standard 
gain antenna using one of the following two techniques. (a) The three-antenna method in-

_ volves three antennas with unknown gains Ga , Gb , and Gc• Using (2-99), write the three 
equations representing the antenna range measurements. Discuss how they are solved. 
(b) Reduce the equations in (a) to one equation for the case of two identical antennas 
(Ga = Gb = GT ); this is the two-antenna method. 
9.8-1 DeriJle.-(%i)and (9-66). 
9.8-2 A voltage of 200 /LV (peak) is required at the input of an FM broadcast receiver for 
acceptable performance. The receiver input impedance is 300 0, (real). The antenna is a 
linearly polarized folded dipole with an input impedance of 300 + jOn and has negligible 
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loss. The antenna has a gain of 1.64 and is oriented for maximum received signal. The con
necting transmission line is a 300-0 twin lead. (a) What are the radiation and impedance 
efficiencies e, and q? (b) If the radio station transmitting antenna is circularly polarized, find 
the minimum peak electric field strength incident on the receiver required for proper recep
tion at 100 MHz. 
9.8-3 (a) Derive an expression for the antenna factor using (9-66) in (9-69). (b) Use this 
relation to derive (9-70b). (c) Show that (a) reduces to the following popular formula for a 
matched, 50-0 system: 

9.84 Evaluate the antenna factor of a matched antenna operating at 30 MHz with a gain of 
3 dB and terminated with a 50-0 resistor. 



Chapter 10 

CEM for Antennas: 
The Method of 
MOlllents 

10.1 INTRODUCTION TO CEM 

In antenna analysis and design, two numerical methods in computational electro
magnetics (CEM) stand out: the method of moments (MoM) and finite difference 
time-domain (FD-TD). Use of the former has been well established for several 
decades, whereas the potential of the latter in antenna work has only begun to be 
realized more recently. This chapter will present MoM and is followed bya discus
sion of FD-TD in the next chapter. 

CEM is broadly defined as the discipline that intrinsically and routinely involves 
the use of a digital computer to obtain numerical results for electromagnetic prob
lems [1]. It is a third tool available to electromagnetics engineers, the other 
two being mathematical analysis, which we have employed in the first seven 
chapters of this book, and experimental observation (Chap. 9). It is not uncom
mon to verify analysis results and CEM results with experimental results, nor 
is it uncommon to employ analysis and/or CEM to understand experimental 
results. 

There are various ways' to classify the assortment of techniques in CEM. 
Here, we choose to divide CEM into two major categories: numerical methods 
and high-frequency or asymptotic methods as shown in Fig. 10-1. For the most 
part, numerical techniques are used in the region where the size of the antenna 
or scatterer is on the order of the wavelength to a few tens of wavelengths' as 
indicated in Fig. 10-2. On the other hand, high-frequency methods, which are 
considered in Chap. 12, are best suited to objects that are many wavelengths in 
extent. 

In tum, there are various ways to classify numerical methods. Here, we choose 
to classify them as either differential-equation-based or integral-equation-based. 

427 
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Figure 10-1 Categories within computational electromagnetics. 

Both these categories can be subdivided into two parts: frequency domain and 
time domain. In this chapter, we investigate a technique that is integral-equation
based and in the frequency domain (i.e., the MoM). The next chapter investigates 
a technique that is differential-equation-based and in the time domain (i.e., 
FD-TD). 

There are also techniques that are integral-equation-based and in the time do
main (e.g., the space-time integral equation [2]) and techniques that are differential
equation-based and in the frequency domain (e.g., the finite-element methods [3]). 
Of these and other techniques, the finite-element methods (FEM) have seen the 
most use and this has been primarily in scattering problems, with microstrip patch 
antennas being a notable exception. 

High frequency methods 

Numerical methods 
E 

0.1A. A. lOA. 1ooA. 1oooA. 
I I I I I 

Object size 

Figure 10-2 Regions of applicability for the major categories of Fig. 10-1. 
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10.2 INTRODUCTION TO mE MEmOD OF MOMENTS 

Thus far, we have studied a variety of antenna configurations, but for the most part 
we have assumed either that the current distribution was uniform (e.g., the ideal 
dipole) or sinusoidal. It was then a relatively straightforward procedure to obtain 
the near- and far-zone fields created by the current. 

In this chapter, we eliminate the need for assuming the form of the current dis-
~bution. Naturally, this greatly expands the number of antenna configurations that 

can be investigated. Indeed, we are then able to study, for example, wire antennas 
of almost arbitrary configuration. The methods we use to do this are, therefore, very 
general methods capable of yielding answers whose accuracy is within the limit of 
experimental error. The potential price for using such powerful methods lies in the 
effort required to write the necessary software, the time required for computer 
execution, and the effort required for validation. Fortunately, cost-effective electro
magnetic software is readily available and it is not necessary to write software from 
"scratch." However, a reasonable understanding of the principles on which the 
electromagnetic software is based is necessary in order to avoid its misuse and the 
misinterpretation of results. 

Consider the wire antenna along the z-axis in Fig. 10-3. A generic form for an 
integral equation describing such an antenna is 

-f I(z')K(z, z') dz' = Ei(z) (10-1) 

The kernel K(z, z') depends on the specific integral equation formulation used; the 
popular Pocklington form is presented in the next section. 

z 

----p 

(a) Highly conducting wire 
with current density J. 

z 

'---t----p 

(b) Surface equivalence model with 
equivalent surface current 
density J s in free space. 

Figure 10-3 Highly conducting thin wire along z-axis. 
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Electromagnetic radiation problems can always be expressed as an integral equa
tion of the general form in (10-1) with an inhomogeneous source term on the right 
and the unknown within the integral. However, it was not until the availability of 
modem high-speed digital computers in the mid-1960s that it was feasible to solve 
most such equations. Since that time, many MoM procedures and codes have been 
developed [4-7]. 

MoM is a solution procedure for approximating an integral equation, such as that 
in (10-1), with a system of simultaneous linear algebraic equations in terms of the 
unknown current I(z '). Then, as we have seen in the previous chapters, once the 
current is known, it is a fairly straightforward procedure to determine the radiation 
pattern and impedance. 

In this chapter, we set forth the basic principles involved in solving integral equa
tions via MoM and demonstrate the procedure with several examples. The serious 
student is encouraged to use these basic principles to write a simple computer code, 
such as that suggested by Prob. 10.5-1. 

10.3 POCKLINGTON'S INTEGRAL EQUATION 

One of the common integral equations that arises in the treatment of wire antennas 
is that derived by Pocklington in 1897. It enabled him to show that the current 
distribution on thin wires is approximately sinusoidal and propagates with nearly 
the speed of light. To derive this equation, consider the wire of conductivity u in 
Fig. 10-3a surrounded by free space (/J-o, Eo). Assume the conductivi,ty of the wire 
is high (e.g., copper) such that the current is largely confined to the surface of 
the wire. The equivalence model for the wire becomes that in Fig. 1O-3b (see Prob. 
10.3-1), where current on the material wire is replaced by an equivalent surface 
current in free space (i.e., the wire material is removed). This step is necessary so 
that the vector potential, which employs the free-space Green's function, can be 
used. 

When the wire radius is much less than the wavelength, we may assume only 
z-directed currents are present. From the Lorentz gauge condition in (1-45), 

aAz - = -]'we et> az 0 
(10-2) 

where cI> is the scalar potential and A z is the z-component of the magnetic vector 
potential. If we use (1-40), the vector electric field arising from potentials is 

E = -jwA - Vet> (10-3) 

which for the situation in Fig. 10-3 reduces to the scalar equation 

E . A aet> = -]w --
z z az (10-4) 

Taking the derivative of (10-2) and substituting into (10-4) give 

Ez = _. - __ z + (32Az 1 (a2

A ) 
]weo az2 (10-5) 

If we consider a z-directed volume current element I dv', 

dE = ~ [a2
1/1(z, z') + (321/1(Z, Z')]l dv' 

Z ]weo az2 (10-6) 
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where I/I(z, z') is the free-space Green's function given in (1-56) as 

-j{3R 

I/I(z, z') = ~'7TR (10-7) 

and R is the distance between the observation point (x, y, z) and the source point 
(x',y', z') or 

R = V(x - X')2 + (y - y')2 + (z - Z')2 (10-8) 

The total contribution to the electric field is the integral over the wire volume: 

(10-9) 

We only need consider a volume distribution of current density if the wire is not 
of sufficiently high conductivity. If we assume the conductivity to be infinite, then 
the current is confined to the wire surface and (10-9) reduces to 

Ez = ~,( fL'2 [a
2
1/1(z, z') + rPI/I(z, Z')J1s dz' dl/J' (10-10) 

JW80 Jc -L/2 az2 

where c is the cross-sectional curve of the wire surface as shown in Fig. 10-4a. For 
wires of good conducting material, the assumption of a surface current is approxi
mately true and leads to no complications. If one observes the surface current dis
tribution from a point on the wire axis as in Fig. 1O-4b, then 

R = V(z - z'i + a2 

Observation 
point 

z , 
I 

, 
(a) 

z , 
I 

'R 
Observation 
point' , , 

->-I a , 

tit 
Js ' , 
, 

(b) 

Figure 10-4 Theoretical models for a thin wire. 
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(10-11) 

": Observation 

a I,:int 

l(z~ 

(d) 

(a) Wire with equivalent surface current density fs and observation point on the surface. 
(b) Wire with surface current density fs and observation point on the wire axis. 
(c) Equivalent filamentary line source for the situation in (b). 
(d) Alternate representation of (c). 
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For a « A, the current distribution is nearly uniform with respect to cJ>', and (10-10) 
reduces to a line integral of (total) current. Thus, 

E = ~ JLI2 [a
2

1/1(Z, z') + /321/1(Z, Z')]I(Z') dz' (10-12) 
z JWBo -Ll2 az2 

Note that the equivalent filamentary line source I(z') is located a radial distance a 
from the observation point as in Figs. 10-4c and 104d and that we have not assumed 
the wire to be infinitely thin as was the case for dipoles studied in Chaps. 2 and 5. 

In accordance with the surface equivalence principle of Sec. 7.1, we can denote 
the quantity Ez in (10-12) as the scattered field E~. That is, E~ is the field radiated 
in free space by the equivalent current I(z '). The other field present is the incident 
or impressed field E~. At the surface of the perfectly conducting wire and also 
interior to the wire, the sum of the tangential components of the scattered field and 
the incident field must be zero. Hence, -E~ = +E~, and using (10-12) we write 

.-1 JLl2 I(Z,)[a
2

1/1(Z, z') + /321/1(Z, Z')] dz' = Ei (z) (10-13) 
JWBo -L12 az2 z 

which is the type of integral equation derived by Pocklington and is of the general 
form used in (10-1). 

Equation (10-13) is an integral equation of the first kind because the unknown 
I(z') appears only inside the integral. It is known as an integral equation because 
a boundary condition is incorporated there. This is in contrast to (10-12) that is 
merely an expression for the so-called scattered field, which we can think of as that 
field radiated by a current independent of how the current was established (e.g., an 
impressed source on an antenna or incident plane wave). 

Before we leave this section, it is worthwhile to summarize the important ap
proximations that were used based on the assumption that a « A. 

1. Circumferential currents on the wire are negligible. 
2. Enforcement of the boundary condition on the surface of the wire (Fig. 10-4a) 

was performed on the axis of the wire (Fig. 10-4b), and the surface current 
then "collapsed" into a filament (Fig. 10-4c). By using reciprocity, the current 
filament was placed on the axis of the wire and the observation point placed 
a distance "a" away from the filament (Fig. 10-4d). 

3. The distance R given by (10-11) leads to the widely used thin wire kernel or 
reduced kernel. R can never be zero; hence, the kernel is never singular. How
ever, it is nearly singular and care must sometimes be taken during integrations 
whenR = a. 

In the following section, we illustrate how an integral equation such as (10-13) is 
solved numerically and point out how the procedure is analogous to Kirchhoff's 
network equations as noted by Schelkunoff [8] many years ago. 

10.4 INTEGRAL EQUATIONS AND KIRCHHOFF'S 
NETWORK EQUATIONS 

One purpose of this section is to show the resemblance between integral equations 
of the type given in (10-13) and Kirchhoff's network equations: 

N 

2: Zmn1n = V m' 
n=l 

m = 1, 2, 3, •.. , N (10-14) 
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Thus, we will solve the integral equation numerically by writing N equations in N 
unknowns just as we would do if we were solving an N mesh or N node circuit 
problem. 

For convenience, let us write (10-13) in the form 

f
L'2 

- -L/2 I(z')K(z, z') dz' = E~(z) (10-15) 

The first step in solving (10-15) is to approximate the unknown current by a series 
of known expansion functions Fn such that 

N 

I(z') = 2: InFn(z') (10-16) 
n=l 

where the In's are complex expansion coefficients and are unknown. To keep the 
discussion as simple as possible, we assume the expansion functions are a set of 
orthogonal pulse functions given by 

Fn(z') = G for z' in ,1,z~ 
otherwise 

(10-17) 

The expansion in terms of pulse functions is a "stairstep" approximation to 
the current distribution on the wire, where the wire is divided into N segments of 
length az~. See Fig. 10-5. 

Substituting (10-16) into (10-15) gives 

(10-18) 

where the subscript m on Zm indicates that the integral equation is being enforced 
at segment m. Note that the left side is only approximately equal to the right side 
because we have replaced the actual current distribution with an approximate dis
tribution. Using (10-17) in (10-18) enables us to write 

-± In ( ,K(zm, Z') dz' .". E~(Zm) (10-19) 
n=l Jazn 

For convenience, we let 

f(Zm, Z~) = - Lz;, K(Zm, Z') dz' 

Then (10-16) and (10-17) in (10-15) yield 

(10-20) 

as illustrated in Fig. 10-5. A physical interpretation of this equation is as follows. 
The wire has been divided up'into N segments, each of length ,1,z~ = ,1,z', with the 
current being an unknown cdnstant over each segment. At the center of the mth 
segment, the sum of the scattered fields from all N segments is set equal to the 
incident field at the point Zm. The incident field is a known field arising from either 
a source located on the wire (transmitting case) or from a source located at a large 
distance (receiving case or radar scattering case). As we might surmize, if a more 
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Figure 10-5 "Staircase" approximation to an actual current distribution. 

accurate representation of I(z') is required, then shorter segments (and a larger N) 

can be used. More will be said about this later. 

Equation (10-21) leads to 

(10-22) 

where in this example situation 

(10-23) 

and 
(10-24) 

. Note that we have achieved our goal of reducing the electromagnetic problem to 

(10-22), which is identical to the network formulation of (10-14). It should be men

tioned, however, that in network problems Zmn is known at the start, whereas in 

electromagnetic problems it is necessary to calculate Zmn as we have shown in this 

elementary example. 
So far, we have only generated one equation in N unknowns. We need N - 1 

additional independent equations to solve for the N unknowns. To obtain these 

additional equations, we choose a different Zm for each equation. That is, we enforce 

the integral equation at N points on the axis of the wire. The process of doing this 

is called point-matching. It is a special case of the more general method of moments. 

Point-matching at N points results in the following system of equations: 

Id(zl> zi} + Izf(zl> zi) + ... + INf(zl> zlv) E~(Zl) 

ltf(Z2, zi} + Izf(z2, zi) + ... + INf(z2, zlv) = E~(Z2) 
(10-25) 

which can be written in matrix form as 

[

f(Zl> zD 
f(Z2, zD 

f(ZN, zi} 

f(Zh zi) ... f(zl> Zlv)][Il] [E~(Zl)] 
f(Z2, z2) ... f(Z2, zlv) 12 E~(Z2) 

· .. . 
· .. . 
· .. . 

f(ZN, zi) ... f(ZN, zlv) IN ~(ZN) 

(10-26) 

• 
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or in the compact notation as 

(10-27) 

where Zmn and V m are given by (10-23) and (10-24), respectively. We refer to the 
first index (m) as the match point index because it is associated with the observation 
point at which the mth equation is valid. The second index is the source point index 
since it is associated with the field from the nth segment or nth source. Because of 
the analogy to the network equations, the matrices [Zmn}, [In], and [V m] are referred 
to as generalized impedance, current, and voltage matrices, respectively. But this is 
only an analogy and thus the units of [Zmn], [In], and [V m] need not necessarily be 
ohms, amperes, and volts, respectively. The analogy is not restricted to collinear 
segments as in the example treated here, but applies to arbitrary configurations of 
wires as well. 

We can write the solution to (10-27) symbolically as 

(10-28) 

In practice, the explicit inverse [Zmn]-l is not usually evaluated, but instead the 
system of equations is solved by one of several fairly standard matrix algorithms. 
Once [In] is found, the approximate current distribution of (10-16) is known in 
discrete form and we can then proceed to determine impedance and radiation pat
terns or the radar cross section. 

To summarize this section, we have obtained an elementary numerical solution 
to an integral equation of the form in (10-15). This was done by successively en
forcing the integral equation at N different points, as illustrated in (10-25). For 
mathematical convenience and simplicity, the locations of the points were chosen 
to be at the center of the N equal-length segments into which the wire was divided. 
Strictly speaking, in order for the equations in (10-25) to be exact equalities, N must 
approach infinity. However, in practice we can obtain accurate solutions for the 
current distribution by allowing N to be sufficiently large as will be demonstrated 
in the next section. 

10.5 SOURCE MODELING 

Three source models are commonly used in the MoM. For transmitting antennas, 
the delta gap source and frill source produce the required incident field. For a 
receiving antenna or scatterer, the incident field is usually a plane wave. We examine 
all three in this section. 

No doubt, the most used generator model in wire antenna theory is the delta gap 
model, shown in Fig. 10-6, which is often referred to as a slice generator. Although 
such sources do not exist in practice, they do permit surprisingly good calculations 

-1 B r-
() -~ )t) +~ )-z 
~---------------JEI~--------------~ 

Figure 10-6 The delta gap source model with impressed field Ei = VA/B. 
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to be made. The source arises from the assumption that a voltage is placed across 
the gap, giving rise to an impressed electric field Ei = VI8 confined entirely to the 
gap (i.e., no fringing). With reference to Fig. 10-6, the voltage across the gap is 
determined by the line integral of the electric field across the gap. The result is 
VA = + E i8. The voltage VA applied across the gap is not to be confused with the 
elements V m in the generalized voltage matrix [V m]. For a delta gap source model, 
V m = Ei = VA I8 when the point-matching technique is used. 

A second generator model, which has practical significance, is the so-called frill 
generator. Consider Fig. 10-7a that shows a coaxial line feeding a monopole on a 
ground plane. Assuming a purely dominant mode distribution (TEM) in the coaxial 
aperture and image theory, we can replace the ground plane and the coaxial aper
ture with a frill of magnetic current as shown in Fig. 10-7b. Since the assumed form 
of the electric field in the aperture is 

(10-29) 

the corresponding magnetic current distribution from M = 20 X E is 

-1 
Mt/>' = 2Ep ' = p' In(bla) (10-30) 

from which it can be shown that the electric field on the axis of the monopole is 
~~ . 

. 1 (e- jfJR1 e-jfJR2
) 

E~(O, z) = 2 In(bla) li: -~ 

z 
I 

(a) Coaxial line feeding a monopole 
through a ground plane. 

Figure 10-7 Magnetic frill source. 

z 
I 

b~a~ 

Frill of 
magnetic 
current 

(b) Mathematical model of 
Fig.l0-7a. 

(10-3~) 
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where 

Rl = VZ2 + a2 

R2 = V? + b2 

if the frill center is at the coordinate origin. 

(1O-32a) 

(1O-32b) 

The third source to consider is that of an incident plane wave. To obtain the 
elements in the generalized voltage matrix in this case, we need the tangential com
ponent of the incident field at the match points along the axis of the wire dipole. 
For our z-directed dipole of Fig. 10-4, this would be 

E~an = i . Eei /3z cos 8 (10-33) 

For example, for a unit amplitude plane wave normally incident on the z-directed 
dipole, the elements of the generalized voltage matrix are all (1 + jO). 

Point-Matching on a Short Dipole 

The purpose of this example is to illustrate the application of (10-26). An objective is to use 
MoM to determine the input impedance ZA of a short dipole with a length of O.U and a 
radius of 0.005.\. For convenience of illustration, choose N = 5. With reference to Fig. 10-8, 
the elements of [Zmn] are calculated to be 

679.5 L-89.99° 292.6 L89.97° 33.03 L89.73° 9.75 L89.09° 4.24 L87.92° 

292.6 L89.97° 679.5 L-89.99° 292.6 L89.97° 33.03 L89.73° 9.75 L89.09° 

[Zmn] = 102 33.03 L89.73° 292.6 L89.97° 679.5 L-89.99° 292.6 L89.97° 33.03 L89.73° 

9.75 L89.09° 33.03 L89.73° 292.6 L89.97° 679.5 L-89.99° 292.6 L89.97° 

4.24 L87.92° 9.75 L89.09° 33.03 L89.73° 292.6 L89.9r 679.5 L-89.99° 

For a 1-V excitation at the center of the short dipole (i.e., segment 3), the following voltage 
matrix [V m] is obtained using the frill source discussed in Sec. 10.5 with b/a = 2.3, and upon 
solving (10-28), the following current matrix [In] is also obtained: 

0.484 L-0.31° 

3.128 L-O.04° 

[Vm) = 67.938 L-0.002° , 

3.128 L-O.04° 

0.484 L-0.31° 

0.78 L89.54° 

1.48 L89.64° 

[In) = 10-3 2.35 L89.75° 

1.48 L89.64° 

0.78 L89.54° 

On the other hand, if a 1-V delta gap excitation is used, V3 = 1I11z = 1/0.02 = 50LO", and 
the resulting voltage and current matrices are 

0 LO° 052 L8954° 

0 LO° 0.98 L89.64° 

[Vm) = 50.0 LO° , [In) = 10-3 1.63 L89.76° 

0 LO° 0.98 L89.64° 

0 LO° 0.52 L89.54° 

Note that the current distribution decreases from the center toward the ends as expected. 
The input impedance for the frill may be found from ZA = VA/I3 = 1.0/(2.35 X 
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Figure 10·8 Calculation of Z12 

for the short dipole in Example 
10-1. 

10-3 L89.75°) = 425.53 L-89.75° = 1.857 - j425.53 O. Comparing with the thinner dipole in 
Figs. 5-5 and 5-6, we see that the input impedance of a 0.1.\ long dipole also has a very small 
real part and a large negative reactive part. Further, the real part of 1.857 0 compares fairly 
well with the approximate formula 20'fil(LIA)2 = 1.9740 even though only five segments 
were used here. 

In the above example, a short dipole was represented by only five segments for the 
purposes of numerical illustration. To illustrate the behavior of a pulse point-match
ing solution to Pocklington's equation for a resonant size dipole as the number of 
segments is varied, consider Fig. 10-9. Figure 10-9 shows the input impedance of a 
dipole of length L == 0.47 A as the number of segments varies from 10 to 120. Both 
the frill source and delta gap are used. For both sources, it is apparent that for N 
sufficiently large, the solution has converged to a final or reasonably s~able result. 
In many instances, N cannot be made arbitrarily large without encountering a nu
merically unstable result. For example, the reactance of the delta gap source exhibits 
divergence for large N in Fig. 10-9b, but this should not be viewed as a general 
behavior of the delta gap since it does not necessarily occur for other MoM for-
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Figure 10-9 Curves showing convergence of input impedance as the number of pulse 
functions is increased for two different sources: the delta gap and the frill. 

mulations (e.g., Fig. 1O-l3b) or for (10-13) if the order of differentiation and inte
gration is interchanged. 

A curve, such as those in Fig. 10-9, is well worth the effort since it clearly shows 
the convergence behavior of a solution. A comparison with experimental data is 
shown in Fig. 10-10. 

To summarize this section, an elementary numerical solution to an integral equa
tion of the form given in (10-15) was obtained by successively enforcing the integral 

15 r-
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Figure 10-10 Comparison of measured 
dipole admittance with data calculated 
using pulse functions (N = 100) and a 
frill source. 
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equation at N different points as illustrated in (10-25). For mathematical conve
nience and simplicity, the segments were of equal length, and the match points were 
located at the center of each segment. Strictly speaking, in order for the equations 
(10-25) to be exact equalities, N must approach infinity. However, in practice, ac
curate solutions can be obtained by allowing N to be sufficiently large. In this regard, 
a convergence curve, such as that in Fig. 10-9, can be invaluable. 

10.6 WEIGHTED RESIDUALS AND mE MEmOD 
OF MOMENTS 

Our objective in this section is to derive a moment method procedure more general 
than the point-matching method of the previous section. This is accomplished by 
using an approach known as the method of weighted residuals [10]. 

Consider the straight wire example of the previous section. Define the residual R 
to be the sum of the tangential components of the scattered and incident fields: 

(10-34) 

Clearly, we wish the residual to be zero and thereby satisfy the boundary condition. 
In our example of Sec. lOA, with pulse expansion functions the residual is found 
from (10-19) to be 

N 

R(z) = - L Inf(z, z~) + E~(z) (10-35) 
n=l 

Stated in terms of the electric field boundary condition, the residual is the sum of 
the tangential components of the scattered and incident fields at the wire surface. 
Equation (10-35) when evaluated for z = Zm gives the residual at the mth match 
point where, of course, the residual must be zero since the solution for the In's was 
obtained subject to the electric field boundary condition at the N matching points. 
However, at points other than the match points, the total tangential electric field 
will not generally be zero as Fig. 10-11 indicates. Therefore, the residual for Z =1= Zm, 

1.0 1.0 
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Figure 10-11 Normalized tangential electric field along one-half of a center-fed dipole with 
pulse expansion functions and delta weighting functions (courtesy of E. K. Miller). Dots 
indicate match point locations. 
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m = 1, 2, 3, ... , N, will not be zero either. Physically, we can view the point
matching procedure as a relaxation of the boundary condition such that it is only 
satisfied at specified points. In between those points, one can only hope that the 
boundary condition is not so badly violated that the solution is rendered useless. 
Thus, it is not surprising that as N is increased (within limits) the solution tends to 
improve as we saw in Fig. 10-9. 

In the method of weighted residuals the In's are found such that the residual is 
forced to zero in a weighted average sense. So, in the wire problem of Fig. 10-3 the 
weighted integrals of the residual are set to zero as follows. 

J W m(z)R(z) dz = 0, m = 1, 2, 3, ... , N (10-36) 

where W m(z) is called a weighting or testing function. Substituting (10-35) into 
(10-36) gives 

J
Ll2 N JLl2 

- -Ll2 Wm(z) ~1 Inf(z, z~) dz + -Ll2 Wm(z)E~(z) dz = 0, 

m = 1, 2, 3, ... , N 

If the weighting functions are Dirac delta functions 
I 

Wm(z) = 8(z - Zm) 

(10-37) 

(1O-38a) 

then (10-37) reduces to (10-21). If the weighting functions are the pulse functions 

{
1 for z in aZm 

Wm(z) = 0 (1O-38b) 
otherwise 

then (10-37) becomes 

-f In f fez, z~) dz + f E~(z) dz = 0, 
n=l .1Zm .1zm (10-39) 

m = 1, 2, 3, ... , N 

It follows that 

(10-40a) 

and 

(1O-40b) 

The current obtained from solving (10-40) will not necessarily be such that the sum 
of the scattered and incident fields (i.e., the residual) is zero everywhere along the 
surface of the wire, but the average over the wire will tend to be zero, presumably 
giving a more accurate current distribution for a given N than when the weight 
functions are delta functions. Actually, this mayor may not be the case depending 
on the particular choice of expansion functions for the current and weighting (or 
testing) functions. 

The question of how one chooses the expansion functions and weighting functions 
is certainly a valid one. It is, however, a question without a concise answer. But, as 
rules of thumb, it is desirable to choose expansion functions that closely resemble 
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the anticipated form of the current on the wire and to use the same functions for 
the weighting functions as used for the expansion functions. There are exceptions 
to these rules including the pulse point-matching solution of Sec. 10.4. When the 
expansion function and the weight function are the same, the procedure is often 
referred to as Galerkin's method, which is closely related to variational methods 
[6, 7, 10]. 

Galerkin's Method on a Short Dipole 

The purpose of this example is to repeat Example 10-1 using pulse functions for weight 
functions instead of delta functions. With reference to Fig. 10-12, the impedance matrix [Zmn] 
for this pulse-pulse Galerkin solution based on (10-40) is calculated to be 

14.4 L-89.99° 6.14 L89.97° 0.759 L89.76° 

6.14 L89.97° 14.4 L-89.99° 6.14 L89.97° 

[Zmn] = 10Z 0.759 L89.76° 6.14 L89.97° 14.4 L-89.99° 

0.206 L89.14° 0.759 L89.76° 6.14 L89.97° 

0.087 L87.98° 0.206 L89.14° 0.759 L89.76° 
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14.4 L-89.99° 6.14 L89.97° 

6.14 L89.97° 14.4 L-89.99° 

Figure 10-12 Calculation of Z12 

for the short dipole in Example 
10-2. 
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The voltage matrix [V m], using a 1-V frill source, and solution matrix [In] are, respectively, 

0.011 L-0.280° 

0.089 L-0.034° 

[Vm] = 0.791 L-O.003° , 

0.089 L-0.034° 

0.011 L-0.280° 

0.49 L89.57° 

0.91 L89.66° 

[In] = 10-3 1.38 L89.75° 

0.91 L89.66° 

0.49 L89.57° 

On the other hand, if a 1-V delta gap excitation is used, 

o LO° 0.49 L89.57° 

o LO° 0.91 L89.67° 

[Vm] = 1 LO° , [In] = 10-3 1.52 L89.78° 

o LO° 0.91 L89.6r 

o LO° 0.49 L89.57° 

Note that all these five matrices are different from those in Example 10-1. Of course, we 
would expect [Zmn] and [V m] to be different because they are computed by a different process. 
The reason [In] is different is solely attributable to the fact that N is only 5. As in Example 
10-1, a larger value of N is required in order to obtain a converged result. The input imped
ance based on the above current using the frill source is ZA = 3.162 - j724 0, whereas for 
the delta gap source ZA = 2.526 - j658 O. The impedance based on N = 25 is ZA = 
2.35 - j556 O. 

Figure 10-13 shows the convergence of the input impedance for a dipole of length 
0.47 A using pulse expansion functions and pulse weighting functions in Pocklington's 
equation. Comparing with Fig. 10-9, we see that the convergence is more rapid with 
pulse weights than delta weights, and the pulse-pulse formulation is less sensitive 
to the kind of source (i.e., frill or delta gap) than the pulse-delta formulation. In 
many formulations, as in the one here, the averaging process provided by nondelta 
weights tends to improve the rate of convergence and stability of the solution. 

Next, we relate the quantities in the weighted residual integral to Kirchhoff's 
network equations, just as was done in Sec. 10.4. In doing so, let us generalize 

120r---~--~---r---r--~---' 
Delta __ 

a 100 Frill __ _ 
~ 80 .:.:R~A _____ ==-== .... _ 

'8 ~ 
B 60 ., 
.;;; 
~ 40 

} 20 

L=OA7A. 
a =0.0051.. 

20 30 40 50 60 70 
Number of segments (N) 

L= OA7A. 
a =0.0051.. 

Delta-
Frill ---

_700L-~-L~~~~~-L~ __ ~ 
o 10 20 30 40 50 60 70 80 90 100 

Number of segments (N) 

(a) Input resistance. (b) Input reactance. 

Figure 10-l3 Curves showing convergence of input impedance as the number of segments 
(pulse Galerkin) is increased for two different sources: the delta gap and the frill. 
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somewhat and consider a wire as shown in Fig. 10-14. In this case, the residual may 
be written as 

N 

R(e) = E:an(e) + E:""(e) = 2: InE~(e) + E:""(e) (10-41) 
n=l 

and the weighted residual as 

I. . Wm(e). R(e) de = 0 
along Wll"e 

(10-42) 

so that 

f

/!J.i".J2 f/!J.i".J2 
Wm(e) • E~(e) de + Wm(e) • E'(e) de = 0, 

-/!J.i".J2 -/!J.i".J2 
(10-43) 

m = 1, 2, 3, ... , N 

This equation can be viewed in the form of (10-14) and if the scattered field from 
the nth expansion function of the current is denoted as E~( e), then the general mnth 
element in the generalized impedance matrix is 

f
i m/2 

Zmn = - -i
m

/2 WmU;') • E~(e) de (10-44) 

and for the mth generalized voltage matrix element, 

"(10-45) 

where W m( e) is the mth testing function taken to be located interior to the wire as 
suggested in Fig. 10-12. Strictly speaking, the test function should be located at the 
wire surface (see Fig. 10-4a), in which case (10-44) and (10-45) would be double 
integrals over the surface. In placing the testing function on the axis, we are in a 
sense modifying the electric field boundary condition for the sake of mathematical 
simplification. In doing this, experience has shown that we are restricted to wires 
for which the radius is less than about O.OU. This is sufficient for most wire antenna 
or scattering problems. For thicker wires, a more exact formulation is available [11]. 

Figure 10·14 Segmented curved wire. 
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The process of expanding the unknown current I(.e') in a series of expansion 
functions and then generating N equations in N unknowns using the weighted re
sidual integral of (10-42) is more commonly referred to in the electromagnetics 
literature as the method of moments [5-7, 9]. MoM is, as we have seen in this 
section, equivalent to the method of weighted residuals. If the testing or weighting 
functions are delta functions, then the specific MoM procedure is known as point
matching. This is also known as collocation. This was the procedure used to obtain 
the system of equations in (10-25). If both the test function and expansion function 
are the same, then the specific MoM procedure is known as Galerkin's method. A 
pulse-pulse Galerkin formulation was used in Example 10-2. There are functions 
other than the pulse function that have been shown to be useful. Some of these are 
discussed in Sec. 10.8. In the next section, we discuss two other approaches to the 
MoM: the reaction concept and the linear algebra formulation. 

10.7 TWO ALTERNATIVE APPROACHES 
TO THE METHOD OF MOMENTS 

In the previous sections of this chapter, MoM has been developed using an approach 
that makes takes advantage of concepts a student is likely to have previously ex
perienced (e.g., Kirchhoff's network equations and the use of the "staircase ap
proximation" to an integral in Sec. 10.4). Two other approaches to MoM are found 
in the literature. One has a physical interpretation (i.e., reaction) and the other is 
entirely mathematical (i.e., the linear algebra approach). This section will consider 
both of these approaches. 

10.7.1 Reaction 

In 1954, Rumsey introduced a physical observable (e.g., mass, length, charge, etc.) 
called reaction that permitted a general approach to boundary value problems in 
electromagnetic theory [12]. His approach resulted in the formulaton of the reaction 
integral equation. Equation (10-43) is really a special form of the reaction integral 
equation that applies to wire geometries. A rigorous derivation of the reaction in
tegral equation can be derived using only principles of electromagnetic theory. The 
derivation is somewhat difficult to follow and so we will use inductive reasoning 
here, having derived (10-43) in the previous section by the relatively straightforward 
weighted residual approach. 

Reaction is basically "a measure of the coupling" between one source and an
other. Thus, if we view the test function (weight function) as a test source, then the 
impedance matrix elements given by (10-44) may be taken as a calculation of the 
coupling between the mth test source and the scattered field from the nth expansion 
function or actual source. Similarly, the mth voltage matrix element in (10-45) can 
be interpreted as the coupling between the mth test source and the incident field. 
When referring to (10-45), for instance, we can say that we are "reacting" the mth 
test source with the incident field, or in the case of (10-44) that we are "reacting" 
the electric field from the nth actual source with the current on the mth test source. 

We obtained (10-43) for a wire. The method of moments or the method of 
weighted residuals applies to geometries other than just wire geometries as indicated 
in Fig. 10-15a. Consider the equivalent situation in Fig. 1O-15b. Let (1m' Mm) be the 
surface current densities of a test source and (Em' Hm) be the fields from the test 
source. The currents on the conducting body are both replaced by equivalent surface 
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(E,H) 

(a) Source current densities Ji and Mi acting in the presence of a 
metallic scattering body bounded by surface S create 
fields (E, H) exterior to S. 

Si 

(b) Test source interior to surface S with equivalent currents 
(J', M,) in free space. 

Figure 10-15 Sources used in 
reaction concept. 

currents (Js , MS) radiating the fields (ES, HS) in free space. The generalization of 
(10-43) then becomes 

J J (Jm • ES 
- Mm • HS

) ds + J J (Jm • Ei - Mm • Hi) ds = 0, 
s s (10-46) 

m = 1, 2, 3, ... , N 

The minus sign associated with Mm can be justified by referring to the reciprocity 
field theorems in Sec. 9.4. The physical interpretation of (10-44) is that we wish to 
have zero reaction (i.e., zero coupling) between the test source and the sum of the 
incident and scattered fields. Clearly, this is equivalent to the condition stated by 
(10-36). Nevertheless, the alternative physical interpretation offered by (10-46) and 
the reaction concept is a useful one and the student will find it used in the literature. 

If we denote the fields from the nth expansion function of the actual current by 
(E~, ~), the sum of the N fields being (ES

, H S
), then we may write for the general 

mnth element in the generalized impedance matrix: 

Zmn = - J J (Jm • E~ - Mm • H~) ds (10-47) 
s 

Similarly, we may write the general mth element in the voltage matrix: 

Vm = J J (Jm• Ei - Mm· Hi) ds (10-48) 
S 

The incident field (Ei
, Hi), which originates from the impressed currents Ji in Fig. 

1O-15a, may be the field from a source located on S (antenna transmitting situation) 
or be from a source located at a great distance from S (antenna receiving and radar 
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scattering situation). The general relationships in (10-47) and (10-48) will be useful 
later for both wire and nonwire geometries. 

10.7.2 Linear Algebra Formulation of MoM 

Another way of approaching the general formulation of MoM is through the use of 
linear algebra. This an approach commonly found in the literature [6,7]. Consider 
a general metallic body with a surface current density J on it. For simplicity, assume 
there are no magnetic currents. The extension of what follows to the case where 
both J and M are present can be deduced easily from the previous section on 
reaction. 

The development of the linear algebra approach begins by requiring that the total 
tangential electric field be zero everywhere on the surface of the body, or that 

(10-49) 

where Et." is the scattered electric field radiated by the current density J and E~an 
is the tangential component of the incident electric field due to a ,source located 
anywhere on or outside the body. We will drop the subscript tan-since it will be 
understood that the tangential electric field boundary condition is being used. 

Rewriting (10-49) in the form 

(10-50) 

and defining the operator 

(10-51) 

we can use the concept of linear vector spaces and operators to write the operator 
equation 

(10-52) 

where Lop is an operator that must be determined for the problem of interest, Ei is 
a known excitation function or source, and J is the unknown response function to 
be determined. In the problems that are considered in this chapter, Lop is an integral 
operator operating on the current J. 

For a given problem, we must determine the domain of definition of the operator 
or, in other words, the space of functions on which it operates and also the range 
of the operator or the functions resulting from the operation. In reality, the operator 
performs a mapping from some subset containing J to one containing Ei. If the 
solution is to be unique, this mapping must be one to one. 

Next, expand the response (solution) function J in a series of basis functions Ph 
P2, P3 , ••• on a surface S and defined in the domain of Lop. That is, 

(10-53) 

where the coefficients In are, in general, complex. The In's are the unknown coef
ficients that are to be determined. Substituting (10-53) into (10-52) yields 

(10-54) 
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Using the linearity of Lop, we get 

2: InLop(Fn) = Ei (10-55) 
n 

The next step in the solution outlined above is to define a set of weighting func
tions W lo W 2, ... in the domain of Lop and then form the inner product: 

2: In(Wm, LopFn) = (Wm , Ei) (10-56) 
n 

Note that if W m is a delta function, (10-56) becomes the point-matching case, and 
ifW,;, = Fm then (10-56) is a Galerkin formulation (e.g., Sec. 10.6). For the Galerkin 
formulation, write 

(10-57) 
n 

and the inner products appear as the reaction quantity mentioned earlier. Note that 
the basis functions Fn and the weight functions Fm represent currents. The inner 
product (F, E) is a scalar quantity obtained by integrating F . E over the surface 
under consideration. This particular inner product is called reaction. The inner prod
uct is defined such that the following conditions are satisfied: 

(F, E) = (E, F) (10-58a) 

(aF + {3F, E) = a(F, E) + {3(F, E) (10-58b) 

if 

(F*, F) > 0, then F '* 0 (10-58c) 

if 

(F*, F) = 0, then F = 0 (10-58d) 

where a and {3 are scalars and * denotes complex conjugation. 
The third step is to calculate the various inner products given in (10-56) and 

thereby form the matrix equation 

(Flo LopF1) (Flo LopF2) . . . 11 

(F2' LopFl) 12 

or, in more compact notation, 

(Flo Ei) 

(F2, Ei) 

(10-59) 

(10-60) 

The procedure for obtaining a MoM solution in terms of linear algebra can be 
summarized in the following way: 

1. Expand the unknown in a series of basis functions F n , spanning J in the domain 
of Lop. 

2. Determine a suitable inner product and define a set of weighting functions. 
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3. Take the inner products and thereby form the matrix equation. 
4. Solve the matrix equation for the unknown. 

The first two steps are examined in more detail in Sec. 10.8.1. 

Linear Algebra Interpretation of Sec. 10.6 

The purpose of this example is to interpret the formulation given in (10-40) in terms of linear 
algebra as discussed in this section. From (1O-40a), 

where 

f(z, z~) = - t;. Fn(z')K(z, z') dz' 

Thus, 

-
where the integral operator is given by 

L = - r K(z z') dz' 
op J4Z~ , 

From (1O-40b), write 

(Fm' YE~> 
Note tl1at the inner products actually contain a dot product of two vectors as in (10-44) and 
(10-45), but the integral expressions above only contain scalars since the dot products have 
effectively already been performed. 

10.8 FORMULATION AND COMPUTATIONAL 
CONSIDERATIONS 

The development and use of a computer model of an electromagnetic problem can 
be divided into the following four steps: 

1. Development of the mathematical formulation based on the physics of the 
problem, the object size in terms of A, and mathematical principles (e.g., MoM, 
FD-TD, etc.) 

2. Coding the mathematical formulation into a computer algorithm 
3. Validation of the computer code 
4. Computation to solve analysis and design problems 
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The following six subsections address issues in MoM affecting item 1 above. The 
last subsection addresses the important issue of validation. 

10.8.1 Other Expansion and Weighting Functions 

In Secs. 10.5 and 10.6, the pulse function was used as the expansion function and 
either the pulse function or delta function was used as the weighting function. The 
advantage of these functions lies in the simplicity they provide to the mathematical 
formulation and, hence, the coding. However, there are other functions commonly 
used. These include: 

Triangle functions (piecewise linear): (10-61) 

{

In(Zn+1 - z) + In+1(z - Zn) 

J(z) = AZn 
o otherwise 

for Z in AZn 
(10-61) 

Piecewise sinusoidal: 

{

In sin ~(Zn+1 - z) + In+1 sin f3(z - Zn) 

J(z) = sin k AZn 
o otherwise 

for Z in AZn 
(10-62) 

Sinusoidal interpolation: 
, 

J(z) = {An + En ~in ~(z 
o othefWlse 

- Zn) + Cn cos ~(z - Zn) for Z in AZn 
(10-63) 

where AZn = Zn +1 - Zn· 
The triangle functions were introduced in much of Harrington's early work and 

were used both as expansion and weighting functions (a Galerkin formulation). The 
triangle Galerkin formulation is also used in the MININEC Professional thin wire 
code [13). 

Piecewise sinusoidal functions were first used by Richmond in a Galerkin for
mulation developed with the reaction integral equation [14). These functions are 
computationally very efficient for wire geometries in free space, in part because the 
actual current distributions are nearly sinusoidal. A convergence curve for a dipole 
impedance is shown in Fig. 10-16. The rapid convergence is evident. The piecewise 

100 .-----,r---r---r---r---r--..,---,---, 

80 _!L_~':.Q;~!,"-____________ _ 

Cl ;r 60 

:.:.····R~···· .. a·;;;O:OO5i······························ ........... :::~ 

."O_~e8 : 

L=OAn. 

XA __ a..= .2:~51 _____ _ 
} O~~~---=~-~-~-~---------------~ 

XA a = 0.00011.. -20 .................................................................................. 
~O~~~~-~--L-~--~--~~ 

o 5 10 15 20 25 30 35 40 
N, Nwnber of PWS functions 

Figure 10·16 Input impedance 
convergence of a piecewise 
sinusoidal (PWS) Ga:Ierkin code 
[14] for two different wire radii. 
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(a) Piecewise sinusoidal expansion function. 

N=node 
EP = endpoint 

(b) Set of overlapping expansion functions on 
an open-ended wire. 

Figure 10-17 Illustration of overlapping expansion functions using the piecewise sinusoid. 

sinusoidal function is illustrated in Fig. 10-17a. Two segments are required to define 
the function. When several functions are used, as for the dipole suggested by Fig. 
10-17b, each function overlaps with adjacent functions. The junction of two (or 
more) segments is called a node. In Fig. 10-17b, there are five nodes and there are 
five functions spanning six segments. Seven points (Le., five nodes plus two end
points) are required to define the six segments. On the other hand, if there are no 
endpoints as in a loop, the number of nodes, the number of segments, and the 
number of overlapping functions are all the same. 

The sinusoidal interpolation function along with delta weighting functions is used 
in the Numerical Electromagnetics Code or NEC code as it is widely known [15]. 

The choice of functions has been the subject of research in past years. Some 
discussion of this may be found in [16] and [17]. The choice of functions is also 
influenced by a consideration of how to treat junctions of more than two wires. In 
the case of the (nonoverlapping) pulse function, no special consideration is required. 
In fact, Kirchhoff's current law will automatically be satisfied at a multiwire junction 
as a consequence of Maxwell's equations being satisfied. In the case of overlapping 
functions (e.g., triangle, piecewise sinusoid) at a junction of N wires, there are N -
1 independent currents (the Nth being determined by Kirchhoff's current law); 
therefore, only N - 1 functions are needed that go across the N-wire junction (see 
Prob. 10.13-3). 

10.S.2 Other Electric Field Integral Equations for Wires 

One form of an electric field integral equation (EFIE) is the Pocklington form in 
Sec. 10.3. Another form is the potential form used by Harrington [6] in his pio
neering work. For z-directed wires, the potential form is 

E i JLI2 [. T(') 1 aI(z') a] e-j/JR d ' = JWJL L'Z - ------ -- Z 
-Ll2 0 jwso az' az 47TR 

(10-64) 
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Figure 10-18 Convergence of Hallen's equation using pulse expansion functions and point
matching. 

which is derived by using both the vector and scalar potentials (see Probs. 10.3-3 
and 10.8-1). This form can provide more rapid convergence than the Pocklington 
form, which implies that convergence rates are dependent on the characteristics of 
the kernel as well as the choice of expansion and weighting, functions. 

A quite different appearing equation for wire antenna work is that due to Hallen 
(see Prob. 10.8-2). Hallen's integral equation for a z-directed wire antenna is 

fLl2 -jf3R • ( V ) 
-Ll2 J(z') ~1TR dz' = -~ C1 cos f3z + 2A sin f3lzl (10-65) 

where V A is the terminal voltage. 
Hallen's equation has a simple kernel and is generally simpler to code than the 

either the Pocklington or potential forms. For N unknowns, there must be N + 1 
equations because the constant C1 is an unknown as well [17, 18]. Example 10-4 
shows a sample impedance matrix, whereas Fig. 10-18 shows the rate of convergence 
for pulse expansion functions and delta weights. 

Subdomain Solution of Hallen'S Equation 

The purpose of this example is to implement a pulse expansion function, point-matching 
solution to Hallen's equation for a z-directed wire dipole. The solution can be expressed as 

N 

2: InZmn + C1 cos f3zm = V m' m = 1, 2, ... , N + 1 
n=l 

where 

Z = _e_ d , I
I!o.Z;'/2 -jf3R 

mn -l!o.z;'/2 R z , 

and R is given by (10-11). Treating C1 as an unknown rather than C1 significantly improves 
the condition number of the matrix [Z.:u,] shown below. The Zmn for m *' n are easily 
computed by numerical integration. For m = n, special care may be necessary for very small 
wire radii. The match points are chosen at the center of each pulse function, but an odd 
number of functions are required so that there is a match at the feed location. Further, it is 
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necessary to have a match point at one end of the dipole (see Prob. 10.8-2). This is accom
plished conceptually by employing a "phantom pulse" extending t:.z/2 beyond one end of 
the dipole such that there is a match point at the end of the dipole. 

For a dipole O.H in length, radius 0.005A, and three pulse functions, the following modified 
(because of the q term) impedance matrix is written as 

where the block [Zmn] is toeplitz, the N + 1 column is given by 

Z:'N+l = COS({3Zi) 

and the remaining elements Zfv+1.i are found from the numerical evaluation of the integral 
(above) in this example (see Fig. 10-19). Thus, for the short dipole numerical example being 
used here, the modified impedance matrix is 

[

3.83 L-3.13° 

1.08 L-11.1° 
[Z';'n] = 0.51 L-23.6: 

0.40 L-29.7 

1.08 L-11.1° 0.51 L-23.6° 0.98 LOO] 

3.83 L-3.13° 1.08 L-11.1° 1.00 LO° 

1.08 L-11.1° 3.83 L-3.13° 0.98 LO° 

0.69 L-17.4° 2.59 L-4.62° 0.95 LO° 

The voltage matrix is 

Equivalent 
filament 
l(z? 

[

3.46 L-900] 

3 
0 L-90° 

V - 10-
[ m] - 3.46 L-900 

5.15 L-90° 

z 

I 
I 
I 
I 
I 
hi 
I 
.... / (f---- Center line of 
I original dipole 

-t
I 
I 
I 
I 

~ -x 

i Voltage 
-I

I 
I 
I 
I 

R I 

source 
location 

~r 
Z4 (match point) 

Figure 10-19 Calculation of Z43 

for the short dipole in Example 
10-4. 
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Solving for the current matrix gives 

3 
1.98 L89.69° 

1 - 10-

[

0.84 L89.45° ] 

[ n] - 0.84 L89.450 

9.41 L-95.02° 

Note that 14 is the value for the coefficient C1 for which there is no further use. The input 
impedance is 1.0/(1.98 X 10-3 L89.69°) = 2.75 - j504 n. If five pulses were used instead of 
just three, the input impedance would be 2.1 - j489 n, which more closely agrees with the 
approximate value of 1.974 n for the real part obtained from 20-rr(LlAY. 

10.8.3 Computer Time Considerations 

Historically, there have been two computer limitations to the use of MoM: (1) the 
amount of computer storage necessary for the N 2 impedance matrix elements, and 
(2) the amount of time to compute those N 2 elements and solve the resulting system 
of equations. Computer technology has significantly decreased the impact of the 
first limitation. Iterative methods have increased the speed of solution of a system 
of dense simultaneous equations, leaving the time required to compute the N 2 el
ements as a major limitation on the electrical size of an object that can be reasonably 
accommodated by MoM (see Fig. 10-2). Let us examine where the computation 
time is spent. 

A square impedance matrix of N 2 elements is said to be of order N. Let Ni be 
the number of different source or incident fields (i.e., radar cross section is a function 
of incidence angle) associated with a given impedance matrix and let Na be the 
number of observation points at which the field is to be computed from the current 
solution; then the time t for execution will be approximately given by [11] 

t = AN2 + B3N3 + CN2N i + DNNiNa 

where the algorithm and computer-dependent factors A, B, C, and Dare 

A = time required to compute a typical impedance 
matrix element 

B3N3 = time required to solve [Zmn][In] = [Vm] for [In] by 
matrix inversion [In] = [Zmnrl[Vm] for a system 
of order N 

CN2Ni = time required to perform the operation [Zmnrl[V m] 
or its equivalent for each new [V m] 

DNNiNa = time for computing the far field from [In] 

(10-66) 

The second term in (10-66) dominates. However, it is unlikely that we would 
solve a large system of equations by finding the inverse. Instead, usually an algo
rithm such as Gauss-Jordan or Crout is used, in which case B3N3 ~ B2N2 and we 
have 

(10-67) 

which is a significant reduction in the solution time required for large N. If iterative 
methods are used [17], more favorable reductions are possible. 
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If the impedance matrix is toeplitz (see Sec. 10.8.4), then B3N3 ~ B 1N s13 and we 
have C 

(10-68) 

for which there is a significant improvement in the first term as well as the second. 
When the second term in (10-66) is on the order of N 2 or less, then usually the 

first term, which is associated with the time required to calculate the matrix ele
ments, becomes the dominating factor. In the following subsections, we examine 
briefly some ways for reducing the total time required for the operations associated 
with the first two terms in (10-66). 

10.8.4 Toeplitz Matrices 

Certain types of problems produce impedance matrices where there is a systematic 
repetition in the matrix elements. Often, this repetition can be used to decrease the 
impact of both the first and second terms in (10-66). Consider the straight wire in 
Fig. 10-3. If the segments are of equal length, all the values of the N 2 matrix elements 
are contained in anyone row of [Zmn], say, the first one. All other rows are merely 
a rearranged version of the first. The remaining elements can be obtained by the 
rearrangement algorithm: 

m 2:: 2, n2::1 (10-69) 

Such a matrix is said to be a toeplitz matrix. Computer programs exist for solving 
toeplitz matrices that are considerably more efficient than those for solving a non
toeplitz matrix. For a toeplitz matrix, the first two terms in (10-66) become AN and 
BNS13

, respectively, and the execution time in (10-66) is reduced as in (10-68). 
Toeplitz matrices can arise in the treatment of certain wire geometries. These are 

the straight wire (see Examples 10-1 and 10-2), the circular loop, and the helix. A 
toeplitz matrix can also arise in the treatment of geometries other than the wire, 
but these are outside the scope of this chapter. 

10.8.5 Block Toeplitz Matrices 

Consider the linear array of parallel dipoles in Fig. 10-20. The impedance matrix 
that characterizes the array will be toeplitz by blocks or submatrices when the array 
elements are of the same length and equally spaced. Thus, if the impedance matrix 
for the array [Z]array is written in terms of submatrices [S] as 

[Z]array = 

[S]11 [S]12 
[S]21 [S]22 

[S]1I 
[S]2T 

[S]JJ 

[S]11 [S]12 
[S]12 [S]11 

[S]1I [S]1(J-1) 

[S]1I 
[Sh(J-1) 

[S]11 

(10-70) 

where [S]ij = [Zmn], the entire impedance matrix is toeplitz by blocks. Thus, if 
one row of submatrices is known, the remaining submatrices may be filled by the 
algorithm 

i 2:: 2, (10-71) 
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Figure 10-20 Linear array of 
parallel dipoles. 

Consequently, the first term in (10-66) is of order N 2IJ, where J is the number of 
independent submatrices. The second term in (10-66) will be of order N 9IS

• 

If the submatrices are themselves toeplitz, as they would be if all segments are of 
identical length and radius, then the matrix fill time is reduced even further. Com
puter programs exist for solving block toeplitz matrices. The potential savings in 
execution time for a problem that is block toeplitz over the same size nonblock 
toeplitz problem can be considerable. 

10.8.6 Compressed Matrices 

In certain problems, there will be a repetition in the values within [In] due to the 
symmetry of the problem. If this can be recognized in advance, it can be used to 
advantage to compress the matrix from order N to order NIL, where L is the degree 
of symmetry. 

Consider the following simple but very common example of symmetry suggested 
by Fig. 10-7a. Here, the monopole and its image will have a symmetrical current 
about the feed point. Suppose In = I n+NI2; then we can write . 

NI2 
2: (Zmn + Zm,n+NI2)In = V m' m = 1, 2, 3, ... , NI2 (10-72) 
n=l 

The solution of this compressed system of NI2 equations will yield the NI2 in
dependent In's. From (10-67), we see that the solution time for the system is 
B2(NI2?, or a reduction in time by a factor of 4 for this portion of the computing 
process. For higher degrees of symmetry, the savings in time would be even more 
considerable. For some large problems, it may be necessary to compress the matrix 
for another reason, namely storage requirements. It is possible that an impedance 
matrix may be so l<rrge that it cannot be stored in readily available core memory 
and that through symmetry it may be compressed to a reasonable size [7]. 

So, it is the execution time and computer storage that tend to limit the electrical 
size of problems that may be reasonably treated with MoM. In some of the following 
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sections, we will approach certain situations in such a way that the impact of these 
two limitations is minimized. 

10.S.7 Validation 

A computer code must reliably produce accurate results if it is to be useful. Errors 
in the code are most likely to occur because of an encoding mistake, but can also 
occur due to an oversight in the mathematical formulation or cumulative numerical 
errors caused by large numbers of numerical operations and/or inadequate numer
ical precision. The investigation of the possible existence of errors such as these, as 
well as others, is the process of validation. We examine two kinds of validation: 
external validation and internal validation. 

External validation usually means that the output of a code is compared against 
either experimental measurements or the output of an independent code (perhaps 
thereby validating both codes). Near-field quantities, such as antenna input imped
ance, are more critical gages than far-field quantities. Consequently, earlier figures 
in this chapter have used the input impedance as a check against both experimental 
data and results from other independent codes. 

Internal validation usually implies that additional coding and/or computational 
effort is involved. Some examples of internal checks are: 

L A convergence check to establish that a limiting value is smoothly approached 
as N is increased 

2. A power balance check where the power supplied by the incident field is equal 
to the radiated plus dissipated powers 

3. A reciprocity check where source and observation points are interchanged 
4. Boundary condition check where the applicable boundary condition (e.g., total 

tangential E is zero) is met 

Of these four checks, only the last is both necessary and sufficient. The others are 
necessary but not sufficient checks. 

In the case of a code that is written to handle a wide variety of geometries, 
frequencies, etc., a representative sample of such situations must be validated much 
like a new aircraft must be test flown in a variety of different configurations, speeds, 
weather conditions, etc., before it can be certified as safe for general use. 

10.9 CALCULATION OF ANTENNA AND SCA.TrERER 
CHARACTERISTICS .. I \ I 

1:'" I 

Thus far, our discussion of MoM l1as been maiJl~'Joncerned with acquiring a knowl
edge of some unknown current distribqtio,n. ~~'W Iconsiderihow we can obtain other 
information as well. But first, we should make dne'further remark about the currents 
derived from the solution of the 'Imatrii equation! 

If pulse functions are used as the exriansionfurictions in the point-matching tech
nique, a knowledge of the current coeiAcients ~~. !weans that the current distribution 
at the match points is known "p~~cis~*":if w:J: Ii~sume, of course, that the solution 
has converged. In between the match poiJts,we do not know the current but, since 
the distance between the match points is small in terms of the wavelength, one can 
simply fit a curve through the current values at the match points to obtain a good 
approximation of the current distribution along the wire. 
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In the case of overlapping functions, such as the piecewise sinusoidal or the tri
angle (see the previous section), a knowledge of the coefficients In again only means 
that the current is known at the junctions of the segments. Along the segments, we 
use the overlapping functions themselves to approximate the current distribution 
between segment junctions. 

After we have determined the current distribution, the input or terminal current 
can be found by evaluating the current distribution at the antenna terminal location. 
In tum then, the input impedance may be calculated by dividing the terminal voltage 
by the terminal current. The calculation of accurate impedance data is a task that 
is somewhat sensitive to the model used for the feed point. Two such models were 
discussed in the Sec. 10.5. 

Distributive loading, which arises when a wire is not perfectly conducting, may 
affect the current distribution in certain situations. For simplicity, consider a wire 
whose axis is parallel to the z-axis. When the wire has finite conductivity, we can 
relate the tangential electric field at the surface of the wire to the equivalent electric 
surface current density by the use of the surface impedance Zs, which is defined 
[19] as the ratio of the tangential electric field strength at the surface of a conductor 
to the current density that flows as a result of that tangential electric field. Thus, 

E = ZsJs (10-73) 

Using Ms = E X fi and the relationship Js = ZI(z)l27Ta, we can write 

M = Z J X A = ';'ZsI(z) 
s ssP 2 7Ta 

(10-74) 

Writing the reaction integral equation from (10-46) and reciprocity as 

-f f (Em· JS - Hm • M S
) ds = V m (10-75) 

S 

and substituting (10-74) lead to 

-f I(z)[z. Em - Zs';' • Hml dz = V m (10-76) 

Using (10-16) in (10-76), we can write the generalized impedance matrix element 
Z:"n> modified for finite conducting wires, as 

(10-77) 

From Ampere's law, a suitable approximation for Hm is 

(10-78) 

and thus (10-75) can be written as 

Z:"n = Zmn - 2Zs r ) Fiz)Fm(z) dz 7Ta j(m,n 
(10-79) 

where region (m, n) is the wire surface shared by testing or weighting function m 
and expansion or basis function n. In the case of overlapping expansion functions, 
this region covers two intersecting segments if m and n are equal. When m *" n, the 
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shared region covers, at most, one wire segment. This means that distributive load
ing is accounted for by a modification of only the appropriate main diagonal ele
ments, and those elements adjacent to the modified main diagonal elements if over
lapping functions are being used. In the case of nonoverlapping functions, such as 
the pulse, only the main diagonal elements are modified. 

The effect of either lumped loading (considered in Sec. 10.10) or distributive 
loading is to alter the current distribution on the wire antenna or scatterer. If we 
know the current distribution, the far field can be obtained by the classical methods 
used previously in this book (e.g., Sec.l.7.4). To illustrate, consider again z-directed 
segments with pulse expansion functions of the current. Then from (4-2), we have 

-j/3r N-l 
A e ~.", 9 E = 9jWJL -- dz sin () L.J Ine",zn cos 

47Tr n=O 
(10-80) 

where z~ is the center of each short segment. 
Once the far field is known, the gain may be determined from the general rela

tionship 

(10-81) 

where RA is the real part of the antenna input impedance. The directivity is obtained 
by replacing RA with R., the radiation resistance. 

The radar cross section may be found from (9-35) as 

. 21Pl2 
(T = !~~ 47Tr IEil2 (10-82) 

where ES can be determined, for example, from (10-78). The radar cross section for 
a dipole scatterer is shown in Fig. 1O-2l. 

The radiation efficiency is calculated using (1-174) as 

Rr Rr e =-= 
r RA Rr + Rohmic 

(10-83) 

1.0 ,........,...,.-r;""T""1r""T""",,"""""--.--.--r-.--.-..--,..., 

0.9 

0.8 

0.7 

0.6 

~ 0.5 

0.4 

0.3 

0.2 

0.1 

0.4 0.5 0.6 
Wire lengthIA. 

Figure 10·21 Monostatic radar cross section of 
0.7 a straight wire at normal incidence as a 

function of wire length. 
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Rohmic is the loss resistance due to dissipative loading, either distributed or lumped 
(see Sec. 10.10.1). Alternatively, we could determine the radiated power by inte
grating the power density in the far field as we did in Chap. 1. However, the above 
method (10-83) is computationally more efficient. 

From the discussion in this section, we can see, among other things, that refine
ments such as losses due to finite conductivity (distributive loading) or the effects 
of lumped loading can be included into a moment method solution in a fairly 
straightforward manner. In the next section, we investigate lumped loading further. 

10.10 THE WIRE ANTENNA OR SCATIERER 
AS AN N·PORT NETWORK 

In Sec. 10.4, we saw the resemblance between the simultaneous linear equation 
approximation of an integral equation and Kirchhoff's network equations. It follows 
that we may view the junction of two or more segments as a port in the usual circuit 
sense as indicated by Fig. 10-22a. At each port, we may place either series or parallel 
elements that are either passive or active. Series connections are treated on an 
impedance basis, whereas parallel connections are handled on an admittance basis. 
This section considers both types. 

10.10.1 Series Connections 

We already have considered a single generator placed at the junction of two wire 
segments (e.g., Sec. 10.5). The generator was in series with the implied port termi
nals located at the ends of the two adjacent segments. We could, of course, place 
as many generators on the wire as there are segment junctions. Thus, for an 
N-segment dipole, there ~ould be N - 1 ports. If there is no generator or passive 
element across the port, the port is understood to be short-circuited. 

~~l 
[: 
~port2 

~ 
~port3 

~ 
~Port4 
I I 
I I 
I I 
. I 

(a) N - 1 port tenninal pairs. 

", 

/ 
,/ mth port 

(b) Equivalent circuit for the mth port. 

Figure 10-22 N segment wire 
showing ports. 
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Previously in Sec. 10.9, we saw how distributed loading was accounted for in the 
moment method by modifying certain elements in the impedance matrix. Here, let 
us examine how lumped loading may be handled. If a load Zm is inserted into a 
wire antenna at segment junction m having a current 1m , the total voltage acting at 
that point is 

(10-84) 

. where V~ represents a voltage generator that may be located at point m in series 
with Zm as indicated in Fig. 1O-22b. In many cases, V~will be zero. Considering the 
mth equation in a system of N linear equations, we can write 

N 

2: Zmnln = V~ - ImZm (10-85) 
n=l 

or 
N 

2: Z/nnln = V~ (10-86) 
n=l 

where 

(10-87) 

Except for the diagonal elements, the new impedance matrix is the same as the 
original, or Z/nn = Zmn, m "* n. Thus, the effect of lumped loading may be accounted 
for by simply adding the load impedances Zm to the corresponding diagonal ele
ments in the impedance matrix. The effects of lumped loading can be substantial. 
For example, resistive loading can be used to achieve increased bandwidth, but at 
the expense of lower efficiency. Or, lumped loading can be used for impedance 
matching as in the following illustration of a ~A monopole. 

Figure 10-23 shows a ~ wavelength monopole antenna. A series inductance at the 
base improves the VSWR and the quarter wavelength stub between the (nominal) 
half-wave and quarter-wave sections provides the necessary phase shift for good 

T 
0.481,. 

1 
T 
0.241,. 

l.. 
~L ------------, ,.~----------

a=0.OO254m 
j=860MHz 
L = 0.0156 JlH 

B= 12a son Figure 10-23 Three-quarter wavelength 
monopole with series loading. 
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Frequency, MHz 

(a) Input impedance. 

(c) Far-field pattern. 
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(b) Voltage standing wave ratio. 

Figure 10-24 Performance of the three
quarter wavelength monopole in Fig. 10-23 
[14]. 

pattern performance. Figure 10-24a shows the input impedance of the monopole. 
Note that the inductor at the base creates a zero reactance at 860 MHz. Figure 
10-24b shows the VSWR referenced to 50 O. The VSWR curve could be made more 
symmetrical by slightly increasing the inductive reactance at the base. The field 
pattern is illustrated in Fig. 10-24c. Note the strong broadside radiation compared 
to the 3M2 case in Fig. 5-4 without a phasing stub. 

10.10.2 Parallel Connections 

In the previous subsection, we saw how circuit elements, when connected in series 
at a given port, resulted in modification of certain entries in the open-circuit moment 
method impedance [Zmn]. If, however, we connect one port in parallel with another 
as in a log-periodic antenna, then it is necessary to work with the short-circuit mo
ment method admittance matrix [Y mn]. 

Consider Fig. 10-25 that shows a log-periodic dipole antenna (LPDA). The LPDA 
is viewed as the parallel connection of two N-port networks. One N-port represents 
the mutual coupling between N dipole antennas. The other represents the trans
mission line that interconnects the dipoles. Therefore, there is one network port for 
each of the dipoles in the system. 

The approach is shown schematically in Fig. 10-26. The N-port labeled "antenna 
elements" includes the self- and mutual impedances between N unconnected dipole 
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r Ne- 2 

••• 
---I ----~ 

t--
d2

-1""' .. ;----------X3 ---------);..tl 
~ = ~ = t" C1 =.!!a. = 1(1- t")cotJ! 
Xn_l In-l • Un 4 2 

Figure 10-25 Log-periodic dipole antenna. 

antennas located arbitrarily in space. The "transmission line" N-port represents the 
transmission line connecting the dipole antennas. Included in this network is the 
effect of reversing the polarity between successive dipoles. Note that there is a 
current source Is on the LPDA. If there are Ne dipole elements on the antenna, 
then there are voltage sources applied on ports 1, 2, 3, ... , Ne • Also, there is a 
terminating admittance on the LPDA antenna Y t that exists at port 1. We do not 
know the numerical values of the applied voltage sources. Thus, they must be found 
before we can solve for the currents on the LPDA. 

Let [YA] and [ZA] be the short-circuit admittance matrix and open-circuit imped
ance matrix, respectively, for the "antenna elements" network, where [YA ] = 
[ZA]-l. We note that [ZA] is not the moment method impedance matrix. An element 
of [ZA], say, [ZA]jj, represents the voltage induced on dipole i in the LPDA by a 
unit current on dipole j with all other dipoles open-circuited. Thus, 

(10-88) 

I Antenna ~ elements 

IA (1) IA (2) 

VA (1) 
r"'-'-'< ~ (2) ~ (n) 

Yt I> \ \ \ \ 

I Transmission { line 

Figure 10-26 Schematic representation of the LPDA network of Fig. 10-25. 



464 Chapter 10 CEM for Antennas: The Method of Moments 

Let [Y T] be the short-circuit admittance matrix for the "transmission line" net
work. Let [IA] and [V A] be the column matrices representing the voltage and current 
at each port of the "antenna elements" network. Since the two networks are in 
parallel, the total current can be written as 

(10-89) 

where [Is] represents the applied current sources. The [Is] matrix contains all zero 
elements, except at the port where there is a current source Is. The current source, 
of course, represents the excitation of the LPDA antenna. Note in (10-89) that we 
know the entry in [Is] but not the entries in [VA]. These must be found so that the 
moment method column matrix [V m] can be constructed and the usual equation [In] 
= [Zmnrl[V m] = [Y mn][V m] solved for the current distributions in the antenna 
dipole elements. But, before we can solve (10-89) for [VA] and construct [V m], we 
must know [Y A] and [Y T]. 

To obtain the elements of [Y A]' we proceed as follows. Consider an LPDA with 
Ne dipoles and M expansion functions on each dipole. The moment method imped
ance matrix will be of order Ne X M. To obtain the moment method admittance 
matrix [Ymn ], we note that [Ymn ] = [Zmnrl and 

(10-90) 

or 

MXNe 

1m = k YmnVno m = 1, 2, ... , M X Ne (10-91) 

To obtain [YA ], we note that most of the Vn's will be zero since voltages are only 
applied by the transmission line on the center ports of each dipole in the LPDA. 
Suppose we rearrange the system of equations in (10-91) such that the first Ne entries 
in [V] as well as [I] correspond to the center ports of the dipoles in the LPDA. Then 
the currents at those ports containing a generator (i.e., antenna element ports) are 
related to the voltages at those ports by 

j = 1,2, ... , Ne (10-92) 

or 

(10-93) 

where all the V;'s in [VA] will be nonzero. (See Prob. 10.10-1.) In finding [YA] in this 
manner, we have done so without making approximations other than those appro
priate to the moment method itself. Indeed, all mutual couplings are included and 
we are not limited to LPDAs of less than 2: 1 bandwidth as in the treatments by 
Carrel [20] and Kyle [21]. 

To obtain the transmission line admittance matrix [Y T] in (10-89), we first rec
ognize that [Y T] is the transmission line admittance matrix for a simple terminated 
transmission line with a port at the position where each dipole is connected. Since 
[Y T] is the short-circuit admittance matrix, a given element (Y T )ji represents the 
current induced across port j (which is shorted) by a unit voltage at port i, with all 
other ports shorted. Thus, (Y T)ji is nonzero only for i - 1 :5 j :5 i + 1. 
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It is possible to write the transmission line admittance matrix [Y T] in a straight
forward fashion [21]. For a single LPDA, it is 

[

(Y' - jYo cot fJd,) - jYo esc fJd, 0 0 

-jYo esc fJd, -jYo(cot fJd, + cot fJd2) -jYo esc fJd2 0 

[YT] = 0 -jYo esc fJd2 -jY.(cot fJd2 + cot fJd3) 0 

o 0 0 -jY. esc fJdN,-' -jY. cot fJdN,-' 

(10-94) 

where Yo is the transmission line characteristic admittance and f3 the propagation 
constant of the transmission line. (See Prob. 10.10-2.) 

With the proper elements of both [YA] and [Y T] in hand, the voltages [VA] acting 
at the driven port of each dipole are 

(10-95) 

where [Is] has one nonzero entry. With these voltages at each dipole, the moment 
method voltage matrix [V m] can be filled and the current distribution on each dipole 
in the LPDA obtained from 

(10-96) 

where the elements of [VA] are the nonzero elements of [V m] and the elements of 
[In] are the complex coefficients associated with the expansion functions on the 
various dipole elements. 

It is worthwhile to summarize the above procedure for analyzing the LPDA. First, 
the open-circuit impedance matrix [Zmn] was formed in the usual manner. By taking 
the inverse of [Zmn], the short-circuit admittance matrix was obtained. Next, the 
antenna elements admittance matrix [YA ] was formed from [Y mn] as in (10-91) and 
(10-92). Then [Y A] was added to the transmission line admittance matrix [Y T]' Then 
the current generator shown in Figs. 10-25 and 10-26 was used in (10-95) to obtain 
the voltage [V A] acting at each dipole port. These voltages were then used to ob
tain the moments method voltage matrix [V m]. Solution for the currents [In] on each 
dipole in the LPDA followed according to (10-96). Patterns obtained using this 
procedure are given in Fig. 6-41 and agree with those in [22]. 

10.11 ANTENNA ARRAYS 

The use of moment methods in the analysis and design of arrays of wire antennas 
(or scatterers) has significant advantages over the more classical methods used in 
treating arrays in that mutual coupling between array elements is taken completely 
into account (e.g., see the LPDA treatment in Sec. 10.10.2). Furthermore, no un
realistic assumptions need be made regarding the current distributions on the wires, 
and the array elements can be excited at any point(s) or be loaded at any point(s) 
along their lengths. Thus, the type of wire element array problem that can be con
sidered is rather general. In this section, we examine several array configurations 
of parallel dipoles and illustrate some typical mutual coupling effects. 



466 Chapter 10 CEM for Antennas: The Method of Moments 

10.11.1 The Linear Array 

Consider the linear array of parallel wire elements shown in Fig. 10-20. The elements 
need not be of the same length and radius or be equally spaced in order to be 
treated by MoM. Clearly, they could be quite arbitrarily configured and, in fact, 
need not even be parallel. However, in this subsection we wish to illustrate the 
effects of mutual coupling in a typical linear dipole array by comparing MoM results 
(using a voltage generator with an internal impedance of 72 U) with results sug
gested by the methods of Chap. 3 (i.e., current generator excitation). For this pur
pose, without loss of generality, we consider a linear array of 12 equally spaced 
(d = >J2), parallel, center-fed, half-wave dipoles phased for a beam maximum 45° 
off broadside. Each dipole is divided into six segments and a i-V generator is placed 
in series with a 72-U resistance at the center port of each dipole, the piecewise 
sinusoidal current amplitudes obtained using (10-62) and the methods of Sec. 10.7.1 
are given in Table 10-1. We note that neither the feed point currents nor the input 
impedances [see (3-103)] are identical across the array. This is due to mutual cou
pling. Since the main beam is at c/Jo = 45°, there is no symmetry in the currents 
about the array center as there would be if the array were phased for broadside 
radiation. 

The normalized patterns are shown in Figs. 10-27a and 10-27b along with the 
normalized pattern for uniform current excitation. In spite of the differences noted 
in Table 10-1, there is little difference seen in the three normalized patterns shown 
in Figs. 10-27a and 10-27b. There is, of course, some small difference in the 
directivity in the two cases. It is possible to synthesize (see Chap. 8) the excita
tion voltages such that maximum gain is achieved. If this were done, the result
ing currents at the fed ports would be of unit magnitude, whereas the voltages 
needed to establish these unit magnitude currents would generally be of nonunit 
magnitude. 

Table 10-1 Normalized Terminal Currents for a Linear Array of 12 Half-Wavelength 
Spaced, Parallel, Half-Wave Dipoles; a = 0.0001-\ 

Zero Generator 72-0 Generator 

Element 
Impedance Impedance 

Number IIAI IZAI IIAI IZAla 
1 0.689 107.1 0.746 111.9 
2 0.698 105.9 0.760 108.6 
3 0.728 101.5 0.799 99.6 
4 0.753 98.2 0.829 93.5 
5 0.768 96.3 0.847 89.9 
6 0.777 95.2 0.856 88.2 
7 0.781 94.7 0.854 88.6 
8 0.775 95.4 0.837 91.8 
9 0.753 98.2 0.806 98.1 

10 0.713 103.7 0.777 104.4 
11 0.689 107.3 0.802 98.8 
12 1.000 74.0 1.000 65.1 

"Exclusive of 72-0 generator impedance. 
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-- Current generator 
- - - Voltage generator (unloaded) 

(a) 

--Current generator 
- - - Voltage generator (loaded) 

(b) 

Figure 10-27 Linear array patterns with main beam steered to </10 = 45° and ideal current 
generators (solid curve) compared to patterns from an array with voltage generators (see 
Table 10-1). (a) Linear array pattern for unloaded voltage generator excitations (dashed 
curve). (b) Linear array pattern for 72-0 loaded voltage generator excitations (dashed 
curve). 

10.11.2 The Circular Array 

Consider the circular array in Fig. 10-28 that is also known as a ring array [23]. Such 
arrays have been used in radio direction finding, radar, sonar and in other systems 
applications. Usually, circular arrays are composed of identical, equally spaced el
ements as indicated in Fig. 10-28, and each dipole is excited at its center. If we 
temporarily replace each dipole with a point source at the excited dipole ports, we 
can write for the array factor (see Sec. 3.1): 

N 

AF(O, ~) = 2: Inejonej[(3P;'sin8cos(t/>-t/>n)] (10-97) 
n=l 
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Figure 16-28 Circular array of dipoles. 

where In is the .current excitation of the nth element located at 4> = 4>n, an is the 
associated phase excitation relative to the array center located at the coordinate 
origin, and p~ is the radial distance of each element center from the origin (all of 
which equal b for the circular array case). For the usual case of cophasal excitation, 

(10-98) 

where (60) 4>0) is the desired position of the main beam maximum. 
For the half-wave dipoles, the element pattern is given approximately by (2-8). 

Thus, the complete pattern for the circular array of half-wave dipoles with an as
sumed sinusoidal current distribution can be written as 

(10-99) 

n=l 

where the assumption is made that (3-104) applies rather than (3-107). 
The analysis of the circular array in (10-97) to (10-99) is, of course, based on 

known currents on the array elements. In practice, we usually apply voltages rather 
than currents to the array element ports. To determine the currents established by 
the voltages, we can use MoM, thereby including all mutual effects. 

We will consider the circular array in Fig. 10-28 to be composed of identical, 
equally spaced dipoles. Thus, certain simplifications in the moment method for
mulation are possible. With the excitation at the centers of all dipoles, it is clear 
that the current distributions will have even symmetry about the z = 0 plane. This 
image symmetry can be used to compress the size of the impedance matrix [Zmnl 
of each dipole as discussed in Sec. 10.8.6. (This could also have been done for the 
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linear array in the previous section.) In addition to this, the impedance matrix for 
the circular array will take the submatrix form 

[Z]array = 

[SJ11 [SJ12 
[SJlN [S]11 

[SJ1N 
[SJ1(N-1) . 

(10-100) 

where [SJij = [Zmn], and each [Zmn] may be compressed as described in Sec. 10.8.6. 
The matrix in (10-100) is not only toeplitz, but also goes by the name "block cir
culant." It can be shown that the inverse of a block circulant matrix is also block 
circulant. Thus, [Y]array would be block circulant. In a block circulant matrix, suc
cessive rows of blocks repeat the previous row but begin with the last block of the 
previous row. 

If we use i-V voltage generators in series with a 72-fi impedance at the center of 
each dipole in a 12-element circular array with A/2 spacing, the currents given in 
Table 10-2 resulted using phases from (10-98). The almost 2:1 variation in current 
magnitude is the result of mutual coupling. The corresponding pattern in the azi
muthal plane is shown in Fig. 10-29. For purposes of comparison, also shown is the 
pattern for uniform (current) excitation calculated using (10-97). The difference 
between the two types of patterns is more noticeable here than in Fig. 10-27 for the 
linear array. Although the pattern with the voltage generator obtained using the 
moment method is the more realistic of the two, an advantage of the moment 
method is that it does yield the input impedance of the elements for any scan angle, 
thereby providing information for the design of the feed network (see Sec. 3.8). 

Table 10-2 Normalized Terminal 
Currents for a Circular Array of 

12 Half-Wavelength Spaced, 
Parallel Half-Wave Dipoles 

(72-0 loaded voltage generators) 

Element 
Number IIAI 

1 0.735 
2 0.566 
3 0.628 
4 0.517 
5 0.547 
6 0.791 
7 1.000 
8 0.791 
9 0.547 

10 0.517 
11 0.628 
12 0.566 
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-- Current generator 
- - - Voltage generator 

t/J = 1800 

Figure 10-29 Patterns of the circular array of Fig. 10-28 with 12 elements for uniform 
current excitation (solid curve) and for 72-0 loaded voltage generators with currents of 
Table 10-2 (dashed curve). 

10.11.3 Two-Dimensional Planar Array of Dipoles 

Consider a two-dimensional array of parallel dipoles located in the xz-plane as 
shown in Fig. 10-30. Our purpose here is to use MoM to show how the input im
pedance of an element in the array varies with scan angle. 

Figure 10-30 shows the input impedance variation of the center element in a 
7 x 9 array (i.e., seven collinear elements in an E-plane row by nine parallel ele
ments in an H-plane row). Three scanning conditions are illustrated: H-plane, 
E-plane, and the 450 plane between the E- and H-planes. It is clear from Fig. 10-30 
that the input impedance does vary considerably with scan angle and the variation 
depends on the plane of scan. Clearly, this variation poses a challenging design 
problem for the engineer responsible for designing the array feed and matching 
network. 

Note that as the array is scanned in the E-plane (zy-plane) to 900 (i.e., "endfire"), 
the real part of the input impedance is tending toward zero, which in tum means 
the element is tending not to radiate! Indeed, although the other elements in the 
array will not have exactly the same behavior, most of them (except the edge ele
ments) will behave similarly and the entire array will tend not to radiate! This 
phenomenon is known as Wood's anomaly, or the blindspot phenomenon, and it 
would seem inappropriate not to mention it in a book on antenna principles. Wood's 
anomaly is more likely to occur in large arrays than in the relatively small one 
considered here. Fortunately, Wood's anomaly can be avoided in some arrays by 
suitable choices in the array design parameters as well as in the element design 
itself. (See Sec. 3.8.3.) 

An explanation for Wood's anomaly lies in an understanding of surface waves. 
In the E-plane, as the array is scanned farther and farther away from broadside, 
there is a larger and larger component of the electric field normal to the array plane. 
The metallic elements in the dipole array simulate a metallic surface for the currents 
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Figure 10-30 Input impedance variation of a central element in a 7 X 9 dipole array as a 
function of scan angle for three planes of scan (dx = dz = 0.5'\). 

that flow in the direction established by the E-plane. Thus, a surface wave is excited 
in the E-plane direction that can consume the output power of the array if the array 
is large. This surface wave phenomenon is similar to the creeping wave discussed 
in Sec. 12.11. 

In the H-plane, no such surface wave is possible because at large scan angles, the 
electric field is trying to propagate tangential to the simulated metallic surface and 
tends to be shorted out by it. Similarly, the creeping wave in Sec. 12.11 tends not 
to propagate when the electric field is parallel to a metallic surface. 

The moment method analysis of a two-dimensional array such as that in Fig. 10-30 
is aided by the block toeplitz nature of the problem. Much larger arrays than that 
in Fig. 10-30 can be analyzed and designed with the aid of MoM even if the number 
of unknowns is in the tens of thousands. However, for arrays of such size, other 
methods of analysis are available [24]. 

10.11.4 Summary 

In this section, we illustrated, through the use of several examples, the application 
of the moment method to antenna arrays. The examples show us several things. 
First, the moment method takes into account all mutual couplings and makes it 
unnecessary to assume the current distribution on the elements in the array or to 
assume that each element has the same pattern. Second, the moment method di
rectly provides accurate information concerning the input impedance of various 
elements under any scan condition. Third, the assumption of a sinusoidal current 
distribution on a thin half-wave dipole in an array environment is a pretty good one 
and, therefore, the classical methods of dipole array analysis based on this assump-
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tion are quite accurate. It is for elements other than the dipole that the moment 
method has an obvious additional advantage. 

10.12 RADAR CROSS SECTION OF ANTENNAS 

The study of antenna scattering is a combination of two electromagnetic disciplines: 
antennas and scattering. Usually, antenna analysis considers the antenna to be a 
transmitter, whereas part of the study of antenna scattering requires the antenna to 
be viewed as a receiver. Even in the receiving case, if we are just interested in the 
power delivered to a load, we can conveniently use antenna transmitting properties 
and reciprocity. But if we are also interested in how an antenna scatters energy into 
surrounding space, then a detailed knowledge of the induced currents on all parts 
of the antenna structure is required. In general, this is a difficult task, but one that 
is tractable using MoM. 

To begin our discussion, consider the Thevenin equivalent circuit of Fig. 10-31 
for an antenna as a function of its load impedance (see also Fig. 2-18). In this circuit, 
ZA = RA + jXA is the antenna impedance, ZL = RL + jXL is the load impedance, 
and VA is the open-circuit voltage induced at the antenna terminals. VA can be 
related to the incident electric field Ei as in [29J by 

(10-101) 

where hA is the antenna vector effective length upon receiving, evaluated in the 
direction of reception. (Note that (10-101) from [29] differs from (9-10).) By reci
procity, this antenna vector effective length is equal to that of the antenna upon 
transmitting h~, evaluated in the same direction and defined such that the far field 
radiated by the antenna under unit current excitation is 

-j{3r 

E' - . 'TJ h' e - -] 2A A -r- (10-102) 

where r is the radial distance from the antenna to the observation point. 
The signs associated with (10-101) and (10-102) are such that the positive terminal 

during reception is the terminal into which positive sense current enters during 
transmission. The receiving current is then given by 

I(ZL) = _ VA 
ZA + ZL 

(10-103) 

With this terminology defined, we now state that the field scattered by an antenna 
as a function of its load impedance is given by 

(10-104) 

Figure 10-31 Antenna Thevenin equivalent circuit 
from [29]. 
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where ES(O) and 1(0) are, respectively, the scattered field and terminal current under 
short-circuit conditions, ZL = O. The frequency, polarization, and directions of in
cidence and reception are assumed to be fixed. This basic equation of antenna scat
tering was derived by King and Harrison [25] using compensation and superposition 
theorems in circuit analysis, Stevenson [26] using field theory, and Hu [27] using 
circuit and field theories combined. Aharoni [28] provides a textbook discussion. A 
derivation from the field point of view is also offered by Green [29]. Derivations 
employing the scattering matrix are given by Collin [30] and Hansen [31]. 

Equation (10-104) is not quite in the form we need for our investigation of an
tenna scattering. To obtain the form used by Green [29], set ZL = Z!, complex 
conjugate of the antenna impedance, and solve for ES(O): 

ES(O) = ES(Z!) + Z;~~) Et 

The use of (10-103), first with ZL = 0 and then with ZL = Z!, leads to 

1(0) = 2:; I(Z!) 

so that (10-105) becomes 

ES(O) = ES(Z!) + Z! I(Z!)Et 
ZA 

(10-105) 

(10-106) 

(10-107) 

These last two equations, substituted into (10-104), yield the fundamental equation 
due to Green: 

or 

where the quantity 

ZL + jXA + l' 
RA 

(10-108) 

(10-109) 

(10-110) 

is a modified voltage reflection coefficient in contrast with the usual definition of 
reflection coefficient. 

The quantity [1(Z!)E1f m in (10-109) is called the antenna mode component of 
the scattered field because it is completely determined by the radiation properties 
of the antenna. It vanishes when the antenna is conjugate-matched. This term is 
related to the energy absorbed in the load of a lossless antenna as well as the energy 
reradiated by the antenna due to load mismatch. The pattern of the energy scattered 
in the antenna mode is exactly that of the antenna radiation pattern. The other 
quantity on the right-hand side of (10-109), P(Z!), is called the structural scattering 
or residual scattering component. It arises from the currents induced on the antenna 
surface by the incident wave even when the antenna has been conjugate-matched. 
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IllllJ.ll111 
(a) Plane wave excitation. 

--_.1 __ ---
(b) Antenna mode excitation. 

111 1 1 .. 1 t ! 11 
(c) Structural mode excitation. 

Figure 10-32 Conceptualization of antenna 
mode and structUral mode scattering. 

Hansen [31) gives an alternative formulation to that of Green in (10-109) in terms 
of a conventional load match. However, his formulation does not appear to be 
generally superior to Green's. 

A conceptualization of antenna mode and residual mode scattering is possible 
from the point of view of point-matching [32]. Figure 10-32 shows the excitation of 
a dipole by a plane wave [32]. The arrows depict the amplitude of the plane wave 
at the match points. The (b) part ofthe figure shows the usual antenna excitation 
that gives rise to the antenna mode term, whereas the (c) part shows the difference 
between the plane wave excitation and the antenna mode excitation that is the 
residual mode excitation. 

A primary reason for being interested in antenna scattering is to determine the 
radar cross section of an antenna. In the case of antenna mode scattering, it is 
possible to derive the following simple expression for the antenna mode component 
of the radar cross section: 

>..2 
O'ant = f2G2

( 8, cI>} 4'lT (10-111) 

However, no such simple expression is possible for the structural mode radar cross 
section. 

Figure 10~33 shows the broadside monostatic RCS of a dipole 0.5 m in length 
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0.4 
Ei 

"'e 
0.3 1 no 

ti 0.2 
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0.0 
100 300 600 1000 2000 

Frequency, MHz 
Figure 10-33 Monostatic broadside RCS vs. frequency for a 0.5-meter-Iong dipole 
terminated in a 72-ll load. 
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terminated in a 72-n load as the frequency is varied from 100 to 2000 MHz [32]. 
We observe peaks in the curve at the first three dipole resonances near 300, 900, 
and 1500 MHz as expected. Near 300 MHz, the RCS is due to the residual mode 
since the dipole is conjugate-matched at its first resonance. Above about 1000 MHz, 
the RCS is also dominated by the residual scattering, but this is because the antenna 
mode radiation pattern is weak or zero in the broadside direction. 

Figure 10-34 shows the bistatic scattered field for the residual mode and antenna 
mode when a plane wave is incident at angles of 90, 60, and 30° from the axis of a 
1.723A dipole with a load of 72 n. In comparing the curves in Figs. 1O-34a and 
10-34b, we first observe that the antenna mode bistatic electric field curves are all 
symmetric about Os = 90°, whereas the structural mode curves for Os = 60° and 30° 
are not. This is a further illustration of the antenna-like behavior of the antenna 
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mode. To illustrate the structure-like behavior of the structural mode, note the large 
bistatic response around Os = 1250 for the Oi = 300 incidence case in Fig. 10-34a. 
This is due to the dipole structure acting like a moderately long reflecting surface. 
If the length of the dipole were to increase, the angle of maximum response would 
increase toward 1500 as expected from the law of reflection. 

It is worthwhile to comment on how the MoM is used to obtain the data in Fig. 
10-34a. First, at each frequency the antenna input impedance is calculated for the 
dipole so that Es(Z!) is known. Then the left-hand side of (10-109) is calculated for 
each of the three incidence angles. Next, I(Z!) is found so that the antenna mode 
scattering may be calculated. In tum, subtracting the antenna mode scattering from 
the total scattered field on the left-hand side of (10-109) yields the structural scat
tering. No other CEM technique would be as helpful as MoM for these kinds of 
calculations. 

Figure 10-35 shows the total power scattered and the total power absorbed by a 
O.5-m-Iong dipole with a 72-0 load and a plane wave normally incident. Generally, 
the total power scattered is greater than the total power absorbed, the two being 
equal at first resonance where the dipole is conjugate-matched. Below first reso
nance, the dipole is not conjugate-matched and it is possible for the total power 
absorbed to exceed the total power scattered. The curves in Fig. 10-35 were calcu
lated using the equivalent circuit in Fig. 10-31 by assuming that ZA accounts for the 
total power scattered and ZL for the total power absorbed by the dipole. That ZA 
accounts for the total power scattered by the antenna is not generally true, but is 
approximately true when the power scattered by the open-circuited antenna is much 
smaller than that scattered by the terminated antenna [33] (below about 400 MHz 
in Fig. 10-33). Numerically integrating the scattered fields over a far-zone sphere 
enclosing the dipole to correctly calculate the total power scattered replicates the 
P A curve up to a dipole length of about 0.6.\ and provides at best only rough quan
titative agreement above that length. It is sometimes thought that a matched lossless 
antenna cannot absorb more power than it scatters. However, this is not true the
oretically [34]. In practice, it is unlikely that a matched lossless antenna will absorb 
more power than it scatters. In Fig. 10-35, the powers are equal just below 300 MHz 
where the dipole is matched. 

In this section, scattering by an antenna has been examined for the purpose of 
understanding the radar signature of an antenna. However, this is not the only 
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Figure 10-35 Total power absorbed and total power scattered by a 0.5-m-Iong dipole with 
a 72-0 load. 
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reason to be interested in antenna scattering. For example, if an antenna did not 
scatter, there would be no mutual coupling in an antenna array. 

10.13 MODELING OF SOLID SURFACES 

There are two principal ways in which MoM can be used to model either two
dimensional or three-dimensional bodies (e.g., infinite cylinder or finite cylinder, 
respectively). The simplest way to model a solid surface body is with a grid of wires, 
the so-called wire-grid model. Examples of this approach are ill ustrated in Fig. 10-36. 
The other common approach is to use a magnetic field integral equation (see Prob. 
10.13-5) in which the surface is broken up into patches or cells, each having a con
tinuous metallic surface. In this section, we briefly examine both approaches. 

10.13.1 Wire-Grid Model 

In this subsection, we demonstrate the application of the wire segment procedure 
to model not just a wire antenna or wire scatterer, but also to model the metallic 
environment near the antenna. We can accomplish this by using a wire-grid or wire 
mesh to simulate an actual continuous metallic surface. The idea of using a wire 
mesh to simulate a continuous metallic surface precedes, of course, the time when 
the moment method came into widespread use. There are many practical situations 
where the effect of a continuous metallic surface is required, but the weight and/or 
wind resistance offered by a continuous surface is too large (e.g., a reflector surface). 

The successful substitution of a wire grid for a continuous metallic surface (in 
reality or in a model) depends on the fact that as the grid size becomes smaller 
relative to the wavelength, the grid supports a current distribution that approximates 
that on the corresponding continuous surface. The current is only an approximation 
of the actual current, however, and as such it can be expected to reasonably predict 
the far fields but possibly not the near fields. This is due to the fact that the grid 
supports an evanescent reactive field on both sides of its surface [35]. An actual 
continuous conducting surface is not capable of supporting such a field. 

The accuracy with which a wire-grid model simulates an actual surface depends 
on the computer code (i.e., expansion and weighting functions) used, the radius of 
the wire segments used, as well as the grid size. For example, with pulse expansion 
functions and point-matching, it has been found that a grid spacing of about 0.1 to 
0.2A yields good results [36]. With the piecewise sinusoidal Galerkin method, it has 

Parabolic 
reflector 

Slot in flat plate 

Sphere Circular 
disk Figure 10-36 Examples of wire-grid 

modeling. 
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been found that the grid size should not exceed >J4 and a suitable wire radius is 
a = w/25, where w denotes the width or length (whichever is greater) of the aper
tures [37]. A 70-segment (piecewise sinusoidal Galerkin) aircraft model is shown in 
Fig. 10-37. The model is a 1 :200 scale. Thus, for the radar cross section results in 
Fig. 10-38, the actual length of the aircraft fuselage is about 15.4 m and the actual 
frequencies are 16.1 and 27.15 MHz, respectively. Since the radar cross section scales 
as the scale factor squared, the actual RCS (in square meters) at the actual fre
quencies would be 46 dB above that indicated in Fig. 10-38 for f = 3.25 and 
5.43 GHz. 

Let us now consider the situation where a monopole is axially mounted on the 
base of a cone [7] as shown in Fig. 10-39. A wire-grid representation can be used in 
which the cone or frustum is represented by a number of "generating lines" con
sisting of a number of wires joined end to end, as shown in Fig. 10-40a. Except for 
the base, no wires need to be provided in planes normal to the z-axis because of 
excitation symmetry. 

An interesting simplification (see Sec. 10.8.6) can be obtained from the symmetry 
of the configuration in the case where all generating lines have the same number of 
segments, each segment being identical (except for the orientation on the cf>-co
ordinate) to the corresponding one on each other generating line. The currents on 
such corresponding segments should be equal in magnitude and phase, since I(z) is 
independent of <p. Let the segments be numbered in a consecutive way, starting with 
the line at <p = 0 and proceeding in counterclockwise direction along the other lines. 
Let M be the number of segments on each line and L the number of generating 
lines. Thus, one can write 

L·M 

L Zklj = EL k = 1, 2, ... , L·M (10-112) 
j=l 

Since the currents on corresponding segments are equal, 

I j = I(j+M) = I(j+2M) = I(j+(L-l)M) (10-113) 
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Figure 10-37 Wire-grid model 
for the scale model MIG 19 with 
70 segments. 
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_50L-~--~--~--~--~~L-~---L--~ Figure 10-38 Radar cross section 
of a scale model MIG 19 aircraft. 
(L = fuselage length). 
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Figure 10-39 Dimensions of experimental cone 
model. The monopole is a quarter-wavelength at 
each frequency. 
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(a) Model of monopole and cone. (b) Cone generating line showing 
distribution of segments and 
boundary matching points. 

Figure 10-40 Wire-grid model of cone in Fig. 10-39. 

and (10-112) can be written as (see Sec. 10.8.6) 

k = 1,2 ... , M (10-114) 

The advantage of (10-114) is that it permits us to reduce the number of unknown 
currents to M, while the actual number of wire segments is L . M, where L is 
arbitrary. As a result, there is no limitation other than computer running time to 
the number of generating lines (and thus to the total number of segments repre
sented). For the patterns calculated here, L was chosen to be 10, M to be 170, and 
pulse basis functions were used. 

The left-hand side of (10-114) represents -ES for the cone problem under con
sideration here. It remains to determine Ei. For the monopole, consider the ge
ometry depicted in Fig. 10-40b. If we start with the vector potential, the following 
near-field expressions for the monopole configuration of Fig. 10-40b may be derived 
as 

. [e-if3Rt e-i
/3t' z· z· ] E' = -,'29.975 III -- - - cos f3H - j - e-J/3t' sin f3H - - e-J/3t' sin f3H 

Z Rl r r2 f3r3 

(10-115) 
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and 

E i j29.975 III [( H) e-
j
/3R

1 Z _,"ar f3H = z - -- - - e "'cos 

P p Rl _ jZ~ e- j /3r sin f3H + .L e-j /3r sin f3H ] (10-116) 
r2 f3r3 

The right-hand side of (10-114), which constitutes the generalized voltage matrix, 
requires that the tangential components of the incident field be determined at each 
match point on one of the generating lines of the cone. The equations above for 
E~ and E~ are used to do this. 

Solving for the current on the cone makes it possible to calculate the far-field 
pattern of the cone-monopole structure by superimposing the fields of the cone and 
those of the monopole. A necessary but not sufficient check on the validity of the 
moment method solution in this problem requires that the currents at the junction 
of the monopole with the wire-grid representation of the cone satisfy Kirchhoff's 
current law. For the formulation in (10-114) to (10-116) with L = 10, the current 
on each of the 10 wire-grid lines was found to be 0.1 A when the monopole base 
current III = 1.0 A. That these 11 currents satisfy Kirchhoff's current law at their 
common junction is a direct consequence of Maxwell's equations since Kirchhoff's 
current law was not explicitly built into the system of equations [Le., a constraining 
equation was not one of the equations in (10-114)]' 

To experimentally test the validity of the wire-grid representation of a metallic 
surface, an actual wire-grid cone was built around a styrofoam core in a configu
ration similar to that shown in Fig. 1O-40a. An experimental comparison ofthe solid 
cone and its wire-grid counterpart is shown in Fig. 10-41a. Some representative 
results showing both the results calculated for the wire-grid cone and measurements 
for the solid surface cone are illustrated in Fig. 1O-41b. The results are generally 
quite good. 

Other variations of the formulation given here are possible, of course. For ex
ample, instead of assuming the current distribution on the monopole, it can be 
treated as an unknown as are the currents on the metallic body. This could be done 
in a number of ways. The monopole terminal current value could be constrained to 
a particular value. This would take into account the interaction between the cone 
and monopole, but would not conveniently provide for the calCulation of imped
ance. Alternatively, one could use a voltage generator at the base of the monopole 
such as the magnetic frill current discussed previously. Calculation of the currents 
on the cone and monopole would account for the cone-monopole interaction and 
also yield directly the monopole impedance. Note that in either case, the previously 
described symmetry for the cone due to the symmetrical excitation could still be 
used to advantage. 

The accuracy of wire-grid models can be improved if the grid is reactively loaded 
with lumped loads [35]. The motivation for doing this is to eliminate the effects of 
the evanescent reactive field that is in proximity to the wire grid. Not only does this 
increase the accuracy of the model, but it also permits larger grid sizes to be used. 
Nevertheless, even without this loading, the wire-grid model is a convenient and 
relatively straightforward tool for engineering calculations. 
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Figure 10-41 Far-field patterns of a monopole on the base of the cone in Fig. 10-40. 

10.13.2 Continuous Surface Model 

The continuous surface model of a three-dimensional body is a complex problem 
that is generally beyond the scope of this text. The interested reader is referred to 
the literature for a discussion of this topic. 

On the other hand, the continuous surface model of a two-dimensional solid body 
follows directly from the earlier sections in this chapter. We consider two such 
examples here: that of a conducting cylinder with the incident electric field parallel 
to the axis of the cylinder (TM case) and that of a conducting cylinder with the 
incident magnetic field parallel to the axis of the cylinder (TE case). 

In Sec. 1.5, we found the solution (Green's function) to the spherical wave equa
tion. Here, we need a solution to the cylindrical wave equation. For the TM case, 
our equation is 

V2Ez + f3 2Ez = jWJLlz 

where Ez = Ez(x, y). A solution to this equation is 

(10-117) 

(10-118) 

where H~2) is the Hankel function of the second kind and zero order. It represents 
an outward cylindrical traveling wave just as does e-j /3r for a spherical wave. The 
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total scattered field is then the integral of (10-118) over the cross section of the 
cylinder or [6] 

(10-119) 

where the integration is over the cross section of the cylinder of currents lz as 
indicated in Fig. 1O-42a. 

A simple formulation is to require that (10-34) or (10-36) with delta weighting 
functions applies. Hence, the applicable integral equation is 

p on c (10-120) 

where E~(p) is known and lz is the unknown to be determined. Note that (10-120) 
has the same form as (10-1). If pulse expansion functions are used, the impedance 
matrix elements are 

(10-121) 

and the voltage matrix elements are 

V m = E~(xm' Ym) (10-122) 

Note that the incident field is present at all match points in Fig. 1O-42b since the 
metallic surface has been replaced by equivalent currents in free space. 

In order to calculate the elements of the generalized impedance matrix, it is nec
essary to evaluate (10-121). Unfortunately, there is no simple analytic expression 
for the integral, but it can be evaluated by one of several approximations. The 
simplest (and crudest) approximation is to view a current element lz den as a fila
ment of current when the field point is not on dcn • Thus, when m * n, 
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Figure 10-42 Cylinder of arbitrary cross section for scattering calculations. 

(10-123) 
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Note that although we are using a current filament approximation as shown in Fig. 
10-42b, this is not a wire-grid model and should not be confused with that approach. 

To obtain Znn, we recognize that the Hankel function has an integrable singu
larity and the integral must be evaluated analytically. To do this, we use the small 
argument formula for the Hankel function of argument (3p: 

Hf)«(3p) = 1 - j; In( 'Y~p) (10-124) 

where 'Y = 0.5772 ... is Euler's constant and obtain 

Zn n = ~ (3 ACn [1 - j ; In ( 'Y(3 4~Cn ) ] (10-125) 

where e = 2.718. Better formulations (e.g., faster convergence), although somewhat 
more complex, are possible with the use of other expansion functions and other 
weighting functions. 

Results for the z-directed current on a cylinder are given in Fig. 10-43 for plane 
wave incidence where E~ = e-jfJx

• Note that the current decays to nearly zero on 
the shadowed side since, for this (TM) polarization, the electric field is shorted out 
by the metallic cylinder as it propagates from the illuminated side into the shadowed 
region. This will not be the case for the TE polarization. 

Next consider the TE case, where the incident magnetic field is parallel to the 
circular cylinder axis. We will, by choice, use a magnetic field integral equation 
(MFIE) that has the form 

J</>(p) + z· V x J J</>(p)I/I(p, p') de' = H~(p) (10-126) 

In contrast to the electric field integral equation (EFIE) in (10-1) where the un
known current only appears under the integral sign, here the unknown current 
appears both under and outside the integral sign. Thus, (10-126) is referred to as 
an integral equation of the second kind. Integral equations of the second kind are 
generally preferable for large smooth conducting bodies since the contribution by 
the integral part of the equation may be of second-order importance. However, the 
electric field integral equation is also useful for large conducting bodies as we have 
seen in the treatment of the TM case. Magnetic field integral equations are not 
useful for treating thin wires due to the singularity in the integral. Recall that in 
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Figure 10-43 Normalized current on a conducting cylinder for TM polarization. 
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Sec. 10.1, we avoided the singularity in the EFIE by using the approximation that 
the observation points lie on the axis of the wire rather than the surface. That 
approach cannot be employed for the MFIE. 

To derive the magnetic field integral equation for the two-dimensional problem 
of interest here, we note that there will only be a z-component of H and a transverse 
component of J, namely J </>. The total magnetic field Hz at any point on or outside 
the surface of the conducting body is the sum of the impressed field H~ plus the 
scattered field H~ on the surface of the body. Thus, 

Hz = H~ + H~ 

Since H = .!. V x A, we can write 
IL 

H~(p) = i· V x L J</>(p)l/I(p, p') dc' 

(10-127) 

(10-128) 

where 1/1 is the two-dimensional Green's function (used for the TM case) and de' 
specifies the reference direction of J. The discontinuity in Hz at the conducting 
surface is equal to the current density J </>. So, 

(10-120) 

where c+ indicates that Hz is evaluated just external to cross-sectional surface con
tour c. When (10-127) is applied to the contour c+, we can use (10-128) and (10-129) 
to write 

(10-130) 

This is the magnetic field integral equation for the two-dimensional problem of 
interest here. The current density J </> is the unknown, whereas the incident field 
H~ is known. The evaluation of the integral in (10-130) must be done with care 
since Hz is discontinuous at c and the Green's function is singular, precluding a 
simple interchange of differentiation and integration. 

Rewriting (10-130) as 

J</>(p) + [i. V x L J</>(p) H~2)(f3lp - p'D dc']c+ = -H~lc+ (10-131) 

and specifying pulse expansion functions and delta weighting functions enables us 
to write 

Zmn = Smn + Hz(m, n) (10-132) 

where Smn is the Kronecker delta and Hz(m, n) is the magnetic field at (xm' Ym) on 
c+ due to a unit current density on f:.cn at (xn' Yn), or 

When the observation point arid source segment coincide, HzCm, n) exhibits the 
singularity mentioned previously. However, Zmm may be evaluated by noting that 

(10-134) 

since we are dealing with only a unit current. Thus, 

Z =1_1=1 mm 2 2 (10-135) 
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To evaluate Zmn for m '* n, we can employ the approximation that when 
ACn « A and the field point at (x, y) is distant from the source Acn , the fields from 
the source appear to emanate from a magnetic line source located at the center of 
Acn • Thus, 

Hz(m, n) = A~n ; [H~2)(f3p)] (10-136) 

where the derivative is taken with respect to the normal to the surface and a local 
coordinate system is implied. If cp is the angle between p and n, then 

(10-137) 

where H~2) is the Hankel function of the first order. It is necessary to translate this 
result from its local coordinate system to one with an arbitrary origin. This is ac
complished by replacing p by IPm - Pn I and cos cp by n . R, where 

R = Pm - Pn 
IPm - Pnl 

(10-138) 

is a unit vector from the source point (xn' Yn) to the field point (xm' Ym). Finally, 
for m '* n, we have 

(10-139) , 

whereas for all m 

(10-140) 

Solution of the usual matrix equation [Zmn][In] = [Vm] yields the transverse cur
rents on the conducting cylinder. A result for the current J 4> on a circular cylinder 
induced by a plane wave is shown in Fig. 10-44. The current is normalized with 
respect to the magnitude of the incident field. Note that the current does not go to 
zero on the deep shadowed side of the circular cylinder for the TE polarization. 
This is due to the propagation of surface waves around both sides of the cylinder 
that interfere in the shadowed region to produce standing waves there. These sur-
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Figure 10-44 Normalized current on a conducting cylinder for TE polarization. 
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face waves are called creeping waves and are discussed in Chapter 12. On the other 
hand, the current on the most strongly illuminated portion of the cylinder can be 
interpreted as the physical optics current and is produced by the left-most term in 
(10-126). Physical optics is also discussed in Chapter 12. 

We have not considered the subject of internal resonances here, but it should be 
pointed out that it is possible to obtain erroneous currents on the cylinder at those 
precise frequencies where the interior dimensions of the cylinder correspond to the 
resonant frequency of a waveguide type mode [38]. Such erratic behavior can be 
avoided if a formulation is used that combines both the EFIE and MFIE. 

10.14 SUMMARY 

In this chapter, we presented a very useful and powerful technique, the method of 
moments, for the analysis of certain types of antennas (e.g., wire antennas) and 
arrays of antennas (e.g., Sec. 10.10 through 10.12). Although the method has been 
applied primarily to z-directed wires, we have seen that it applies equally well to 
arbitrary configurations of wires, for example, Sec. 10.11, as well as to solid surfaces, 
for example, Sec. 10.13.2. Furthermore, the method of moments has been used to 
generate some of the data presented in Chaps. 5 and 6. 

The method of moments is often thought of as a low-frequency technique because 
it generally cannot be applied to bodies that are arbitrarily large in terms of the 
wavelength (e.g., Sec. 10.8). In contrast to this, in Chapter 12 we will study high
frequency techniques that apply best to bodies which are arbitrarily large in terms 
of the wavelength. (See Figs. 10-1 and 10-2.) 
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PROBLEMS 
\ 

10.3-1 a. Use the equivalence principle to show that the current flowing on the highly con-
ducting wire in Fig. 10-3a may be replaced by the equivalent currents radiating in free space 
as in Fig. 10-3b (i.e., the wire material is replaced by free space with zero fields and zero 
sources inside the original wire volume) and that the equivalent currents (Fig. 10-3b) are the 
same as the currents in the original problem. 

b. Why is this important? 
10.3-2 Show that the left-hand side of (10-13) may be expressed as 

1 fLl2 -jfJR 
E~ = ~ I(z') _e - [(1 + j~R)(2R2 - 3a2) + ~2a2R2] dz' 

47TJW80 -L12 R5 



Problems 489 

10.3-3 Through integration by parts, show that the left-hand side of (10-13) may be written 
as 

E~ = + jWJ.LJ(z') - -. - __ z_ - _e - dz' fL'2 [ 1 al(') a J -j(3R 

-Ll2 JWBo az' az 47TR 

This equation may be derived by using both the vector and scalar potentials [6]. 
10.4-1 a. What are the units of the generalized voltage, current, and impedance matrix el
ements in (1O-26)? 

b. If both sides of (10-26) are multiplied by the segment length, ~z, what are the units of 
the matrix elements in (10-26)? 
10.4-2 Moment methods involve solving systems of linear equations. A computer technique 
for solving such problems is needed. This could be through a high level language (MathCAD, 
MatLab, Mathematica, ... ), a subroutine you write, or a canned routine such as IMSL. 

a. For the problem 

v = ZI where Z = [~ ~J 
obtain the solution by hand using I = Z-l V if 

V - ] 
[

2 + .J 
1 + 2j 

b. Solve the problem in (a) using your chosen computer approach. Include details of the 
approach. Compare to your hand solution. 
10.4-3 An important ingredient in moment methods is to be able to numerically integrate 
complex-valued functions. Select a computer approach and document it. 

a. Integrate the following analytically 

b. Use your computer approach of choice to evaluate the integral in (a) and compare to 
results you obtained in (a). 
10.5-1 In order to obtain some feeling for MoM, it is recommended that the student write a 
computer program to solve the following problem. Consider a straight dipole of length L (or 
monopole of length Ll2) and radius a. Divide the dipole into N segments of equal length, 
each containing a pulse expansion function. 

a. Use point-matching and the equation in Prob. 10.3-2 for the scattered field to compute 
the elements in the first row of the impedance matrix [Zmn] as given in (10-26), noting that 
these are the only independent matrix elements since the matrix is toeplitz (see Sec. 10.8.4). 
Note that the integrand tends toward singularity when R = a [39], but even so one may 
numerically integrate through this region if reasonable care is taken. 

b. Confirm the matrices in Example 10-1. Next, duplicate the curves in Fig. 10-9. (This 
exercise continues in Probs. 10.6-1 and 10.9-1.) 
10.5-2 Starting with the electric vector potential and (10-30), derive (10-31) [40]. 
10.6-1 a. Extend the computer code of Prob. 10.5-1 to use pulse weighting functions in 
(10-40). 

b. Confirm the matrices in Example 10-2 and duplicate the curves in Fig. 10-13. (This 
exercise continues in Prob. 10.9-1.) 
10.7-1 Show that (10-47) and (10-48) follow from (10-44) and (10-45), respectively. 
10.7-2 Compare (10-57) to (10-37). 
10.7-3 From (10-59), derive (10-26) if delta weighting functions are used. 
10.8-1 Use both vector and scalar potentials to derive (10-64). 
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10.8-2 Another equation for the treatment of wire antennas is Hallen's integral equation: 

J
Ll2 -jf3R • 

I(z'} e
4 

R dz' = _L (C1 cos {3z + C2 sin (3lzi) 
-Ll2 7T: 1'/ 

where C1 and C2 are constants. The constant C2 may be evaluated as VAI2, where VA is the 
terminal voltage of the antenna. Derive Hallen's equation for the dipole by writing a solution 
to the wave equation for A z that is proportional to the right-hand side of the above equation 
and then equating this result to the integral form of the vector potential for A z due to a 
perfectly conducting thin wire dipole. 
10.8-3 In Secs. 10.4 and 10.6, we used pulse functions in the moment method. Expansion 
functions such as the pulse function, piecewise sinusoidal function, etc., are often called 
sUbdomain expansion functions because each expansion is generally nonzero on only a rel
atively small part of the radiating body. (The concept of domain relates to Sec. 1O.7.2.) 

There is another type of expansion function called entire-domain expansion functions. In 
this case, the function is generally nonzero over the entire radiating body and the concept of 
segments is not used. For example, if one were to treat the dipole with an entire-domain 
expansion function (i.e., a Fourier series}, one could write for the current: 

N 

I(z') = L InFn(z') 
n=l 

where 

7T:Z' 
Fn(z'} = cos(2n - I} T' L , L --:::; z <-

2 - 2 

[Note that each term in Fiz'} goes to zero at the ends of the dipole.] 
a. Sketch the first two terms in the series for Fn(z'}. 
b. If there are N terms and N match points (i.e., a point-matching solution), write an 

expression for Zmn, using the notation in Secs. 10.4 and 10.6. 
c. Give a physical interpretation of Zzs (i.e., complete a statement similar to the following: 

Zzs represents the field from __ at __ ). 
10.8-4 Verify (10-70), using the algorithm in (10-71). 
10.9-1 a. After successfully completing Probs. 10.5-1 and 10.6-1, use (10-80) to compute the 
far-field radiation pattern of dipole antennas with lengths of 0.1,0.5,1.0,1.25, and 1.5'\. Justify 
the value of N that you use in each case. 

b. For the dipole lengths in part (a), plot the current distributions on the dipoles in mag
nitude and phase. Compare with the assumed sinusoidal distribution used in Sec. 5.1. 

c. Using (1O-81), compute the gain at broadside for the dipole lengths in part (a). 
d. Consider a plane wave to be incident on a dipole short-circuited at its terminals. Use 

the relationship 

to compute [V m] for fi = 90° (i.e., the broadside case) and then compute the radar cross 
section, as in (1O-82), when L = Al2. Compare with Fig. 10-21 and verify several more points 
in Fig. 10-21. 
10.9-2 Derive (1O-80) by considering the dipole of length L to be comprised of N ideal 
collinear dipoles of length LIN. 
10.9-3 Derive (10-81), starting with the Poynting theorem. 
10.9-4 a. Using an available MoM code, compute, plot, and label the patterns (three planes) 
in polar, linear form and the current distribution for a one wavelength loop. Compare g3in 
to that expected .. 

b. Find the input impedance for a loop of radius a = 0.001 wavelength for perimeter = 
1, 1.5, and 2 wavelengths. Compare to Fig. 5-53. 
10.10-1 Consider the LPDA in Fig. 10-25 to have only two dipoles. Assume each dipole is 
composed of three piecewise sinusoidal expansion functions numbered consecutively with 
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the first three piecewise sinusoids on one dipole and the remaining three on the other. Thus, 
[Zmn] will be of order six, with the second and fifth piecewise sinusoids being at the centers 
of their respective dipoles. In accordance with (10-91) and (10-93), show that the elements 
of [Ymn] which form [YA] are Y22, Y25, Y52, Y55• 

10.10-2 a. Show that the admittance matrix for one section of the tninsmission line in Fig. 
10-25 without dipoles attached is 

_ [-jYo cot f3d +jYo csc f3d] 
[Y] - +jYo csc f3d -jYo cot f3d 

where d is the length of one section of transmission line with propagation constant f3 and 
characteristic admittance Yo' 

b. Show that connecting N-1 of these sections using the scheme in Fig. 10-25 results in 
(10-94). 
10.10-3 Extend the LPDA analysis in Section 10.10.2 to an array of M LPDA antennas as 
in [21]. 
10.10-4 In Sec. 10.102, we obtained a solution to the LPDA. One of the important points in 
that solution is the determination of [YA ] in the manner indicated in Eqs. (10-90) to (10-93). 
Had we wished to then find [ZA], we could have obtained it from [ZA] = [YAr l

• Denote this 
method A. Suppose instead we find [ZA] by considering the two dipole mutual impedance 
problem as Carrel [20] and Kyle [21] did. For example, [ZA]mn is obtained by temporarily 
removing all dipoles except m and n from the system and then calculating [ZA]mn' Denote 
this method B. 

a. Will [ZA] obtained by method A be the same as that obtained by method B? Why? 
b. The following question refers to the concepts implied by part (a). When we calculate 

a moment method impedance matrix [Zmn], in what way does that calculation process relate 
to method B above? 
10.11-1 Show that (10-100) is valid. 
10.12-1 Assuming that ZA in Fig. 10-31 can account for the power scattered by a dipole when 
o < L < 0.6A, and the load is 72 n purely resistive, find a relationship between RA and RL 
when: 

a. More power is scattered (totally) by the dipole than is absorbed by the load. 
b: The powers scattered and absorbed are equal. 
c. The power absorbed by the load is greater than that scattered. 
d. When the scattered and absorbed powers are equal at first resonance, what is the 

,contribution by the antenna mode to the total RCS of the dipole? 
10.12-2 Derive (10-111) in either of the following ways: 

a. With a plane wave incident, define an absorption aperture of an antenna as GA2/4'TT', 
find the absorbed and scattered powers, and apply the definition of radar cross section. 

b. Start with the antenna mode term in (10-109) and use the relationship that the maxi
mum effective aperture for reradiation [28] is Are = (h'A)2TJ/( 4RA), when ZA = ZL, and obtain 
an expression for the field scattered by the antenna mode, E~nt = EiAre( - j/A)r(e-;(3r/r) , before 
applying the radar cross-section definition. 
10.12-3 In [33] an expression for the RCS of small antennas, such as the dipole, is presented 
that is valid when the scattered field of the open-circuited antenna is small compared to that 
of the terminated antenna: 

a. Use this expression to compute the RCS at first resonance of the dipole used in Fig. 
10-33. 

b. Also use this expression to compute the RCS of the dipole at first antiresonance (i.e., 
about 600 MHz). Make an idealized assumption about the input impedance at first antire
sonance. Compare your result to Fig. 10-33. Explain the difference. 
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10.12-4 A sheet of very thin conducting material (thickness, t «< A.) has a plane wave 
normally incident upon it. The resistance R of the thin material is Vut where u is the con
ductivity of the material, and R is measured in ohms/square. 

a. Find the optimum resistance of the thin material such that the sheet absorbs the max
imum aoiount of power from the wave and that this amount is 50% of the power incident. 

b. Comment on the similarity of the maximum power absorbed in (a) to that absorbed 
by a matched resonant antenna at first resonance (e.g., a Al2 dipole). 

c. Do the answers to (a) and (b) imply that any antenna may not absorb more power 
than it scatters [29, 34]? 
10.13-1 Derive (10-114) from (10-112). 
10.13-2 Sketch a wire-grid model for a square plate lA X lA. H pulse expansion functions 
are to be used, how many unknowns will your model have? 
10.13-3 Sketch a wire-grid model for a quarter-wavelength monopole at the center of a cir
cular ground plane of Al4 radius. H pulse expansion functions are used, how many unknowns 
will your model have? If piecewise sinusoidal functions are used, how many unknowns will 
your model have? 
10.13-4 Derive (10-120) from (10-117). 
10.13·5 Derive (10-130) from (10-127). 
10.13-6 Derive (10-139) from (10-130). 
10.13-7 Write a computer code to solve (10-120). Verify Fig. 10-43. 
10.13-8 Write a computer code to solve (10-131). Verify Fig. 10-44. 



Chapter11 

CEM for Antennas: 
Finite Difference Time 
Domain Method 

The computational approach of the previous chapter involved setting up and solving 
frequency domain integral equations for the phasor electric and/or magnetic cur
rents induced on the surfaces of antennas or scatterers. From a computing perspec
tive, this method of moments (MoM) procedure involves setting up and solving 
dense (i.e., few zero elements), complex-valued systems of linear equations. These 
systems can involve tens of thousands of equations in the treatment of problems of 
even moderate electrical size. 

As powerful as MoM is, it is inadequate for some important engineering prob
lems, particularly those involving pulsed excitations and various transient phenom
ena. These kinds of problems require data to be computed over a range of fre
quencies. This suggests the need for a solution technique in the time domain, since 
all of the required frequency domain data can be generated from one-time domain 
solution via Fourier transformation. There is an approach that directly solves Max
well's curl equations at points on space grids in the time domain. It is the finite 
difference time domain (FD-TD) method (see Fig. 10-1). There are at least four 
reasons for the development of interest in such partial differential equation (PDE) 
solutions of Maxwell's equations: 

1. PDE solutions are robust. 
2. Time domain PDE methods usually have no matrices (frequency domain PDE 

methods usually have sparse matrices). 
3. Complex-valued material properties are readily accommodated. 
4. Computer resources are adequate to allow widespread usage of PDE methods. 

The finite difference time domain (FD-TD) technique to be discussed in the fol-
lowing sections offers many advantages as an electromagnetic modeling, simulation, 
and analysis tool. Its capabilities include: 

• Broadband response predictions with a single excitation 
• Arbitrary three-dimensional (3-D) model geometries 

493 
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• Interaction with an object of any conductivity from that of a perfect conductor, 
to that of low or zero conductivity 

• Frequency-dependent constitutive parameters for modeling most materials: 
Lossy dielectrics 
Magnetic materials 
Unconventional materials that can be anisotropic and/or nonlinear 

• Any type of response such as: 
Scattered fields 
Antenna patterns 
Radar cross section (RCS) 
Surface response fields 
Currents, power densities, charge distributions 
Penetration/interior coupling 

The basis of the FD-TD algorithm is the two Maxwell curl equations in derivative 
form in the time domain. These equations are expressed in linearized form by means 
of central finite differencing. Only nearest-neighbor interactions need be considered 
as the fields are advanced temporally in discrete time steps over spatial cells usually 
of rectangular shape as indicated in Fig. 11-1 (other cell shapes are possible, as well 
as two-dimensional and one-dimensional treatments). 

Although FD-TD is well suited to computing responses to a continuous wave or 
single-frequency excitation, it is particularly well suited to computing transient re
sponses. This is especially the case when complex geometries or difficult environ
ments, such as an antenna that is buried in the earth or dielectrically clad, are 
considered. Also, interior coupling into metallic enclosures is a situation where 
FD-TD is a method of choice. 

For problems where the modeled region must extend to infinity, absorbing bound
ary conditions (ABCs) are employed at the outer-grid truncation planes (grid 
boundary), which ideally permit all outgoing numerical waves to exit the region 
with negligible reflection at the grid truncation. Phenomena such as the induction 
of surface currents, scattering and mUltiple scattering, aperture penetration and 
cavity excitation are modeled time step by time step by the action of the numerical 
analog to the curl equations. The self-consistency of these modeled phenomena is 

FO-TD __ 

unit cell 
(see Fig. 11-4) 

x 

z 

!-i-+---tlJ~==ldK 

Figure 11-1 Embedding of an 
antenna structure in an FD-TO 
space lattice. 
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generally assured if their spatial and temporal variations are well resolved by the 
space and time sampling process. A self-consistent model will account for the mutual 
coupling of all the electrically small-volume cells constituting the structure and its 
near field, even if the structure spans tens of wavelengths in three dimensions and 
there are hundreds of millions of space cells. In contrast, MoM provides a self
consistent solution of Maxwell's equations, which includes all mutual coupling, by 
solving a system of simultaneous equations. 

In the remainder of this chapter, we develop FD-TD for application to two classes 
of problems: antennas and scattering, with emphasis on the former. The theoretical 
development is for the three-dimensional objects in or near isotropic media, but 
examples are mostly specialized to two-dimensional and one-dimensional problems. 
The material that follows is intended as an introduction to FD-TD. For more ex
tensive information, the reader is referred to larger works on the subject [1, 2]. The 
presentation here is influenced by [1-3], particularly [1] and [3]. 

In the following section, we examine the form of Maxwell's equations we need 
to solve in one, two, and three dimensions before developing the rectangular co
ordinate system finite difference representations for those equations in Sec. 11.2. 
The finite difference equations are the equations used in the, Yee algorithm of the 
FD-TO technique and are subject to the constraints discussed in Sec. 11.3. Imple
mentation of the finite difference equations is discussed in Sec. 11.4. Discussion of 
the absorbing boundary conditions follows in Sec. 11.5. Some sources used in 
FD-TO are presented in Sec. 11.6, whereas transformation from the near field to the 
far field is contained in Sec. 11.7. Sections 11.8 and 11.9 provide two-dimensional 
and three-dimensional examples, respectively. 

11.1 MAXWELL'S EQUATIONS 
FOR THE FD-TD METHOD 

Before developing the basis for the FD-TO method in the next section, we need to 
examine Maxwell's time domain curl equations in one, two, and three dimensions 
and put them in a form convenient for the FD-TD method. Consider a region of 
space that is source-free but may have lossy magnetic and/or lossy electric materials 
that convert energy in the electromagnetic field to heat. We define an equivalent 
magnetic current density J M to account for the magnetic loss mechanisms: 

M=p'H (11-1) 

and an equivalent electric current density J to account for the electric loss mecha
nisms: 

J = uE (11-2) 

Here, p' is an equivalent magnetic resistivity in ohms per meter and u is the electric 
conductivity in siemens per meter. Thus, we can write 

aH 1 p' 
-= --V x E --H 
at ~ ~ 

(11-3) 

aE 1 u 
-=-VxH--E at 8 8 

(11-4) 
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11.1.1 Three-Dimensional Formulation 

Writing out the vector components of the two curl equations above yields the fol
lowing system of six coupled scalar equations in the three-dimensional rectangular 
coordinate system1

: 

aHx = 1:. (aEy _ aEz _ P'H) 
at /L az ay x (11-5a) 

aHy = 1:. (aEz _ aEx _ P'H) 
at /L ax az y (11-5b) 

aHz = 1:. (aEx _ aEy _ P'H) 
at /Lay ax z 

(11-5c) 

aEx = ! (aHz _ aHy _ UEx) 
at e ay az (11-6a) 

aEy = ! (aHx _ aHz _ (FE ) 
at e az ax y (1l-6b) 

aEz = ! (aHy _ aHx _ uE ) 
at e ax ay Z 

(11-6c) 

This system of six coupled partial differential equations forms the basis of the FD
TD numerical algorithm to be developed in the next section. Before proceeding with 
the full three-dimensional FD-TD algorithm, it is useful to fonsider reductions to the 
two-dimensional and one-dimensional cases, which can yield engineering informa
tion without the computational effort required for the three-dimensional case. 

11.1.2 Two-Dimensional Formulation 

In the two-dimensional problem, there i~ no variation with respect to one of the 
coordinates in either the problem geometry or excitation. Here, we assume no vari
ation with respect to z, which means that all partial derivatives of the fields with 
respect to z equal zero, and that the structure being modeled extends to infinity in 
the z-direction with no change in its geometry. 

Consider grouping the previous six equations, with all partial derivatives with 
respect to z equal to zero, into two sets, one of which only involves magnetic field 
components transverse to the problem geometry axis (i.e., the z-axis) and the other 
in which there are only electric field components transverse to the z-axis. The first 
set is called the two-dimensional transverse magnetic (TM) mode and is 

aHx = 1:. (_ aEz 
_ P'Hx) (11-7a) 

at /L ay 

aHy = 1:. (aEz - , H ) 
at /Lax Py two-dimensional TM mode (11-7b) 

(11-7c) 

lFor clarity and notational convenience, script will not be used in this chapter for the time-varying field 
quantities as in Chap. 1. 
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The second set is then the two-dimensional transverse electric (TE) mode and is 

aEx = ! (aHz _ aE ) (1l-8a) 
at eay x 

aEy ___ 1 (_ aHz _ a:E ) 
at e ax y 

two-dimensional TE mode (1l-8b) 

aHz = .!. (aEx _ aEy _ p' Hz) 
at #L ay ax 

(1l-8c) 

We observe that the TM and TE modes are decoupled, that is, they contain no 
common field vector components. In fact, these modes are completely independent 
for structures comprised of isotropic materials. That is, the modes can exist simul
taneously with no mutual interactions. Problems having both TM and TE excitation 
can be solved as a superposition of these two separate problems. 

Physical phenomena associated with the TM and TE cases can be quite different. 
To see this, one can look at the currents on the circular cylinder in Sec. 10.13.2. In 
the TM case, the current goes smoothly to nearly zero on the deep shadowed side 
of the cylinder, whereas in the TE case, the current propagates much more readily 
into the shadowed region. 

11.1.3 One-Dimensional Formulation 

Next, assume that there is no variation with respect to two coordinates in either the 
problem geometry or the excitation. In this instance, assume no variation with re
spect to either y or Z, which means' that all partial derivatives with respect to either 
y or Z equal zero. This implies that the problem is one-dimensional in nature with 
propagation in the x-direction, but with space infinite in the y- and z-directions. 
Thus, while propagating in the x-direction, a wave could encounter infinite sheets 
of material having thickness in the x-dimension. 

The one-dimensional prol?lem is formulated by reducing either the two
dimensional TM mode or two-dimensional TE mode and ultimately obtaining al
most the same result. Reducing the two-dimensional TM mode gives: 

(1l-9a) 

(1l-9b) 

(1l-9c) 

The first of these three equations can be shown to vanish by reasoning that if the 
fields are all zero prior to some time, say, t = 0, when a source is turned on, then 
the time derivative of Hx is zero. This, in tum, implies that Hx remains at zero. We 
now have a set of just two equations involving only Hy and Ez• Designate this set 
the TM mode in one dimension: 

aHy = .!. (aEz _ p'H ) 
at #LaX y 

(ll-lOa) 

one-dimensional TM mode 

(1l-10b) 
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In a similar way, we can reduce the two-dimensional TE mode to a set of 
two equations involving only Ey and Hz. Designate this set the TE mode in one 
dimension: 

aEy = ! (_ aHz _ aE) 
at e ax y (l1-l1a) 

one-dimensional TE mode 
aHz = 1:. (_ aEy _ P'H) 
at IL ax z 

(l1-l1b) 

The only practical difference between the one-dimensional TM and TE modes is 
that they represent plane waves of orthogonal polarizations. This renders the TM 
and TE labels in the one-dimensional case uncommon since we would ordinarily 
identify the plane wave 'polarization in some other way. 

From either one-dimensional set, we can easily derive the one-dimensional scalar 
wave equation for a component of E and that for a component of H, both of which 
only have for solutions plane waves traveling in the ±x-direction at a speed given 
by 1Iv;B. That is, in the one-dimensional case we have transverse electromagnetic 
(TEM) plane waves traveling at a speed determined by the constitutive parameters 
of the medium. 

In the next section, we examine numerical solutions to the one-dimensional, two
dimensional, and three-dimensional equations developed here. 

11.2 FINITE DIFFERENCES 
AND THE YEE ALGORITHM 

In this section, we develop the Yee algorithm used in the FD-TD method. The Yee 
algorithm is based on finite difference approximations of the space derivatives and 
time derivatives in Maxwell's curl equations as shown later in this section. To begin 
our development, consider (11-10a) in the lossless case: 

aHy 1 aEz --=--
at IL ax 

(11-12) 

Employing the classical definition of a derivative, we can write 

tiHy 1 tiEz 
lim - = - lim - (11-13) 

at--+O tit IL Ax-+O !ix 

In Fig. 11-2 we illustrate (11-13) and note that in the limit a continuous and exact 
solution to (11-13) is obtained at the point (x, t). It is important to note that at this 

H~Time 

.---..",1..;... 

Figure 11-2 Space-time graphical 
interpretation of a one-dimensional 
component of Maxwell's equations 
and its discretization. (Reprinted 
with permission of Eric Thiele.) 
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point, space and time derivatives are being equated, and not the actual values of 
the fields. In other words, it is apparent that Maxwell's equations do not directly 
yield electric and magnetic field values, but rather relate the rate of change between 
electric and magnetic field values. 

Thus the following strategy may suggest itself. Discretize space and time around 
the point (x, t) in such a way that Maxwell's equations hold true. That is, apply 
central differences to relate the derivatives of the neighboring discrete fields. Then 
for example, (11-13) can be expressed as 

Hy(tn + ~) - Hy(tn - ~) 
Ilt 

(11-14) 
Xi 

This gives us the relationship between the derivatives at (Xi' tn) which closely ap
proximates the relationship at (x, t). However, as we shall see later, if (11-14) is . 
solved for the field quantity at the most advanced point in time (i.e., tn + Ilt/2) , 
then an estimate of the magnetic field value at the spatial point Xi at time (tn + Ilt/2) 
can be obtained. 

We could obtain (11-14) from (11-12) in a more formal way by expanding 

Hy(Xi' tn) in a Taylor series about the temporal point tn to temporal point tn + ~t, 

keeping space fixed at the point Xi. This yields an expansion for Hy(tn + ~t) I Xi· 

Similarly, we could obtain an expansion for Hy(tn - ~t) IXi. Taking the difference 

would give the left-hand side of (11-14) plus remainder terms on the order of (Ilt)2. 
Likewise, expansions of Ez about Xi in both directions with time fixed lead to the 
right-hand side of (11-14) plus remainder terms on the order of (Ilxf. In this way, 
we formally obtain second-order-accurate central difference approximations to the 
first partial derivatives in time and space. 

Continuing our FD-TD solution to (11-12), we solve (11-14) for Hy(tn + ~t) and 

obtain [after dropping the z and y subscripts on the field components and taking 
(11-14) to be an equality] 

H(tn + ~t) IXi = H(tn - ~t) IXi + ~Il~ [E(Xi + ~x)_ E(Xi - ~x) 1 (11-15) 

For convenience, we notationally adopt a subscript i for the space position and a 
superscript n for the time observation point. If we use this shorthand notation, 
(11-15) can be written compactly as 

Hn+1I2 _ Hn-1I2 + Ilt [En En] i - i ~Ilx Hl/2 - i-1/2 (11-16) 

which implies that we can solve for H7+1/2 knowing the value for H at the same 
spatial point but at Ilt earlier in time and knowing E at spatial points ±llx/2 removed 
from Xi and Ilt/2 earlier in time. This is illustrated in Fig. 11-3 that shows on a time
space diagram the three quantities linked (by the various dashed lines) to the cal
culation of H7+ 1I2. 

How do we obtain E at spatial points Xi ± Ilx/2? The answer, of course, is to start 
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Figure 11·3 Calculation of H7+1I2 and E7::1~2 from its nearest neighbors in space and 
time [3]. 

with the lossless version of (l1-lOb) and obtain for Ez the central difference ap
proximation 

En+1 - En + ~ [Hln+1I2 _ Hln+1/2] 
i+1I2 - i+1I2 e Ll.x i+l i (11-17) 

by differencing about the temporal point (n + 112) and the spatial point (i + 112). 
This equation says that E7:1~2 can be calculated with values of Hand E at previous 
instants of time at adjacent spatial locations as Fig. 11-3 suggests. Clearly, we have 
the basis for a method that can march a field behavior forward in space and time 
through the use of difference equations like (11-16) and (11-17), more commonly 
called update equations (because they update the fields in the cells as time moves 
forward). 

In 1966, K. S. Yee [4] originated a set of finite difference equations for the lossless 
three-dimensional time-dependent Maxwell's curl equations of (11-5) and (11-6) 
similar to that above for the lossless one-dimensional case. Yee's algorithm, intro
duced later in this section for the three-dimensional case, is one of great usefulness 
since its fundamental basis is so robust. The Yee algorithm is robust for the following 
reasons. First, it solves for both electric and magnetic fields in time and space using 
the coupled Maxwell's curl equations rather than solving for the electric field alone 
(or the magnetic field alone) as with the wave equation. 

Second, the Yee algorithm interleaves its E- and H-field vector components in 
three-dimensional space (see Fig. 11-4), so that every E-field vector component is 
surrounded by H-field components, and every H-field vector component is sur
rounded by E-field components as suggested by Fig. 11-4. The spatial arrangement 
in Fig. 11-4 is not arbitrary since it must be consistent with the laws of Ampere and 
Faraday [1]. 

Third, the Yee algorithm centers its E- and H-field vector components in time in 
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Figure 11-4 Position of the electric and magnetic field vector components in a cubic unit 
cell of the Yee space lattice of dimension ~ by .:1y by .:1z [3]. 

what is commonly termed a leapfrog arrangement. All the E-field computations in 
the three-dimensional space of interest are computed for a particular time point 
using the most recently computed H-field data stored in the computer memory (as 
Fig. 11-3 suggests for the one-dimensional case). Then, all the H-field computations 
in the three-dimensional space are computed using the E-field data just computed 
and stored in memory. This leapfrog arrangement is then repeated with the recom
putation of the E-field based on the newly obtained H-fields. This process continues 
for a finite number of time steps until some desired late time response is achieved 
(e.g., steady state). 

Fourth,. no matrices are involved and no large systems of simultaneous equations 
need to be solved as in the method of moments. 

Equation (11-17) above involved two variables: one in space and one in time. In 
the most general case, we have four degrees of freedom (three in space and one in 
time), and must choose notation carefully. Extending the notation from (11-17), 
denote a space point in a uniform, rectangular three-dimensional lattice as 

(i, j, k) = (iAx, jAy, kAz) (11-18) 

Here, Ax, Ay, and Az are, respectively, the lattice space increments in the X-, y-, and 
z-coordinate directions, and i, j, and k are integers. Further, we denote any field 
component u as a function of space and time evaluated at a discrete point in the 
space lattice and at a discrete point in time as 

u(iAx, jAy, kAz, nAt) = u7j ,k (11-19) 

Here, At is the time increment, assumed uniform over the observation interval,and 
n is an integer. Carrying this notation to derivatives, we find, for example, Yee's 
expression for the first space derivative of u in the x-direction, evaluated at the fixed 
time tn = n At, to be 

a ('A 'A k A A ) _ U7+1I2,j,k - U7-1I2,j,k + O[(AX)2] 
ax u laX, Jay, aZ, nat - Ax a (11-20a) 

We note that the ±! increment in the i subscript (x-coordinate) of u denotes a space 
finite difference over ±Ax/2 as in (11-17). The remainder term O[(Ax)2] is a result 
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of the Taylor series expansions that formally lead to the second-order-accurate finite 
difference representation of the derivatives. The numerical approximation analo
gous to (11-20a) for au/ay or aulaz can be written simply by incrementing the j or 
k subscript of u by ±! ay or ±! az, respectively. 

Yee's expression for the first time derivative of u, evaluated at the fixed space 
point (i, j, k), follows by analogy: 

a Un+1I2 - Un- 1I2 ij,k i,i,k 
- u(iax, jay, kaz, nat) = + o[(at)2] 
at at 

(11-20b) 

Here, the ±! increment in the n superscript (time value) of u denotes a time finite 
difference over ±at/2 as in the left-hand side of (11-14). 

We now apply the above ideas and notation to achieve a numerical approximation 
of Maxwell's curl equations in three dimensions, given by (11-16) and (11-17). For 
example, consider (11-5a), repeated here for convenience: 

aHx __ ! (aEy _ aEz _ PIH
x

) 

at /L az ay 
(11-21) 

Substituting for the time and space derivatives at time step n and assuming the 
space lattice point (i, j, k), we have initially2 

H 1':7112 - H 1,:-:-1/2 x l,l,k x l,l,k 1 
at /Li,i,k 

Eylf.i,k+1/2 - Eylf.i,k-1/2 

az 
Ezlf.i+1I2,k - Ezlf.j-lI2,k 

ay 

- p~ 'k • H I':'k 1.,/, x I,]. 

(11-22) 

Note that all field quantities on the right-hand side (in a compact format) are eval
uated at time step n, including the magnetic field term H x , appearing due to the 
magnetic loss p'. Since Hx at time step n is not assumed to be stored in computer 
memory (only the previous values of Hx at time step n - ! are assumed to be in 
memory), we need some way to estimate this term. A very good approach is to 
apply a "semi-implicit" approximation to the Hx term on the right-hand side: 

H In+1I2 + H In-lI2 H I':, = x i,i,k x i,i,k 
Xl,l,k 2 (11-23) 

Hx at time step n is assumed to be simply the arithmetic average of the stored value 
of Hx at the time step n - ! and the yet to be computed new value of Hx at time 
step n + !. Substituting into (11-22) after multiplying both sides by at, we obtain 

H 1':7112 - H 1,:-:-1/2 = ~ 
x ",],k x l,l,k 

/Li,j,k 

Eylf.i,k+lI2 - Eylf.i,k-1I2 

az 

(11-24) 

Zpor ease of presentation in some of the equations that follow, the terms inside the parentheses are 
"stacked" vertically rather than written horizontally, 
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We note that Hx17J~1'2 and HxI':'i.1'2 appear on both sides of (11-24). Collecting all 
terms of these two types and isolating Hxl?t1'2 on the left-hand side yield 

(1 + ~ . P;J'k) . H 1~:t-1/2 = (1 _ ~ . P:'i'k) . H In~1I2 
2 x~ 2 x~ /Li,i,k /Li,i,k 

at az (11-25) 

( 

Eylt,k+1I2 - Ey1Zi,k-1/2 ) 

+ /Li,i,k _ Ezlt+1/2,k :y Ez!?J-1/2,k 

Finally, dividing both sides by (1 + ~~ . P~'k) yieids an explicit expression for 
/L""k 

H 1~:t-1I2. 
x ""k • 

( 

P~'kat) 1 _ -"'-'-

H I
n+1I2 - 2/Li,i,k. H 1~~1/2 

x i,i,k - P~' at x ""k 1 + I,},k 

2/LiJ,k 
(11-26) 

( 

~ ) (EYI?'i,k+1I2 - Eyl?i,k-1/2 ) 
/Li,i,k az 

+ 1 + P;,i,k at . _ Ezl?i+ 1/2,k - EzlZi- 1I2,k 

2/Li,i,k ay 
In a similar manner, we can derive finite difference expressions based on Yee's 
algorithm for the Hy and Hz field components in the curl equations. 

By analogy, we can derive finite difference expressions based on Yee's algorithm 
for the Ex, Ey, and Ez field components given by (11-6). Here, U~+1I2 represents 
the loss term on the right-hand side of each equation that is estimated using a semi
implicit procedure similar to that of (11-23). This results in a set of three equations 
for Ex, Ey, and Ez. For example, the result for Ez, also at space lattice point 
(i, j, k), is 

( 

O',"k at) 1 _ ---'."'-' -
2e"k 

E I
n+l l,j, E In 

Z i,i,k = 0',.. at . z iJ,k 
1 + ""k 

2ei,i,k 

( 

~ ) (
HyI7:tY''L,k - HYlt~tYi.i,k ) 

ei,i,k ax 
+ at' H In+1/2 H In+1I2 1 + UiJ,k _ x i,i+ 1I2,k - x i,i-1/2,k 

2Ui,i,k ay 

(11-27) 

With the above expressions for H n+1/2 and En+1, the new value of a field vector 
component at any space lattice point depends only on its previous value and the 
previous values of the components of the other field vectors at adjacent points. 

To implement a solution like (11-26) and (11-27) for a region having a continuous 
variation of isotropic material properties with spatial position, it is desirable to de
fine and store the following constant coefficients for each field vector component 
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before time stepping is commenced. For a cubic lattice where ax = ay = az = as, 
we have for the electric field algorithm coefficients at point (i, j, k) 

a:"k at 1 _ ----:.',1,'----_ 

2e· ',k C I .. = ',I 
a '",k . a:.. at 

1 + 'J,k 

2ei,I,k 

at 

e··,k as 
C 1 - --"'=----...,,-

b ij,k - a:.. at 
1 + ""k 

2eiJ,k 

(11-28a) 

(11-28b) 

And for the magnetic field algorithm coefficients at point (i, j, k), we have 

p~ . kat 1 _ ----0"',-' -

2ILi,I,k 
DI"k=--~~ 

a f.J. p~ ";C dt 1 + _',1 __ 

2ILi,I,k 

/I.··k as D 1 - r,,', 
b i,l,k - ---'-p-:~-.--:a'-t 

1 + ",,k 

2ILi,I,k 

Note that the lattice increment as is contained in Cb and Db' 

(11-29a) 

(11-29b) 

The complete set of finite difference equations suggested by (11-26) and (11-27) 
can now be written to conform to the spatial arrangement in Fig. 11-4 by adjusting 
the spatial indices appropriately. For example, to the spatial indices in (11-26), we 
add ~ to both j and k to obtain the following equation for Hx and in (11-27) add ~ 
to the index k to obtain the following equation for Ez• Thus, the complete set of six 
equations can be written as 

H In+1/2 - D 1 H In-1I2 + D 1 x ij+1I2,k+1I2 - aHX i,I+1/2,k+1I2' x i,I+1I2,k+1I2 bHX i,I+1I2,k+1/2 (11-30a) 

• (Ey li.I+1I2,k+1 - E y li.l+lI2,k + E z li.I,k+1I2 - E zli.I+1,k+1I2) 

H In+1I2 - D 1 H In-1I2 + D 1 Y i+1I2,I,k+1/2 - aHY i+1/2,I,k+1/2' y i+1I2,I,k+1I2 bHY i+1I2,I,k+1/2 (11-30b) 

• (Ez I7+1,1,k+1/2 - E z17J,k+1I2 + E xl7+1I2,I,k - E xl7+1/2j,k+1) 

H In+1/2 - D 1 H In-1I2 + D 1 z i+1/2,1+1/2,k - aHZ i+1I2,1+1I2,k.: z i+1/2J+1/2,k bHZ i+1I2,1+1I2,k (11-30c) 

• (Exl7+1I2,/+1,k - E x 17+1I2,I,k + E y li.I+1/2,k - E yl7+1,1+1/2,k) 

ExI7:1~2,f,k = CaExli+1I2,I,k • E z l7+1/2,I,k + CbEXIi+1/2,I,k (11-31a) 
(H In+1I2 H In+1/2. + H In+1I2 H In+1I2 ) 

• z i+1I2,1+1I2,k - z i+1/2j-1I2,k Y i+1/2J,k-1I2 - y i+1/2,/,k+1/2 

EYI7j~\/2,k = CaEyli,/+1I2,k • E yli.I+1/2,k + CbEYli,/+1/2,k (11-31b) 

• (Hxli.Ni12,k+1I2 - H xli.Ni12,k-1/2 + HzI'i~l/1./+1/2,k - Hzl7:1~q,/+1I2,k) 
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Ezl~1l+1I2 = CaEzli.j,k+1I2 • E z li,j.k+1/2 + C bEZL.k+1/2 (11-31c) 
(H In+1I2 H In+1/2 + H In+1I2 H In+1I2 ) 

• y H1I2.j,k+1I2 - y i-1/2.j,k+1I2 x i.j-1I2.k+1/2 - z i.j+1/2.k+1I2 

The above six equations can be used for the three-dimensional case in Fig. 11-4 
or reduced appropriately for the two-dimensional and one-dimensional cases. For 
example, the two-dimensional TE case contains the field components in the spatial 
arrangement given ,n Fig. 11-4 in the x-y plane, whereas the two-dimensional TM 
case contains the field components in the k + ! plane. A one-dimensional case may 
be obtained by appropriately reducing either of the two-dimensional cases. 

Next, we develop bounds on the cell size and the time step used in the update 
equations and discuss the effects of dispersion. 

11.3 CELL SIZE, NUMERICAL STABILITY, 
AND DISPERSION 

Before we can implement the difference equations presented in the previous section, 
the cell size and time increment must be determined. In practice, the cell size is 
determined first. It is primarily influenced by numerical dispersion, which is the 
propagation of different frequencies with different velocities. Then after we have 
established the cell size, the time increment is determined such that numerical sta
bility is achieved. 

In view of our study of MoM earlier in this chapter, we can appreciate that over 
one FD-TD cell dimension the electromagnetic field should not change significantly. 
This means that for meaningful results, the grid size should be only a fraction of the 
wavelength of the highest significant frequency content fu in the excitation fre
quency spectrum. For example, from a study of Fourier analysis we know that for 
a pulse of width T, the major portion of the frequency spectrum lies between zero 
and fu = liT. The Nyquist sampling theorem would suggest that the cell size be less 
than ).u12 in order that the spatial variation of the fields be adequately sampled. 
However, our pulse has frequency content higher than fu, numerical dispersion is 
present in the two-dimensional and three-dimensional cases, and our difference 
equations are themselves approximations, so a higher spatial sampling rate (i.e., 
smaller cell size) is required. Depending on the accuracy of desired results, it has 
been found that the cell size should be smaller than approximately ),)10 in the 
material medium (e.g., ).)20 if computational resources allow), primarily to mini
mize the effects of numerical dispersion. Figure 11-5 shows, for the one-dimensional 
case, the effects of cell size on phase velocity and suggests a cell size at least as small 
as ).)20. Details of the geometry may dictate a still smaller cell size. For example, 
in Sec. 11.9.3 a cell size of Al99 was required to model certain fine geometrical details 
of the Vivaldi antenna. 

Now that we have established cell size, the time step at can be determined. Let 
us first consider the one-dimensional case. In one time step, any point on the wave 
must not travel more than one cell because during one time step the FD-TD algo
rithm can propagate the wave only from one cell to its nearest neighbors. Any 
attempt to use even a slightly larger time step will quickly lead to numerical insta
bility. We can do less than one cell in one time step, but it is not an optimum 
situation and will not lead to increased accuracy. Thus, the condition in the one
dimensional case is 

(11-32) 
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If the equality sign is used, we have what is referred to by Tafiove [1] as the magic 
time step, cat = ax. It can be shown that the one-dimensional central difference 
equations produce an exact solution when the magic time step is used. This is an 
interesting result given that the difference equations are themselves approximations 
(see Fig. 11-2). Unfortunately, a similar condition does not exist in the two
dimensional and three-dimensional cases. 

To guarantee numerical stability in the general case, it has been shown that 

1 
at 5, -r======== 

111 
(11-33) 

c (ax? + (ay)2 + (aZ)2 

The above condition was obtained using the classical approach first suggested by 
Courant et a1. in [5]. In this approach, a time eigenvalue problem is first solved and 
then a space eigenvalue problem is solved. Next, a stable range of space eigenvalues 
is forced to lie within the stable range of the time eigenvalues, resulting in the 
general relation above. 

In the two-dimensional case, if ax = ay = az = as, (11-33) reduces to 

as 
at 5, - (11-34) cYz 

whereas in the three-dimensional case, (11-33) reduces to 

as 
at 5,--

cV3 (11-35) 

Examination of the above results shows that the minimum number of time steps 
required to travel the maximum dimension of a unit cell is equal to the dimension
ality of the cell. Thus, at least two time steps are required to traverse the diagonal 
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of a two-dimensional square cell and at least three time steps to traverse the diag
onal of a three-dimensional cubic cell. 

Before we leave this section, it is necessary to mention dispersion. Dispersion is 
the propagation of different numerical wavelengths with different velocities within 
the grid. Dispersion, for example, can cause the distortion of a pulse shape. In the 
one-dimensional case, dispersion is zero if the magic time step is used. 

In the two-dimensional case, dispersion is zero if the equality is used in (11-33) 
and propagation is along the square cell diagonal. In any other direction of propa
gation, there will be dispersion. The situation is similar in the three-dimensional 
case. If the equality sign in (11-33) is used and propagation is along the cube diag
onal, dispersion will be zero, otherwise not. Generally, numerical dispersion can be 
reduced, but not eliminated, by reducing the cell size. 

Dispersion is illustrated in Fig. 11-6, which shows the variation of the normalized 
numerical phase velocity with the propagation angle in a two-dimensional FD-TO 
grid where the inequality of (11-33) was used. The time step c flt = fls/2 was em
ployed; it is an example of a time step commonly used in two-dimensional (and 
three-dimensional) grids to satisfy the stability criterion in (11-33) with a margin of 
error. The figure shows that the phase velocity is a minimum along the Cartesian 
axes (a = 0° and a = 90°) and is a maximum at a = 45° (along the square cell 
diagonal), but is slightly less than c even there since the equality of (11-33) was not 
used. The general behavior in Fig. 11-6 represents a numerical anisotropy that is 
inherent in the Yee algorithm. 

Figure 11-7 shows the variation of the numerical phase velocity versus cell size 
for the same incidence angles and time step. The beneficial effect of small cell size 
is apparent. If too large of a cell size (i.e., too close to the Nyquist limit) is used, 
the wave will actually stop propagating. 

Both figures imply that different frequency components of the excitation will 
propagate with different speeds, resulting in pulse distortion that will increase with 
distance. On the other hand, for a sinusoidal wave, the effect of an incorrect phase 
velocity would be to develop a lagging phase error that increases with propagation 
distance. 

Now that we have bounds on the cell size and the time step, and understand the 
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effects of dispersion, we are in a position to implement the central difference update 
equations. The next section examines how to do this. 

lL4 COMPUTER ALGORITHM 
AND FD-TD IMPLEMENTATION 

In previous sections, we developed the Yee algorithm and explained some of the 
basic concepts in the FD-TD approach. Although there are other fundamental issues 
to be discussed, it is helpful at this point to view the generalities of the computer 
architecture and how the Yee algorithm is implemented. Some specific points will 
be illustrated with a one-dimensional example. 

The primary computational feature of an FD-TD code is the time stepping pro
cess. This is a small part of the code, but the most heavily used part. Prior to time 
stepping, the FD-TD grid must be defined as well as parameters such as cell size, 
time step, and the source condition. Constant multipliers that are not computed at 
each time step, such as the C and D coefficients in (11-28) and (11-29), should also 
be evaluated and stored before time stepping begins. There must be a geometrical 
definition of the antenna or scatterer that consists of identifying those cell locations 
containing material other than free space. This is done via the Ca , Cb, Da , and Db 
coefficients. In addition, desired responses must be specified so that they will be 
available for output after time stepping is completed (or perhaps during the time 
stepping if transient information is desired). 

The code requirements consist of the following major steps: 

Preprocessing 
• Define the FD-TD grid (sets the number of cells in each dimension and the cell 

size). 
• Calculate the time step according to the Courant stability condition presented 

in the previous section . 
• Calculate constant multipliers, including the C and D coefficients from Sec. 11.2, 

which serves to define the antenna or scatterer geometry in the FD-TD grid. 

Time stepping 
• Update the source conditions (to be discussed in Sec. 11.6). 
• Calculate the response of an E-field component from that of the nearest-
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neighbor field quantities according to the type of material present at the nearest
neighbor locations. 

• Update the absorbing boundary condition (ABC), also called the outer radia
tion boundary condition. The purpose of the ABC (discussed in Sec. 11.5) is to 
absorb, at the extremities of the FD-TD grid, as much of the radiation field as 
possible to prevent nonphysical reflections within the FD-TD grid. 

• Update H-field components. 

Postprocessing 
• In software arrays save response data such as E- and H-field components, cur

rents, voltages, etc., at desired time steps. 
• Determine the tangential electric and magnetic fields on a closed fictitious sur

face surrounding the antenna or scatterer and compute the corresponding scat
tered or radiated fields in the far zone (see Sec. 11.7). 

A code structure that will implement the above requirements is suggested by the 
simplified flowchart shown in Fig. 11-B. 

To illustrate how some of the calculations are done, a simplified one-dimensional 
model is used. The model is along the x-axis and in free space. We use the one
dimensional equations of (11-10a) and (l1-lOb), but the FD-TD equations are taken 
from (11-30b) with Ex = 0 and from (11-31c) with Hx = Hz = O. Note that Ca = 1 

Defmegrid 

Preprocessing 

Calculate non-time
varying parameters ---------:-:-. -~~::::::::::::==~ 

Time-stepping 

Postprocessing 

Update E at all points 

Update source conditions 

Update boundary conditions 
at extremities of grid 

Update H at all points 

Save response data 

Time stepping done? 

Yes 

Manipulate data 

Write output 
Figure 11-8 FD-TD flowchart. 
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and Cb = fl.; and that Da = 1 and Db = fl.: using the magic time step condition. 
Bo~X /Lo~X 

Thus, 

H In+1I2 - H In-1I2 + fl.t (E In E In) y i+1/2 - Y i+1I2 !l.x z i+1 - z i 
/Lo 

(11-36) 

E In+1 - E In + fl.t (H In+1/2 H In+1/2) 
Z i - z i A _ Y i+1I2 - Y i-1I2 

Bo~ 
(11-37) 

fl.t 1 fl.t 1 1 
We note that -- = - = 'Yl and that -- = - = -, where c = (/LoBo)-1I2. 

Bo!l.x BoC /Lo!l.x /Lo C 'Yl 
Next, an FD-TD grid is set up along the x-axis starting with cell #1, ending with 

cell #53, and a source at cell 50 as indicated in Fig. 11-9. The source is a delta function 
with amplitude 'Yl. As an initial condition, for n < 1 all fields in the FD-TD grid are 
taken to be zero. The source turns on at n = 1. Thus, dropping the coordinate 
subscripts on Hand E in (11-36) and (11-37), we can write (for i 2: 50) 

(1l-38a) 

1 
H 1.S - 0 + - (E1.0 - E1.0) - -1 so.s - Sl SO-

'Yl 
(11-38b) 

All other Et-° and Hf1112 for i > 50 are zero since the delta function has not yet 
propagated to those other locations in the FD-TD grid. A word on the notation is 
in order here. Equation (11-36) shows Hl::Nl: on the left side, whereas (11-38b) 
shows H~~s. In a computer array, there is no location 50.5. There are only the data 
locations for Eso and Hso. It is important to understand that Hi+l1x/2 is Hi in the 
computer. At the next time step, we write (for i 2: 50) 

o 

E~Jl == 0 

E~io = Eho + 'Yl(HUs - HMs) = 0 + 'Yl(0 + 1) = 'Yl 

E~f = mf + 'Yl(H~i.s - HUs) = 0 + 'Yl(0 - 0) = 0 

E~30 = 0 

1 . 1 
H~~s = H~~s + -(E~iO - E~Jl) = -1 + - ('Yl - 0) = 0 

'Yl 'Yl 

1 1 
H~is = H~is + -(E~f - E~iO) = 0 + - (0 - 'Yl) = -1 

'Yl 'Yl 

1 1 
H~i.s = H~i.s + - (E~30 - E~f) = 0 + - (0 - 0) = 0 

'Yl 'Yl 

2ax iax 49ax 50ax 51ax 52ax 

Figure 11-9 A one-dimensional 53-cell model. 

(11-39a) 

(11-39b) 

(11-39c) 

(11-39d) 

(11-3ge) 

(11-39f) 

(11-39g) 

(11-39h) 

---x 
53ax 
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At the third time step, we find that, for i ;;:: 50, 

m~ == 0, mio = 0 

E~f = E~f + 71(H~i.5 - H~f.5) = 0 + 71(0 + 1) = 71 

mf = 0, H~~5 = 0, H~f.5 = 0 

1 1 
H~i.5 = H~i.5 + - (E~30 - E~f) = 0 + - (0 - 71) = -1 

71 71 

H~i5 = 0 

At the fourth time step, for i ;;:: 50, we encounter the following: 

E~~ == 0, E~io = 0, E~f = 0 

E~30 = mf + 71(H~i5 - H~i.5) = 0 + 71(0 + 1) = 71 

H~~5 = 0, H~f.5 = 0, H~i.5 = 0 

1 
H 4.5 - H 3.5 + _ (E4 .O _ E 4 .O) 

53.5 - 53.5 54 53 
71 

(11-40a) 

(11-40b) 

(11-40c) 

(11-40d) 

(11-40e) 

(11-41a) 

(11-41b) 

(11-41c) 

(11-41d) 

Here, we have a problem in that E~;P is undefined. If a computer software could 
take E~;P to be zero, then in the computer we would obtain the "correct" value for 
H~i5. However, since the grid was specified to extend only to i = 53, we have no 
reason to expect this will happen. The difficulty can be overcome with an absorbing 
boundary condition, as discussed in the next section. 

Before proceeding to the next section, we observe that in this section we applied 
the leapfrog time-marching finite difference algorithm equations, and that for our 
impulsive source, propagation at the speed of light is predicted in the positive 
x-direction. It is left as an exercise for the reader to show that the same equations 
will predict propagation in the negative x-direction, and that the right-hand rule for 
power flow is automatically obeyed. 

11.5 ABSORBING BOUNDARY CONDmONS 

At the end of the previous section, it was seen that there was a problem in computing 
the fields at the edge of the FD-TO grid. Without some means of absorbing the 
outward propagating waves at the extremities of the FD-TD grid, nonphysical re
flections at the edge of the grid will contaminate the fields inside the grid. Of course, 
we could terminate the time-stepping procedure before such a reflection reaches 
the observation area of interest or make the grid very, very large, but these are not 
computationally viable alternatives. Therefore, some special attention must be given 
to the problem of updating field components at the edge of the grid. 

The most practical solution to updating at the edge of the grid is to employ an 
absorbing boundary condition (ABC), sometimes referred to as a radiation bound
ary condition (RBC). In the one-dimensional case, the required condition is simple 
and exact because there is a plane wave normally incident on the edges of the grid. 
Thus, simple propagation delay can be used. In the two-dimensional and three
dimensional cases, the problem is considerably more difficult because the wave is 
not likely to be normally incident on the edges of the grid and the waves are not 
likely to be planar as indicated in Fig. 11-10. 

Numerous ABCs have been developed over the past several decades. It is beyond 
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the scope of this book to derive them or even to present more than two of them. 
Thus, we will present only the Mur ABC [6] and the more recently developed 
Berenger perfectly matched layer ABC [7]. 

There exist two Mur estimates for the fields on the boundary which are first
order- and second-order-accurate. Consider the E z component located at x = ib.x, 
y = jAy for the two-dimensional case. The first-order Mur estimate of this Ez field 
component is [2] 

En+1 _ En cAt - Ax (En+1 n) 
i,j - i-l,j + cAt + Ax i-l,j - Ei,j (11-42) 

In the one-dimensional case if Ax = cAt, E?+1 = E?-t. which says that the estimate 
at location i at the n + 1 time step is the field from the previous location and previous 
time step. This is an exact result in one dimension only. 

The second-order Mur estimate for Ez in the two-dimensional case, if we assume 
Ax = Ay, is [2] 

E'!7'1 = _ E,!-I. + cAt - Ax (E,!+I. + E,!~I) 
'J ,-I" cAt + Ax ,-I" '" 

+ A 2Ax A (E?-I,' + E?,) c t + x ' , 

(cAt)2 (En 2En En 
+ 2(Ax)(cAt + Ax) i,j+l - i,j + i,j-l 

(11-43) 

+ E?-I,j+l - 2E?-I,j + E?-I,j-l) 

In the case of the first-order Mur estimate, we see that the current value of Ez at 
x = i Ax is estimated from the previous Ez value at x = i Ax and the value of Ez at 
x = (i - 1) Ax at the current time step, both at the same y-position. The second
order Mur estimate uses values from the preceding two time steps, and values at 
the adjacent x- and y-positions. The equations needed at the y = jAy surface (where 
the index j is not to be confused with v=I) are appropriate permutations of the 
positional coordinates given in (11-43) above. The second-order Mur estimate is an 
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exact solution for waves impinging normal to a grid boundary. At the intersection 
of the xz- and yz-planes, some type of first-order-accurate approximation may be 
employed based on propagation delay as suggested by (11-42). 

In 1994, Berenger [7] published a technique that lowered the reflection from the 
outer grid boundary by several orders of magnitude over other approaches. He 
called his approach the "perfectly matched layer (PML) for the absorption of elec
tromagnetic waves" in his paper that treated the two-dimensional TE and TM cases. 
Ingenuously, he artificially split the fields at the boundaries into two components, 
creating four coupled equations rather than the usual three. This extra degree of 
freedom permitted Berenger to derive a nonphysical anisotropic absorbing medium, 
adjacent to the outer boundary (see Fig. 11-11), with a remarkable wave impedance 
that is independent of the angle of incidence and frequency of the outgoing waves. 
For the TM case, except in the interface for By, the applicable FD-TD equations 
for By and Ez are 

(11-44) 

(11-45) 

where the electric and magnetic conductivities Ux and u~ are functions of x(i) in the 
left, right, and corner layers. In the upper and lower PML layers, U x and u~ are 
equal to zero for all x(i), where in fact, the medium behaves as a vacuum for the 
equations dependent on x(i). Note that Ezx and E zy are colocated at the same point. 

For an By component lying on the interface, the update equation is based on the 
values of three adjacent E-field components: one Ez component in the regular 

Outgoing waves 

L. 
Perfect conductor 

Figure 11·11 Structure of a two-dimensional FD-TD grid having the Berenger PML ABC. 
(J. Berenger, Comput. Phys., Vol. 114, 1994, pp. 185-200. Reprinted with permission.) 
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FD-TD grid, and two components, Ezx and E zy , in the PML region. Through the 
application of a normal Maxwell-based FD-TD update equation to this Hy com
ponent, an interface is established between the regular FD-TD grid and PML grid. 
Here, the assumption is made that the Ezx and E zy components are summed to yield 
an Ez component that is effectively a regular FD-TD field component. This is seen 
to be valid by simply letting U x = uy and reducing the four PML update equations 
to the usual three FD-TD governing equations. Thus, the finite difference equations 
have to be modified. So, in the right side interface normal to x, the equation for Hy 
above becomes 

(11-46) 

This particular update is applied at the right-side interface normal to x, where if 
indicates the inner boundary of the PML. 

The discretized equations needed for the components Hx and Ezy are left as an 
exercise for the reader. Not surprisingly, the two-dimensional PML equations re
duce to the exact one-dimensional result. This is also left as an exercise for the 
reader. A Maxwellian derivation of the PML technique may be found in [8]. 

Of the two ABCs presented here, Mur and Berenger, the former is somewhat 
simpler to implement but the latter offers substantially lower reflection character
istics, perhaps more than is really necessary for many applications. One general 
consideration with ABCs is that of determining the necessary distance from the 
antenna or scatterer to the outer boundary where the ABC is applied. The greater 
this distance, the more effective the ABC tends to be. (This is particularly true 
with the MurABC but not necessarily so with the PML.) The increased effectiveness 
of the ABC is oue to the more plane-like nature of the outward traveling wavefront 
as the distance becomes large. A commOn criterion is a minimum of 10 cells between 
the antenna or scatterer and the outer boundary, with 15 to 20 being preferred for 
the Mur ABC and as few as 4 or 5 for the PML. 

Before we leave this section, let us apply the one-dimensional exact result to 
(11-41d). In this case, the exact result is E~;? = E~f = o. Thus, 

1 
H~i5 = 0 + - (0 - 71) = -1 

71 

Then, to evaluate the reflection from the edge of the grid, 

E~30 = E~30 + 71(H~i5 - H~i.5) = 71 + 71(-1 - 0) = 0 

1 1 
H~i.5 = H~i.5 + - (mf - E~f) = 0 + - (0 - 0) = 0 

71 71 

(11-47) 

(11-48a) 

(11-48b) 

We see that there is perfect absorption. Table 11-1 summarizes the situation for 
1 ::::; n < 6 and i ;:::: 50. Note that all points in the grid are calculated at all time steps. 

The grid used for Table 11-1 ends On an H-field calculation. The example could 
also be developed to end on an E-field calculation at E53 by defining the H-field 
only out to H52.5. In this case, H~i5 would be undefined in (11-41b) and the one
dimensional exact absorption condition would be applied to E53• For simplicity, an 
ABC is typically applied to only E- or only H-fields. In this way, regular FD-TD 



11.6 Source Conditions 515 

Table 11-1 Pulse Propagation with Perfect Absorption (lEI = 1/,IHl = 1) 
Spatial Cell Location (i 2: 50) 

50 50.5 51 51.5 52 52.5 53 53.5 

Time Step 
1 1/ 0 0 0 E 

1.5 -1 0 0 0 H 
2 0 1/ 0 0 E 

2.5 0 -1 0 0 H 
3 0 0 1/ 0 E 

3.5 0 0 -1 0 H 
4 0 0 0 1/ E 

4.5 0 0 0 -1 H 
5 0 0 0 0 E 

5.5 0 0 0 0 It 

update equations will govern all behavior for one type of field (say, H) and special 
updates then need only be applied at the grid boundary to the other type of field 
(say, E). Note that the Mur equations are given here for the electric field. 

11.6 SOURCE CONDmONS 

In this section, we introduce into the FD-TD lattice several electromagnetic wave 
excitations appropriate for modeling engineering problems. An excitation of inter
est is the linearly polarized plane wave propagating in free space for use in scattering 
analysis, but we are also interested in waves radiated by antennas. With FD-TD, 
we usually study antennas in the transmitting mode since it is not computationally 
efficient to do so in the receiving mode. 

This section covers source conditions for antennas and scatterers. Following the 
designations of Taflove [1], the sources will be classified as either "hard" or "soft." 
A hard source forces a field quantity to a value independent of neighboring fields, 
which means that the update equations are not allowed to update the field(s) at the 
source location (e.g., a metallic monopole near a scatterer). A soft source does 
permit the fields to be updated at the source location(s) (e.g., a plane wave injected 
into the grid). 

11.6.1 Source Functionality 

A common source is one that generates a continuous sinusoidal wave of frequency 
fo that is switched on at n = 0: 

f(t) = Eo sin(27Tfo nAt) (1l-49a) 

A second source provides a wideband Gaussian pulse with finite dc spectral content 
that is centered at time step no and has a lie characteristic decay of ndecay time steps: 

(1l-49b) 

Note that (1l-49b) has a nonzero value at n = 0, so that if a smooth transition from 
zero into the Gaussian pulse is required, no should be taken as at least 3ndecay' A 
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third source that provides a zero-dc content is a sine modulated (bandpass) Gaussian 
pulse with a Fourier spectrum symmetrical about J o' The pulse is again centered at 
time step no and has a lie characteristic decay of ndecay time steps: 

J(t) = Eoe-[(n-no)/ndecay]2 sin[217jo(n - no) at] (11-49c) 

Each source of (11-49) radiates a numerical wave having a time waveform cor
responding to the source function J(t). The numerical wave propagates symmetri
cally in all directions from the source point at is. If a material structure is specified 
at some distance from the source point, the radiated numerical wave eventually 
propagates to this structure and undergoes partial transmission and partial reflec
tion. In principle, time-stepping can be continued until all transients decay. For the 
source of (11-49a), this would mean the attainment of the sinusoidal steady state 
for the transmitted and reflected fields. For the sources of (11-49b) and (11-49c), 
this would mean the evolution of the complete time histories of the transmitted and 
reflected waves. Discrete Fourier analysis of these time histories obtained in a single 
FD-TD run can provide the magnitUde and phase of the transmission and reflection 
coefficients over a potentially wide frequency band starting at dc. 

Thus far, we have discussed three time functions used in FD-TD work. The delta 
function used in Secs. 11.4 and 11.5 is not a generally useful time function for FD
TD calculations because of its theoretically infinite bandwidth. The delta function 
was used in Secs. 11.4 and 11.5 because it provided a simple way of illustrating how 
the update equations worked, how the one-dimensional absorbing boundary con
dition worked, and even permitted a small number of calculations to be easily done 
by hand. Unfortunately, the delta function hard source will only work in one di
mension, and then only when propagation is exactly one cell per time step (e.g., the 
magic time step). Figure 11-12 illustrates the consequences of violating this condi
tion. Consider Fig. 11-9 but with the grid extending from zero to i ax = 1200 ax, 
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Figure 11-12 Delta wave function at n = 50 and 400 with Br = 1.01 for 0::;; i ::;; 250 and 
is = 500. Source magnitude is 377 VIm. 
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with a delta function source of amplitude 71 at i = 500 and the region from i = 0 to 
i = 250 filled with a relative permitivity of only 1.01. Figure 11-12 shows the electric 
field in the grid after 50 and 400 time steps. Note that the wave encounters the small 
change in dielectric constant at n = 250 and there is obvious evidence of numerical 
dispersion for n = 400 in the region i < 400 as a consequence ofthe (slight) violation 
of the condition one cell in one time step for i < 250 and n > 250. On the other 
hand, at n = 400, i = 900 the delta function propagates to the right in a dispersionless 
manner since no violation of the one cell in one time step condition has occurred. 

11.6.2 The Hard Source 

The hard source is set up simply by assigning a desired time function to specific 
electric or magnetic field components in the FD-TD lattice as we did in the example 
in Sec. 11.4. For example, in a one-dimensional grid, the following hard source on 
Ez could be established at the grid source point is to generate a continuous sinusoid 
that is switched on at n = 0: 

(11-50) 

Note that the electric field at is is forced to have a value determined entirely by the 
source and it is independent of the update equation. 

There are some difficulties with the hard source scenario. As time-stepping is 
continued to obtain either the sinusoidal steady state or the late-time pulse response, 
we note that the reflected numerical wave eventually returns to the source grid 
location is. Because the total electric field is specific at is without regard to any 
possible reflected waves in the grid (hence the terminology, "hard source"), the 
hard source causes a retro-reflection of these waves at is back toward the material 
structure of interest. In effect, it prevents the movement of reflected wave energy 
through its position toward infinity, and thereby may fail to properly simulate the 
true physical situation. 

11.6.3 The Soft Source 

A simple way to mitigate the refl~cti"e. nature of a hard source is to allow a new 
value of the electric field at the sourc~Jo~at~on is to equal the update value plus the 
value of an impressed electric field described by the time function J(t). For our one 
dimensional example, this means that' 

at'! 
E In - E In-1 + ...:.-...-. '(H In-lI2 - H In-1I2) + J(t) z i. - z i. A J : Y i.+1/2 Y i.-1I2 

80~"" , 
,. II 

(11-51) 

where J(t) can be obtained, for exan{ple, from (11-49). The relationship in (11-51) 
is conceptually similar to that of the r~sistive voltage source in Taflove [1, pg. 459]. 

Figure 11-13 illustrates the differefic~ between one-dimensional hard and soft 
I' Ii 'i:': ' 

sources. The FD-TD model has cellslfrcim i = 0 to i = 1200 with a source at i = 
500 and a dielectric with 8, = 9 iii celis 1 to 200. The time function is a Gaussian 
pulse as in (11-49b). The (a) and ('b) p~t1s ofthe figure apply whether the source is 
hard or soft, whereas the (c) and (d) parts only apply to the soft source and the (e) 
and (f) to the hard source. For n = 600, 700, and 800, the differences between the 
hard and soft sources are apparent. Note the effect of the ABC at i = 1200. 
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Figure 11-13 Gaussian pulse electric field at n = 100,200,300,400,500,600,700, and 800. 
Parts (a-d) are for a soft source at is = 500. Parts (a), (b), (e), and (f) are for a hard 
source at is = 500. Cells from i = 0 to i = 200 contain Br = 9. 
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11.6.4 TotaI-FieldlScattered-Field Formulation 

The total-field/scattered-field FD-TD formulation [1] (see Fig. 11-14) finds its great
est use in simulating plane wave illumination. This approach is based on the linearity 
of Maxwell's equations and the usual decomposition of the total electric and mag
netic fields into incident fields (Ei, W) and scattered fields (ES, US). Ei and Hi are 
the values of the incident fields that are known at all points of an FD-TD grid at 
all time steps as Fig. 11-15 indicates. These are the field values that would exist if 
there were no materials of any sort in the modeling space. Figure 11-15 actually 
shows the fields on two separate grids, one being used for the incident field and the 
second for the total field-scattered field. In practice, the data in the incident field 
grid are used to inject the incident field into the total-field region of the second grid 
at the total-fieldlscattered-field boundary. Since the total-fieldlscattered-field grid in 
Fig. 11-15 has no material objects, the scattered fields for i < 100 and i > 1100 are 
always zero. ES and HS are the values of the scattered wave fields that are initially 
unknown as indicated in Figs. 11-15a and 11-15b, and are the fields that result from 
the interaction of the incident wave with any materials in the grid. 

The finite difference approximations of the Yee algorithm can be applied with 
equal validity to either the incident-field vector components, the scattered-field vec
tor components, or the total-field vector components. FD-TD codes can utilize this 
property to zone the numerical space lattice into two distinct regions separated by 
a nonphysical surface that serves to connect the fields in each region as shown in 
Fig. 11-14. 

Region 1, the inner zone of the lattice, is denoted as the total-field region where 
the Yee algorithm operates on total-field vector components. The interacting struc
ture of interest is embedded within this region. 
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Figure 11-14 Zoning of the FD-TD grid. (a) Total-field and scattered-field regions, 
connecting surface/plane wave source, and lattice truncation (ABC). (b) Detail of field 
component locations in a one-dimensional horizontal cut through the grid of (a). 
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Figure 11-15 One-dimensional free-space grid 
from i = 0 to i = 1200. Total field region is 
from i = 100 to i = 1100. 40 cells per 
wavelength with a lO-GHz sine wave 
propagating from left to right. E-fields shown 
at n = 50, n = 300, and n = 650. 

Region 2, the outer zone of the lattice, is denoted as the scattered-field region 
where the Yee algorithm operates only on scattered-field vector components. This 
implies that there is no incident wave in Region 2 as illustrated by Fig. 11-16 for i 
< 100 and n ::5 330. For n = 200, the total field is the incident field (E and H 
considered to be 1800 out of time phase), whereas for n = 330 reflection has occurred 
from the perfect electric conductor (PEe) and some of the total field is just the 
incident field and some is a standing wave of the incident and scattered (reflected) 
fields (E and H 900 out of time phase). In Fig. 11-16, for n = 650 and n = 671 there 
is a scattered field propagating to the left for i < 100 (E and H are in time phase) 
with a standing wave for 100 < i < 250, with E always zero at i = 250 and H at 
times reaching a maximum value of 2 at the PEe. 

To illustrate how the total-fieldlscattered-field formulation is implemented, con
sider the one-dimensional case. The nonphysical surface constituting the interface 
of Regions 1 and 2 contains E and H components that obviously require the for
mulation of various field component spatial differences in the update equations. 
When a spatial difference is taken across the interface plane, a problem of consis
tency arises. That is, on the Region 1 side of the interface, the field in the difference 
expression is assumed to be a total field, whereas on the Region 2 side of the in
terface, the field in the difference expression is assumed to be a scattered field. It 
is inconsistent to perform an arithmetic difference between scattered- and total-field 
values. 

This problem of consistency can be solved by using the values of the components 
of the incident-field vectors3 Eine and Hine

, which are assumed to be known or cal
culable at each space lattice point. As illustrated in Fig. 11-14b, let the left interface 
between scattered-field and total-field zones be positioned between Ez at iL and Hy 

3'fo avoid confusion with the index i, "inc" is used to denote the incident field. For further consistency, 
"scat" denotes the scattered field and "tot" the total field. 
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Figure 11·16 One-dimensional free-space grid from i = 0 to i = 249 with a PEC from i = 
250 to i = 300. Total field region is from i = 100 to i = 300. 40 cells per wavelength with a 
10-GHz sine wave incident from the left. Normalized E- and H-fields shown at n = 200, 
330, 650, and 671. 

at iL - 1I2o From this arrangement, it is clear that Ez is a total-field component. We 
then write 

(11-52) 

where the right-most term corrects the problem of inconsistency since 
_Hscatln+1I2 _ HinCln+1I2 _ Htotln+1I2 

y iL-1I2 Y iL-1/2 - - Y iL-1I2 (11-53) 

Similarly at grid point (iL - ~), we write 

Hscatln+1I2 = H scatl,!-1I2 + ~ (Etotl'! _ Escatl'! ) _ ~ Eincl'! 
Y 'L-1I2 Y 'L-1I2 Ax z 'L z 'L-l .6. z 'L 

/La /La X 
(11-54) 
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where the right-most term corrects the problem of inconsistency since 

(11-55) 

A similar procedure is carried out at the right-hand-side total-fieldlscattered-field 
interface. Let the right interface between scattered-field and total-field zones be 
positioned exactly at an Ez component at grid point iR , and further assume that this 
Ez is a total-field component. The electric field expression analogous to (11-52) is 

(11-56) 

The magnetic field expression analogous to (11-54) is 

Hscatln+1I2 = H scatl,!-1I2 + ~ (Eseatln _ Etotln) + ~ Einel'! 
Y 'R-1/2 Y 'R+1/2 A z 'R+l Z 'R A _ Z 'R 

JLo!.l.X JLo!.l..ll, 
(11-57) 

The important effect of this procedure is to generate a plane wave at the left
hand scattered-field/total-field interface point iL , propagate it through the total-field 
region to the right-hand total-fieldlscattered-field interface point iR , and then cancel 
it out in the right-hand scattered-field region. In the absence of a scattering object 
in the central total-field zone, there are zero fields present in the scattered-field 
regions to the left and right of the center zone as is the case in Fig. 11-15. 

11.6.5 Pure Scattered-Field Formulation 

The pure scattered-field formulation borrows from a method popular with the fre
quency domain integral equation (i.e., MoM) community. Again, the concept 
evolves from the linearity of Maxwell's equations and the decomposition of the 
tot~l electric and magnetic fields into a known incident field and an unknown scat
tered field. Here, however, the FD-TD method is used to time step only the scat
tered electric and magnetic fields. That is, the FD-TD grid is not segmented into 
total-field and scattered-field regions, but instead assumes scattered-field quantities 
everywhere. This is the case for (transmitting) antenna analysis where the scattered 
field is thought of as the radiation field. The scattered (radiation) field is, however, 
a near field since it is not practical to extend the grid to the far field. To obtain a 
far-field radiation pattern, it is necessary to transform data in the near field to the 
far field as discussed in the next section. 

11.7 NEAR FIELDS AND FAR FIELDS 

As we have implied earlier, it is not practical to directly calculate far-field FD-TD 
data within the FD-TD grid because for most problems, the grid space cannot be 
made large enough to include the far field. Thus, near-field data must be trans
formed into far-field data. The existence of a well-defined scattered-field region in 
the FD-TD lattice, as described in the previous section, facilitates a near-to-far-field 
transformation that is discussed here. If we use the near-field data stored in a single 
FD-TD modeling run, this transformation efficiently and accurately calculates the 
complete radiation pattern of an antenna or the complete far-field bistatic scattering 
response of an illuminated structure for a single illumination angle. 

To begin developing the near-to-far-field transformation, refer to Fig. 11-17, 
where a rectangular virtual surface Sob fully enclosing the scatterer (region B) is 
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located in the scattered-field region (region 2 of Fig. 11-17) near the lattice bound
ary. The tangential components of the scattered fields ES and H S are first obtained 
at Sab using FD-TD. Then, as indicated in Fig. 11-17, an equivalent problem is set 
up that is completely valid for Region A, external to Sab. The new excitation data 
are Js and M., the equivalent surface electric and magnetic currents, respectively, 
on Sab that are obtained according to (see Sec. 7.1) 

Js(r) = 0 X W(r) 

M.(r) = -0 X ES(r) 

where Ii is the outward unit normal vector at the surface Sab' 

(11-58a) 

(11-58b) 

The scattered far fields are then given by the integration of the equivalent currents 
of (11-58a) and (11-58b). If (JLoo Bo) are the region A medium characteristics, then 
the following scattered far-field expressions for () and cf> polarizations are obtained: 

where 

Eo = -jw [Ao - l1F",] 

E", = -jw [A", + l1Fo] 

Ao = Ax cos () cos cf> + Ay sin () sin cf> - A z sin () 

F 0 = Fx cos () cos cf> + Fy cos () sin cf> - Fz sin () 

A", = -Ax sin cf> + Ay cos cf> 

F", = -Fx sin cf> + Fy cos cf> 

and the potentials in the far-field region are given by 

[A] = (e-
ifJT

) If [JLoJS]eifJT'COS€ dS~b 
F 47Tr BoMs 

r' cos g = (x' cos cf> + y' sin cf» sin () + z' cos () 

(11-59a) 

(11-59b) 

(11-59c) 

(11-59d) 

(11-5ge) 

(11-59f) 

(11-60a) 

(11-60b) 

This approach to computing the far scattered fields is straightforward because 
(1) the near-field data for arbitrary antennas or scatterers can be obtained from the 
FD-TD calculations themselves and (2) the transformation of the near-field data to 
the far field is independent of the nature of the scatterer that resides within the 
integration surface Sab. 

Early FD-TD calculations of far-zone scattered fields used sinusoidal excitation. 
Because of this, the FD-TD far-zone results were obtained at only one frequency 



524 Chapter 11 CEM for Antennas: Finite Difference Time Domain Method 

per FD-TD calculation run. The procedure for such single-frequency far-zone cal
culations is straightforward. First, the FD-TD calculations are stepped through time 
until steady-state conditions are reached. Then the complex time-harmonic electric 
and magnetic currents flowing on a closed surface surrounding the object are ob
tained. If these time-harmonic fields or currents are stored, then during postpro
cessing the far-zone radiated or scattered fields can be calculated in any desired 
direction. This approach is particularly suited to far-zone radiation or scattering 
patterns at only a single frequency. 

To obtain far-zone results at mUltiple frequencies, the approach is to use pulsed 
excitations for the FD-TD calculations. For each frequency of interest, a running 
discrete Fourier transform (DFT) of the time-harmonic surface currents on a closed 
surface surrounding the FD-TD geometry is updated at each time step. The running 
DFT provides the complex frequency domain currents for any number of frequen
cies when using pulse excitation for the FD-TD calculation. This is much more 
efficient than using a time-harmonic excitation for each frequency of interest. It 
requires no more computer storage per frequency for the surface currents than when 
sinusoidal excitation is used and provides frequency domain far-zone fields at any 
far-zone angle. If far-zone results are desired at several frequencies, then the run
ning DFT approach is the better choice. 

Before leaving this section, we should mention that the near-field data itself may 
be of interest. Near-field data are readily obtained by selecting appropriate field 
values directly from the FD-TD grid. Data can include instantaneous fields, phasor 
fields obtained via Fourier transformation of the instantaneous fields, scalar or vec
tor-interpolated field maps. The near-field radiation pattern of an antenna is simply 
the spatial distribution of the FD-TD computed radiated fields in the vicinity of the 
antenna. Near-fields provide insight into basic physical interactions such as reflec
tion and diffraction. Near-field data can also be used to determine, for example, 
magnitude and phase data across an antenna aperture (as in the next section), sur
face current densities on an antenna, and current or field distributions in or along 
an antenna feed. 

11.8 A TWO-DIMENSIONAL EXAMPLE: 
AN E-PLANE SECTORAL HORN ANTENNA 

The previous sections have presented all the basics needed to do a problem from 
grid layout to computation of the far field. This section considers a two-dimensional 
TE example problem in detail. The problem is a two-dimensional model of an 
E-plane sectoral hom as illustrated in Fig. 7-15. The hom was chosen according to 
the optimum condition B = Y2AR2 with R2 = 8A so that B = 4A. (See Sec. 7.4.2.) 
The resulting FD-TD model of the hom is illustrated in Fig. 11-18. Notice that the 
walls of the hom are "stepped." To see why this stepping comes about, examine 
the two-dimensional grid in Fig. 11-19. At the walls of the hom and waveguide, the 
coefficients Ca and Cb are calculated with a high value of conductivity (e.g., 5.7 X 

107 siemens/m). Since the cells are square, a stepped contour naturally results. 
The two-dimensional grid used for this example was 260 X 200 cells as indicated 

in Fig. 11-18. The cells are Al20 by Al20 at the center frequency. The boundary for 
the near-to-far-field transformation is taken to be 12 cells inside the extremities of 
the grid. The time function chosen is the sine modulated Gaussian pulse of (11-49c) 
expressed as 

(11-61) 
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Figure 11-18 TE model of an E-plane sectoral hom. 

where 

To = 1.0/[ 7r(fh - Ie)] 
Ih = 15 GHz 
Ie = 10 GHz 

ax = Al20 at the center frequency 
2at = ax12.99792458 X 108 

t = nat, at = 2.5 X 10-12 

(200,260) 

(0,260) 

The plot of this function is shown in Fig. 11-20. A soft source with this time function 
is located Al4 from the back wall of the waveguide at the center frequency. 

I 
I 
I 

---J----- -----~----
Figure 11-19 Perspective view of a 
two-dimensional TE grid. 
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Figure 11-21a shows the fields in the horn at the 250th time step. The pulse has 
not yet reached the aperture and there is evidence of some reflection at the discon
tinuity where the walls of the horn join with the waveguide walls. In Fig. 11-21b, 
where n = 475, the peak energy content of the pulse has passed just beyond the 
aperture and there is some evidence of energy reflected from the aperture traveling 
back toward the waveguide. Diffraction at the edges of the horn is in clear evidence. 
In Fig. 11-21e, where n = 600, the peak energy of the pulse has moved well beyond 
the aperture by the 600th time step. By n = 800 in Fig. 11-21d, the pulse has reached 
the rear-most (left) portion of the horn geometry. The trailing weaker pulse is due 
to double diffraction. 

In Figs. 11-21 a-d, the darkest areas indicate highest levels of field intensity and 
the white areas indicate zero field intensity. Even within the pulse itself there are 
several instants in time when the pulse is zero (see Fig. 11-20). These times of zero 
field intensity are the thin white lines within the main pulse and its diffractions or 
reflections in Fig. 11-21. Large almost-white areas are evidence of numerical noise. 

Figure 11-22 shows the amplitude and phase distributions across the aperture at 
9, 10, and 11 GHz. These are obtained from a Fourier transform of the fields at the 
aperture. From our design condition for this horn, B = V2ARz, a 90° phase change 
is ex:pected from the center of the aperture to the edge. The FD-TD results are 
nearly in agreement with this if allowance is made for the diffraction effects near 
the edges of the aperture that are not included in the classical analysis of Chap. 7, 
but are included in the nearly exact PD-TD results. From the amplitude distribution 
near the edges of the aperture in Fig. 11-22 as well as the more rapid change in 
phase there, it is apparent that the electromagnetic wave has a strong interaction 
with the edges of the horn. 

Figure 11-23 shows the magnitude of the electric field along the transformation 
boundary that partly contributes to the near-to-far-field transformation; the mag
netic field accounts for the remainder. The field is evaluated at n = 800. Not sur
prisingly, the field is strongest on the side in front of the aperture and is zero on 
the side opposite the aperture (i.e., the back side) since the pulse has not yet had 
time to reach the back side. Along the sides (i.e., the top or bottom of Fig. 11-18), 
there is some field present, particularly near the horn aperture. 
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Figure 11·21 Pulse propagation at n = 250, 475, 600, 800. 
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Figure 11-21 (continued) 
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Figure 11-24 shows the far-field pattern at 10 GHz computed from the near-to
far-field transformation using data at a boundary 12 cells inside the extremities of 
the grid in Fig. 11-18. The pattern is in good agreement with the classical pattern 
shown in Fig. 7-16 for the case s = t when the E-plane scale on the abscissa is 4 
sin 9 since BfA sin9 = 4 sin9 here. 

The forward-region far-field pattern was calculated at n = 800 because data in 
Fig. 11-25 show that steady state has been achieved on the front (right) face of the 
near-to-far-field transformation boundary. Near-field convergence guarantees far-
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field convergence, but the reverse is not true. One could calculate the far-field pat
tern after more time steps, but unwanted effects such as the interaction of the wave 
with the exterior of the waveguide may appear in the data and may not be wanted. 
Figure 11-21d shows the start of such interaction before the disturbance has had 
time to reach the back face of the near-to-far-field transformation boundary. In 
other words, it is important to march out in time far enough to achieve steady state, 
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but not so far out in time that the desired data become contaminated with unwanted 
effects. 

PD-TD has the potential to provide other data as well. Consider Figure 11-26 
that shows the magnetic field at the center of the aperture (i = 199, j = 100) from 
n = 300 to n = 1500. The first major feature to appear is the main pulse at approx
imately n = 420 (e.g., about 210 cells traveled with two time steps per cell). About 
80 time steps later (i.e., 40 cells from an edge to the aperture center), the diffraction 
from the edges of the horn arrives. At approximately n = 700 and n '= 850, respec
tively, diffraction that has reflected from the opposite wall arrives, followed by dif
fraction that has again reflected from the other wall. These last two effects at around 
n = 700 and n = 825 do not affect the main-lobe region of the far-field pattern 
because they are propagating in directions that are not in the main-lobe direction. 

The next section will consider two three-dimensional antenna problems, although 
not in as much detail as was done here for the two-dimensional model of the E-plane 
sectoral horn. 

11.9 ANTENNA ANALYSIS AND APPLICATIONS 

Application of PD-TD to antennas has occurred only recently relative to other 
applications such as shielding and. radar cross section. One reason for this is that 
MoM can provide results for small, relatively simple antennas with much less com
puter time and memory than PD-TD, since MoM finds only the currents flowing on 
the wire or conducting surface, whereas FD-TD must calculate the fields in the 
entire computational region. This region should contain enough cells to allow some 
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near-field decay between the antenna and the absorbing boundaries. If the antenna 
is small and geometrically simple, computing the fields in all the surrounding free
space cells makes FD-TD much less efficient than MoM. For medium-sized anten
nas, or antennas with geometries and/or materials [9] that are not easily included 
in MoM formulations, or where data are needed at many frequencies, FD-TD be
comes a superior method. 

When FD-TD is applied to receiving antenna calculations, it loses one of its ad
vantages relative to the MoM in applications that require results at multiple far
zone angles. For example, in scattering applications the MoM produces results for 
different plane wave incidence angles efficiently from a single impedance matrix, 
whereas FD-TD requires a complete recalculation for each different incidence an
gle. However, for antenna transmitting problems, FD-TD can produce far-zone 
fields in any number of different directions efficiently during one computation, as 
can MoM. Because FD-TD also provides wide frequency band results with pulse 
excitation, it is extremely efficient in antenna applications, since results for imped
ance and radiation patterns over a wide frequency band can be obtained from one 
FD-TD computation. We shall see an example of this for the Vivaldi antenna at 
the end of this section. 

11.9.1 Impedance, Efficiency, and Gain 

It should not be forgotten that antenna descriptors we have become so comfortable 
with elsewhere in this book, such as impedance, gain, far-field patterns, and radar 
cross section, are frequency domain concepts. To obtain them from the FD-TD cal
culation process, it is necessary to Fourier-transform the appropriate voltages, cur
rents, and fields from the time domain to the frequency domain. 

In order to capitalize on the advantages of FD-TD (i.e., wide bandwidth data), it 
is common to utilize a Gaussian voltage pulse to excite an antenna. The Fourier 
transform of the voltage excitation pulse at the feed point is denoted as VA (w) and 
the Fourier transform of the current at the feed point is denoted IA(w). Then the 
input impedance is given by 

Z ( ) = VA(w) 
A W IA(w) (11-62) 

To determine VA(t) and iA(t) in the FD-TD grid, from which VA(w) and IA(w) are 
derived, we employ the line integrals of E and H, respectively. 

Consider a situation in which an antenna is fed with one voltage source modeled 
as an electric field Ezl7,j,k with corresponding voltage viet) across the cell at the 
antenna feed gap, and this source supplies a time domain current ii(t). After all 
transients are dissipated and the time domain results for these two quantities are 
Fourier-transformed, the equivalent steady-state input power at each frequency is 
given quite simply by 

(11-63) 

Dissipated power due to ohmic losses is computed as follows. Suppose that an 
FD-TD electric field component Ez(t) is in a region with conductivity u. If we as-
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sume that the electric field is uniform within a single PD-TD cell, then at each 
frequency the equivalent steady-state power dissipated in this region is given by 

Pohmic = ~ f f f <TIEz(w)12 dv = ~ oiEz(w)12 ax ay az 

= ! u ax ay IE ( ) a 12 = iV(w)1
2 

2 az z w z 2R 

(11-64) 

where Ez(w) is the Fourier transform of Ez(t) and R is a lumped resistance across 
the cell in the z-direction. Knowing Pin and P ohmic leads to a determination of ra
diation efficiency from (1-173). 

To determine the antenna gain, the far-zone electric field in the desired direction 
must be determined at specified frequencies. If we use the approach given in the 
previous section, this can be done for pulsed far-zone fields. Since the far-zone 
electric field is computed so that the lIr amplitude factor and the propagation delay 
are suppressed, the antenna gain relative to a lossless isotropic antenna in the (8, 4» 
direction is given by 

G( 8,1.,) = ! IE(w, 0, 4>)12111 
w, ,'I' 2 p. 147T (11-65) 

m 

where E( w, 0, 4» is the peak value of the Fourier transform of the pulsed far-zone 
time domain electric field radiated in the (8, 4» direction. 

11.9.2 The Monopole over a PEe Ground Plane 

Maloney et al. [10] used PD-TD to model the radiation from two simple antennas: 
the cylindrical monopole and the conical monopole. Here, we shall consider only 
the former, the cylindrical monopole of height h over a PEe ground plane. The 
PD-TD grid used to model this antenna is shown in Fig. 11-27. The grid used a two-
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PEe ground plane. (Maloney et aI., IEEE Trans. Ant. 
& Prop., Vol. 38, 1990, pp. 1059-1068. Reprinted with 
permission. ) 
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dimensional cylindrical-coordinate algorithm, exploiting the rotational symmetry of 
both the antenna and feeding coaxial line about the z-axis. In the cylindrical system, 
the TE mode is composed of E</>, Hp, and Hz, whereas the TM mode has the com
ponents Ep, Ez, and H</>. Since the coaxial line was excited with a TEM mode con
sisting of just Ep and H</>, only the TM cylindrical mode was modeled. 

A Gaussian pulse voltage excitation within the coaxial line v(t) = Vo 
exp( -t2/2iff,) was used at source plane A - A' in combination with an exact ABC 
to emulate a matched source at that location. The following normalized parameters 
apply to the model: bla = 2.30 (50-0 coaxial line); hla = 65.8; TJTa = 8.04 X 10-2

• 

Here Tp is the lie width of the excitation pulse and Ta = hIe = characteristic antenna 
height. In other words, Ta represents the time required for an electromagnetic wave 
to travel the length of the monopole. Finally, an ABC of only first-order accuracy 
was used to terminate the grid at its outer boundary Se. 

The cylindrical monopole represents a two-dimensional electromagnetic problem. 
For example, the radiator in Fig. 11-27 is rotationally symmetric and is excited by 
a rotationally symmetric source 

i( _ viet) A 

E t) - In(bla)p P 

The applicable components of Maxwell's curl equations are 

aEp aEz aH</> 
---= -/Lo--
az ap at 

aH</> aEp 
---= 8-

az 0 at 

1 a(pH</» aEz 
=8 -

P ap 0 at 

After discretization of the above, we have 

H In+1I2 - H In-1I2 + Ilt [E In E In ] 
</> i,j - </> i,j ~ z i+1I2,j - z i-1/2,j 

Il /Lo P --+- [EpliJ+1/2 - Epl7.j-1/2} 
/Lou.z 

E In+l - E In Ilt [H In+l/2 H In+1I2]' p i,j-l/2 - P i,j-l/2 ,- 8
0

llz </> i,j - </> i,j-l 

E In+l - E In + Ilt 1 [ H In+1I2 H In+1I2] 
Z i+1!2,j - z i+1I2,j A -- Pi+l </> i+l,j - Pi </> i,j 

8 0 P Pi+1I2 

(11-66) 

(11-67a) 

(11-67b) 

(11-67c) 

(11-68a) 

(11-68b) 

(11-68c) 

Note that the grid in Fig. 11-28 is arranged so that the electric field component 
tangential to the surface of a perfect conductor is evaluated at the surface. 

An absorbing boundary condition is used at the surface Se; this allows the obser
vation period to be extended beyond t = to' If we look in the opposite direction, 
the TEM field within the coaxial line behaves like the one-dimensional case ex
amined in previous sections. Thus, an exact absorbing boundary condition can be 
constructed within the coaxial line. The incident field is additively injected at a plane 
z = -f, and the absorbing boundary condition, placed at z = -(f + Ilz), exactly 
absorbs the field of a TEM mode propagating in the - z-direction. This allows the 
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Figure 11·28 Spatial grid and field components for the two-dimensional problem with 
cylindrical symmetry. (Maloney et aI., IEEE Trans. Antennas and Propagation, 1990, 
pp. 1059-1068, 1990 IEEE. Reprinted with permission.) 

cross section at which the incident field is specified to be moved closer to the ground 
plane; namely, in Fig. 11-27, B - B'(z = .eB ) is used instead of A - A '(z = -.eA ). 

This reduces both the time required for observation and the size of the grid. 
The spatial and temporal increments (ilp, ilz, and ilt) are chosen to satisfy the 

Courant-Friedrichs-Levy condition in the cylindrical system [S]: 

ilp2 ilz2 

ilp2 + ilz2 (11-69) 

In this work, two spatial grid spacings are used: a fine spacing (ilpl = ilzl ) within 
the coaxial line and close to the antenna where the field is varying rapidly with 
spatial position, and a coarse grid [ilPz = (3 - S) ilPb ilz2 = (3 - S) ilzl] in the 
remainder of the space. The use of the dual grid reduces computer storage. Note 
when (11-69) is satisfied for the fine grid, it is automatically satisfied for the course 
grid. In the example that follows, 

A min(ilpb ilzl ) 
Cl.l.t = ---'-..:....::;--=-

2 
(11-70) 

and the increments ilPt, ilz1 are chosen small enough to resolve the spatial variation 
of the field. 

Figure 11-29 is a space-time plot of the FD-TD calculated surface charge density 
on the monopole antenna and its feeding coaxial line. At point A in this figure, the 
incident pulse has reached the antenna. An impedance mismatch between the feed
line and the antenna causes some of the energy to reflect back down the line. The 
remaining energy then propagates along the length of the antenna until the end of 
the antenna is reached at point B. Here, some energy radiates while the remaining 
energy reflects back down the antenna. This represents the (imperfect) transition 
from the antenna to free space. 

At point C, the antennalfeedline junction causes a partial retroreflection, with 
some energy continuing down the coax and the remainder going back up the mon
opole. This process repeats itself until all transients have decayed. It is significant 
to note that at no time did energy enter the antenna from the coax once the incident 
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Figure 11-29 Normalized surface charge density on the cylindrical monopole antenna as a 
function of the normalized position zlh and the normalized time tlTa. (Maloney et aI., 
IEEE Trans. Ant. & Prop., Vol. 38, July 1990, pp. 1059-1068. Reprinted with permission.) 

pulse had propagated through. This verified that the ABC at the line feedpoint was 
working properly. 

Figure 11-30 shows the FD-TD-computed radiated fields for three snapshots in 
time. In Fig. 11-3Qa, the initial outgoing wavefront WI was produced after the ex
citing pulse passed the feedline/antenna transition. Note the reflected energy trav
eling back down the coaxial feedline. In Fig. 11-30b, a second outgoing wavefront 
W2 was produced when the energy traveling up the antenna was reflected from its 
top end. In Fig. 11-30c, both WI and W2 have propagated away from the antenna, 
but a third wavefront W3 was generated when energy retroreflected from the feed
line/antenna transition. Also in Fig. 11-30c, the wavefront W2R arises from the re
flection of the W2 wavefront from the ground plane. This process repeats until the 
surface charge density decays to zero. 

The far-zone electric field E() for the cylindrical monopole antenna is shown in 
Fig. 11-31. The surface used for these calculations was the cylindrical'boundary 
separating the fine and coarse grids in Fig. 11-27. Each trace in this figure shows the 
electric field at a fixed polar angle () as a function of the normalized time tlTa • Notice 
that the shape of each time domain trace is different for each polar angle because 
each trace has a different frequency content. This is due to the radiation patterns 
in the frequency domain being different at each frequency. Also notice that wave
fronts from the same point on the antenna are always separated by a time interval 
that is a multiple of 2Ta , the round-trip transit time for the pulse on the antenna. 
For example, wave fronts WI and W3, which are centered on the drive point, are 
separated by the time 2Ta , as are wavefronts W2 and W4 , which are centered on the 
end. 
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Figure 11·30 FD-TD-computed radiation of a Gaussian pulse from the cylindrical 
monopole antenna. The gray scale plots show the magnitude of the electric field, whereas 
the line drawings show the surface charge density on the antenna and the feeding coaxial 
life. (Maloney et aI., IEEE Trans. Ant. & Prop., Vol. 38, July 1990, pp. 1059-1068. 
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11.9.3 The Vivaldi Slotline Array 

Slotline antennas, such as the Vivaldi, are traveling-wave antennas that produce 
broadband endfire radiation. In this structure, a microstrip slotline is flared outward 
to an aperture where the wave impedance matches free space. This is often referred 
to as a tapered slot antenna (TSA). It is this type of slot antenna that was modeled 
by Thiele [11, 13] using FD-TD. 

Figure 11-32 illustrates the geometry of a planar Vivaldi element. The FD-TD 
cell size was set to as = 0.5 mm, based on the smallest physical dimension of this 
model that is the throat of the horn. This corresponds to a resolution of Al33 to 
Al99 over the 6 to 18 GHz bandwidth of the element. This high resolution permitted 
a simple stepped-edge model to simulate the antenna radiation characteristics nearly 
as accurately as a more elaborate conformal contour-path model [12]. Therefore, 
all subsequent modeling was performed using stepped edges (see Fig. 11-18). The 
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Figure 11-32 Initial antenna geometry. (a) Vivaldi single-flare baseline element with 0.25" 
substrate protrusion. (b) Detail of the strip line feed and the slot element. (E. Thiele and 
A. Taflove, IEEE Trans. Ant. & Prop., Vol. 42, 1994, pp. 633-641. Reprinted with 
permission. ) 
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resulting grid size for the individual flare Vivaldi models was 42 X 116 X 142 cells, 
corresponding to 4.2 million field unknowns. CPU times were on the order of 800 sec 
for a single-processor Cray Y-MP. 

We examine FD-TD and measurement data for the eight-element array of Vivaldi 
quads depicted in Fig. 11-33b. This linear array, modeled with 32 individual feeds, 
can be excited with varying phase and amplitude distribution to steer the beam and 
select polarization. Co-pol and cross-pol gain patterns were calculated in the plane 
of the array (the E-plane) between 6 and 18 GHz for beam-steer angles of 0°,20°, 
45°, and 60°. Initially, sinusoidal excitations at selected frequencies were used, with 
an appropriate phase taper across the array provided for beam-steering. This exci
tation method was later dropped in favor of using pulsed array excitations coupled 
with on-the-fly DFTs of the fields at the near-to-far-field observation locus, thereby 
reducing computer time requirements by about two orders of magnitude. A single 
pulsed excitation run could cover the complete 6- to 18-GHz band, with an appro
priate time-delay taper across the array provided for the desired beam-steering 
angle. 

The eight-element array increased the FD-TD grid size to 222 X 222 X 140 cells 
containing 41.4 million vector-field components. Run times were about one CPU 
hour using automatic multiprocessor tasking on a dedicated eight-processor Cray 
Y-MP/8. It is probable that this intensive use of supercomputing resources for an 
FD-TD antenna model was without precedent atthe time of these runs. 

Figure 11-34 graphs the FD-TD results for the E-plane co-pol and cross-pol ra
diation patterns for the eight-element array, if we assume a nominal 45° beam steer. 
It is clear that grating lobes evolved as the operating frequency increased. In fact, 
the principal· grating lobe equaled or exceeded the nominal main beam for fre
quencies greater than 15 GHz. The cross-pol levels were quite high, rising to within 
10 dB of the co-pol levels in the main beam at all the frequencies modeled. 

Simple array theory can be used to qualitatively assess the results of this section. 
We note that in both the computed and measured patterns, the nominal beam-
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Figure 11-33 Final geometry of the quad Vivaldi element and the eight-element array 
(without 0.25" protrusion of the dielectric substrate). (E. Thiele and A. Taflove; IEEE 
Trans. Ant. & Prop., Vol. 42, 1994, pp. 633-641. Reprinted with permission.) 
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Figure 11-34 FD-TD-computed E-plane co-pol and cross-pol radiation patterns for the 
eight-element linear array of Vivaldi quads of Fig. 11-33 phased for a 45° beam-steer. Note 
the evolution of grating lobes as the operating frequency increases. (From [13], reprinted 
with permission.) 

steering angle was not quite reached. For example, in Figure 11-34 (bottom), a 
desired beam-steer angle of 45° resulted in an actual beam-steer angle of approxi
mately 40°. Array theory predicts the overall radiation pattern to be the product of 
the element pattern and the array factor. The deviation of the beam-steer angle 
from this pattern multiplication prediction can be attributed to mutual coupling. 

Active impedance was defined in Chap. 3 as the driving-point impedance of a 
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given array element when all the elements of the array are excited. When antenna 
elements are near one another, as in the case of most arrays, complex interactions 
occur between all of the elements, changing the current distribution of any particular 
element relative to its distribution when isolated in free space. Since beam-steering 
is implemented via changes in the excitation of a given element, the current distri
butions vary on all the elements due to their mutual coupling, in turn varying the 
driving-point impedance of each element. In practice, array active impedance has 
been difficult to predict and measure due to the complexity of the mutual coupling 
and its sensitivity to the test setup. A direct FD-TD approach used to calculate the 
driving-point impedance is discussed in [1]. 

PD-TD results are presented for the active impedance of the eight-element quad
Vivaldi array from 6 to 18 GHz for a beam-steer angle of 45°. In the presentation 
of these data in [13], the driving-point impedance of each of the four feeds of each 
of the eight quad elements is depicted separately. This is because geometrical asym
metries arising in the construction of each quad element caused corresponding elec
trical asymmetries of the driving-point impedance noted for each of the four feeds 
of each element. Here we present data for only two (orthogonal) feeds. 

Figure 11-35 graphs the driving-point impedance data in a three-dimensional per-
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Figure 11-35 PD-TD-computed active impedance of the eight-element array of Fig. 11-33 
for a 45° beam-steer and the type 2 strip line feeds. (From [13], reprinted with permission.) 
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spective view. The frequency (in 1-GHz increments) and the quad-element number 
(1 through 8) are shown as independent variables, and the magnitude of the driving
point impedance is depicted as a "height" above the frequency/element-number 
plane. In Fig. 11-35, the FD-TD calculated impedance for the feeds classified in the 
groups "H2" and "V2" was high a:t 11 GHz, with lesser peaks at 13 and 17 GHz. 

Overall, FD-TD calculations indicated that the impedance behavior of the array 
was within desired voltage standing wave ratio (VSWR) specifications of 2: 1 or less 
(25 to 100 fi) for much of the 6- to 18-GHz design bandwidth. However, the case 
shown here had very high VSWR at 11 GHz. Therefore, the array would likely fail 
at this frequency. Knowledge of this problem would be sufficient to permit (it is 
hoped) modest changes in the feeds to meet the VSWR specification throughout 
the entire bandwidth. 

11.10 SUMMARY 

In this chapter, the finite difference time domain, or FD-TD, method has been 
presented. FD-TD is a differential-equation-based method in the time domain that 
employs approximations to derivatives in a solution of Maxwell's equations that 
"marches on in time and space." The basic features of FD-TD were presented in 
Secs. 11.2 through 11.6. The one-dimensional case was used to illustrate fundamen
tal principles, but the two-dimensional and three-dimensional cases were also con
sidered (e.g., Secs. 11.8 and 11.9). Only simple media were employed, but FD-TD 
is well suited to complex media as well, such as inhomogeneous and anisotropic 
media [1, 2, 12]. 

Both MoM (in the previous chapter) and FD-TD are usually thought of as inter
mediate frequency techniques because they cannot easily accommodate bodies that 
are arbitrarily large in terms of the wavelength. In contrast to this, Chap. 12 presents 
high-frequency or asymptotic methods that apply best to material structures (i.e., 
antennas or scatterers) arbitrarily large in terms of the wavelength. 
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PROBLEMS 

11.1-1 Reduce (11-5) to (11-7) and (11-8). 
11.1-2 Reduce (11-7) to (11-10) and reduce (11-8) to (11-11). 
11.2-1 a. Obtain (11-14) from (11-12) by expanding Hy in a Taylor series about the temporal 
point tn and by expanding Ez about the spatial point Xi' 

b. Show that the central difference approximations are second-order accurate. That is, 
error = O(az2) + O(M2). 

c. Does this tell how much error is in the solution? 
11.2-2 Derive (11-17) from (l1-1Ob). 
11.2-3 Derive (11-22) from (11-21). 
11.2-4 Derive (11-26) from (11-22). 
11.2-5 Derive from (11-5b) an expression for Hy similar to (11-26). 
11.2-6 Derive from (11-6b) an expression for Ey similar to (11-27). 
11.2-7 Derive (11-30a) from (11-26). 
11.3-1 Show that the one-dimensional central difference equations (11-14) and (11-17) pro
duce an exact solution when cat = ax. 
11.3-2 Can numerical dispersion occur in a non-dispersive medium? 
11.3-3 Consider a plane wave in free space: 

Hy = H
o
ei(wt-(3x) 

If the plane wave is discretized in time and space 

where t = nat, X = iax, f3num = ~. v is the numerical phase velocity. 
v 

a. ,Write an expression for the phase error of the discretized wave relative to the actual 
wave and comment on the amount of phase error as the propagation distance increases. 

b. How can the error in phase be overcome? 
11.4-1 With reference to Fig. 11-9, calculate by hand E and H for the fourth time step when 
i < 50. Then, from your results verify that there is power flow in the negative x-direction. 
11.5-1 Recompute by hand Table 11-1 if there is a perfect electrical conductor in cell 53. 
11.5-2 Show that the two-dimensional PML equations reduce to the exact one-dimensional 
result. 
11.6-1 Write a one-dimensional computer code and verify the results presented in Fig. 11-12 
for the delta function hard source. 
11.6-2 Extend the computer code in Prob. 11.6-1 to accommodate soft sources and verify 
Fig. 11-13. 
11.6-3 With reference to Fig. 11-13, calculate by classical means the reflection and transmis
sion coefficients at the dielectric to air interface and compare with the magnitude of the 
reflected and transmitted fields in the figure when n = 400. 
11.6-4 At what time step in Fig. 11-13 does the peak: value of the reflected Gaussian pulse 
arrive back at the source? Arrive at your answer by assuming the magic time step and then 
determining how many time steps are required. 
lL6-5 In terms of the update equations, explain why the soft source in Fig. 11-13 allows the 
wave reflected from the dielectric to pass onward to the right and the hard source does not. 
11.6-6 Verify (11-52) using (11-53). 
11.6-7 Verify (11-56) using (11-57). 
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11.6-8 Explain why it is more computationally efficient to use FD-TD for antennas when the 
antenna is transmitting than when it is receiving. 
11.6-9 Extend Prob. 11.5-1 out to n = 8 if the source at i = 50 is a hard source. Repeat if 
the source is a soft source. 
11.7-1 Using the surface equivalence theorem, show that the far-field pattern of an antenna 
may be computed using (11-59) and (11-60) applied to a surface surrounding the antenna. 
11.8-1 In Fig. 11-22, exclude edge effects on the phase and show that the phase change from 
the center of the aperture to the edges is 90° at 10 GHz as required· by the optimum condition 
under which this hom was designed. (Note the amplitude distribution near the edges and 
use that to estimate the region over which the edges are having a strong effect on both the 
amplitude and phase distributions.) 
lL8-2 Compare Fig. 11-24 to Fig. 7-16. 
11.8-3 By making measurements on Fig. 11-18 with a ruler, verify the time at which the 
various physical phenomena depicted in Fig. 11-26 occur. 
lL8-4 Write a two-dimensional computer code (or use an existing one) and verify Fig. 11-22. 
11.8-5 Make a photocopy of Figs. 11-21 a-d and indicate on the copy the various physical 
phenomena that you see there. 
lL9-1 Verify (11-64). 
11.9-2 Derive (11-65). 
11.9-3 Derive (11-68) from (11-67). 



Chapter12 

CEM for Antennas: 
High-Frequency Methods 

Optics is a well-understood area of physics that deals with the characteristics of light 
wave propagation. It was Maxwell who showed before 1873 that the propagation 
of light could be viewed as an electromagnetic phenomenon. Since the wavelength 
of light waves is usually small compared to objects with which it interacts, the 
analytical treatment of light wave propagation is much different than that employed 
to analyze lower-frequency propagation where the size of a scattering surface is 
comparable to the wavelength. 

A very useful and easily understood method for analyzing optical problems is the 
ray concept. The relationship between ray optics and wave propagation is apparent 
from the famous works of Huygens in 1690 and Fresnel in 1818, but was not formally 
shown until the works of Luneberg in 1944 and Kline in 1951 [1]. Since that time 
the well-known methods of optics have found increasing use in the treatment of 
many electromagnetic problems in the radio frequency portion: of the spectrum for 
,situations where the wavelength is small compared to the geometrical dimensions 
of the scatterer or antenna. In these cases, asymptotic high7frequency methods must 
be employed since it is not practical to use moment methods (Chap. 10) or eigen
function expansions. This is because the rate of convergence of both of these tech
niques is generally quite poor when dealing with an electrically large antenna or 
scatterer. 

In this chapter, we will first examine the principles of geometrical optics. We will 
then see that in many situations geometrical optics is inadequate to completely 
describe the behavior of the electromagnetic field and it is necessary to include 
another field called the diffracted field. The diffracted field, when added to the 
geometrical optics field, permits us to solve many practical radiation and scattering 
problems in a moderately straightforward manner that could not be solved any other 
way. 

Geometrical optics and its extension to include diffracted fields is a field-based 
method (see Fig. 10-1) and does not require the calculation of currents. Later in 
this chapter, current-based methods will be discussed wherein currents are used to 
ultimately determine the field quantities of interest. These methods are physical 
optics and its extension to include diffraction. In many situations, a physical optics 
current is inadequate to produce accurate fields from a radiating object and it is 
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necessary to include another current called the non-uniform current. The non
uniform current, when added to the physical optics current, permits an accurate 
representation of the fields to be obtained. Whether a field-based or a current-based 
method is to be used depends on the specific application, as we shall see in the 
sections that follow. 

12.1 GEOMETRICAL OPTICS 

Geometrical optics, or ray optics as it is often called, was originally developed to 
analyze the propagation of light where the frequency is sufficiently high that the 
wave nature of light need not be considered. Indeed, geometrical optics can be 
developed by simply considering the transport of energy from one point to another 
without any reference to whether the transport mechanism is particle or wave in 
nature. 

Classical geometrical optics applies to isotropic lossless media that mayor may 
not be homogeneous. In this chapter, we will only consider homogeneous- media 
where the index of refraction n is assumed to be real and is given by 

c 
n=

v 
(12-1) 

and is not a function of position within a given medium. Here, c is approximately 
3 X 108 mls and v is the velocity of propagation in the medium. In a homogeneous 
medium, energy moves along ray paths that are straight lines. Normal to these ray 
paths are a family of surfaces called the eikonal of the ray system. In applying 
geometrical optics, it is only necessary that we know either the eikonal of the ray 
system or the ray paths, since the two are uniquely related. 

For a plane wave in homogeneous media, the eikonal surfaces are planes 
perpendicular to the ray paths as shown in Fig. 12-1a. For a spherical source, the 
eikonal surfaces are spherical surfaces perpendicular to the ray paths as shown 
in Fig. 12-1b. 
- The variation of the amplitude of the geometrical optics field within a ray tube 
is determined by the law of energy conservation since the rays are lines of energy 

. flow. Consider two surfaces Po and Po + Ap as shown in Fig. 12-2. Between the two 
surfaces, we can construct a tube of constant energy flux by using the rays. Thus, 
the energy through cross section duo at Po must equal the energy flux through cross 

Eikonal 
surfaces 

I 
I 

Rays 

Point source 

(a) Plane wa,:"e. (b) Spherical wave. 

Figure 12-1 The relationship of rays and eikonals for two types of sources. 
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Figure 12·2 The relationship of rays and 
wavefronts. 

section du at P. If S is the power per unit area, the condition of constant energy 
flow through the flux tube is 

(12-2) 

In the case of electromagnetic waves, the quantity S is the real part of the complex 
Poynting vector and we can assume that 

S =! ~ IEI2 (12-3) 
2 ~; 

Substituting (12-3) into (12-2) yields 

lEo 12 duo = IEI2 du (12-4) 

Solving for lEI, we obtain 

lEI = IEoIJ~c; (12-5) 

Therefore, we have obtained a relationship between the amplitude of the geomet
rical optics field at one point in terms of the amplitude at another. 

The relationship in (12-5) would be more useful if the radii of curvature of the 
wavefront surfaces du and duo were used. Consider the astigmatic ray tube picture 
in Fig. 12-3. The principal radii of curvature of duo are Pl and P2, whereas the 

Figure 12-3 An astigmatic ray tube. 
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principal radii of curvature of du are (Pl + €) and (P2 + e). We can write for the 
ratios 

duo du --=----:----
P1P2 (Pl + €)(P2 + €) 

(12-6) 

and thus 

(12-7) 

From (12-5), we have 

(12-8) 

Note that the tube of rays converge to a line at Pl = 0 and P2 = 0 where the cross 
section of the ray tube goes to zero. Therefore, the amplitude of the geometrical 
optics field description becomes infinite there although the actual field does not. 
The locus of points where the ray tube cross section exhibits such behavior is called 
a caustic. Caustics may be a point, line, or surface. For example, consider a point 
source as shown in Fig. 12-4. We can construct a ray tube from four rays and write 

(12-9) 

Thus, 

(12-10) 

The caustic would be located at the point source in this case. 
In both (12-8) and (12-10), we note that as € becomes large, we have the usual 

inverse distance-type field dependence found in the far zone of a three-dimensional 
source. Often, however, one is concerned with two-dimensional problems where 
one of the radii of curvature, say, P2, becomes infinite. In such problems, 

lEI = IEolJ Pl (12-11) 
P2 + € 

Figure 12-4 A tube of rays from a point 
source. 
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Here, the eikonal surfaces are cylindrical and, as .f ~ 00, we have an amplitude 
dependence of the field at large distances of the form ltV€. Obviously, if both PI 
and P2 are infinite, the eikonal surfaces are planes and lEI is a constant for all values 
of.f (e.g., a plane wave). 

The results of (12-8), (12-10), and (12-11) are extremely importantfor they permit 
us to easily compute the amplitude of the geometrical optics field at one point in 
terms of its known value at another. In electromagnetic field problems, however, 
we must also include the phase. Phase can be introduced into (12-8) artificially. 
First, we take our phase reference to coincide with the amplitude reference. Thus, 
the electrical phase of the ray tube is given by e-j /3f and we may write for the 
amplitude and phase of the field in the ray tube of Fig. 12-3 

E = E eNo PIP2 e-j /3f 

o (PI + .f)(P2 + .f) 
(12-12) 

or 

(12-13) 

where Eo is the reference amplitude at .f = 0, 4> 0 is the reference phase at .f = 0, 
A(Ph P2, .f) is the general spatial attenuation factor, and e-j /3f is the spatial phase 
delay factor. 

Note that when.f becomes less than -P2, the quantity under the radical sign in 
A(Ph P2, .f) becomes negative and a phase jump of Trl2 occurs when the observer 
passes through the caustic. Although we cannot predict the amplitude or the phase 
of the geometrical optics field at the caustic, we can determine the fields on either 
side of the caustic. 

Equation (12-12) or (12-13) permits us to approximately express the field at a 
point (i.e., .f) in terms of the value at a known point (i.e., .f = 0). Rigorously, the 
result is only approximate, becoming more accurate as the wavelength tends toward 
zero. In practice, however, we will find the geometrical optics expression above to 
be highly accurate for engineering purposes where the assumptions of geometrical 
optics are valid. 

To finish our initial discussion of geometrical optics, we illustrate its use by con
sidering the problem of reflection at a curved smooth surface and the subsequent 
calculation of the radar cross section of a sphere. From (12-12), it is apparent that 
we need an expression for the radii of curvature of the wavefront in terms of the 
geometrical radii of curvature of the surface. Consider Fig. 12-5 that depicts a line 
source parallel with the axis of a convex cylinder of arbitrary cross section. From 
Fig. 12-5a, 

'YI = Tr - a - (Tr - ( 0 ) = 00 - a 

The element of arc length in Fig. 12-5b is equal to r~ da and 

r~ da = d'YI.fo = (dOo - da).fo 

cos 00 cos 00 

Since d'Y2 = dOo + da, we have 

(12-14) 

(12-15) 

(12-16) 



550 Chapter 12 CEM for Antennas: High-Frequency Methods 

(a) (b) 

..1rl = ..180 -..1a ..180 = 8 2 - 8 1 

..1r2 = ..180 + ..1a 

Figure 12-5 Ray geometry for reflection by a curved conducting surface. 

Solving both (12-15) and (12-16) for r~ au cos 00 , we have, respectively, 

ri au cos 00 = .eo aOo - .eo au 
and 

r~ au cos 00 = PI aoo + PI au 
Solving both these equations for au and equating the two results yield 

fa aOo PI aoo 
r~ COS 00 + fa r~ cos 00 - PI 

which after some manipulation gives us the desired result 

112 
-=-+----
PI .eo ri cos 00 

(12-17) 

(12-18) 

(12-19) 

(12-20) 

This equationl relates a principal radii of curvature of the reflected wavefront to 
the geometrical radius of curvature of the surface at the point where the ray strikes 
the surface. 

As a simple example of the application of (12-20), consider the situation shown 
in Fig. 12-6 where a plane wave is incident on a sphere. We wish to find the field 

Figure 12-6 Geometrical optics 
scattering by a sphere. 

lEven though this result is based on a two-dimensional configuration, the result is somewhat more general 
than this in that it holds true in the plane of incidence (see Sec. 12-1) whenever the plane of incidence 
coincides with the principal planes of the surface. 
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scattered back in the direction of the transmitter and from this back-scattered field 
find the radar cross section of the sphere. Thus, the only ray we need consider is 
that reflected from what is called the specular point. In this situation, then, eo = 00, 

(Jo = 0°, and rc = a in (12-20) and we have the following result: 

a 
PI = - = P2 

2 
(12-21) 

where P2 is the radius of curvature of the reflected wavefront orthogonal to Pl' (See 
Prob. 12-1 for an expression for P2') 

If the incident field has a value of Eo at the specular point, then in the backscat
tered direction, 

ES = -E ~ e-i{3f 
. 0 PI + e (12-22) 

with P2 having the same value as PI in this example. Therefore, if we use (9-35) the 
radar cross section is (at high frequencies) 

u = lim 4'7Te2[ a/2 ]2 = '7Ta2 (12-23) 
f-~ al2 + e 

The exact value for u/'7Ta2 is shown in Fig. 12-7. We note that as the radius ofthe 
sphere becomes larger, the more closely the geometric optics cross section ap
proaches the exact result. That is what one would expect since geometrical optics 
assumes the wavelength is small when compared to the geometrical dimensions of 
the scattering surface. Furthermore, the result in (12-23) is frequency-independent, . 
which is typical of geometrical optics calculations [2-4]. 

We can extrapolate from (12-22) to write a general expression for the geometrical 
optics field due to a plane wave reflected from a smooth surface. Let a plane of 
incidence be defined by the incident ray and the normal to the surface. Let E i

ll (Qr) 
and E~(Qr) be the components of the incident field that are parallel and perpen
dicular, respectively, to the plane of incidence at the point of reflection Q" and let 
E'jl (e) and E~( e) be the components of the reflected field that are parallel and 
perpendicular to the plane of incidence, respectively. Then, in matrix form, 

3.2 

2.4 

°l~ 1.6 

0.8 

[
Ell (e)] = [Ell (Qr)] . [R] PIP2 e-j /3f 

E~(e) E~(Qr) (PI + e)(p2 + e) 

2 4 6 8 10 12 14 16 18 20 22 24 

Sphere circumference in wavelengths, 27ta 
A. 

(12-24) 

Figure 12-7 Radar cross section 0' of a sphere versus the electrical size of the sphere. 
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where R is a reflection coefficient matrix, and for perfectly conducting surfaces 
appears as 

R = [~I ;~] (12-25) 

where Rn == +1 and R~ = -1 and are recognized as representing the Fresnel re
flection coefficients for parallel and perpendicular polarization reflection from plane 
perfectly conducting surfaces.2 The Fresnel reflection coefficients imply that the 
incident wave is a plane wave and the reflecting surface is also planar. We can 
deviate from these restrictions at high frequencies (short wavelengths) by noting 
that geometrical optics reflection is a local phenomenon and, therefore, the incident 
field need only be locally plane at the reflecting point and the surface need only be 
adequately approximated by a plane tangent to the surface at the point of reflection. 

If we apply geometrical optics to reflection from a surface when the source point 
and reflection point are fixed, then the observation point is determined for us by 
the law of reflection. That is, we obtain information about the reflected field in one 
direction only (the specular direction), whereas the reflection typically spreads out 
over some angular region. To obtain information about the reflected field in non
specular directions, it is necessary to first consider what the current is on the reflect
ing surface and then integrate that current to get the reflected field (e.g., the aperture 
integration of Chap. 7). In the Sec. 12.13, we will examine the physical optics method 
of doing this . 

. 12.2 WEDGE DIFFRACTION THEORY 

In the previous section, we introduced the ray-optical concept of geometrical optics. 
The theory was applied to the calculation of the backscattered field from a sphere, 
but no attempt was made to determine the field in the forward scattering direction, 
in particular, the shadowed region in Figs. 12-6 or 12-8. By simple ray tracing, it is 

(a) Wedge diffraction. (b) Tip diffraction. (c) Curved surface diffraction. 

Figure 12·8 Examples of diffraction. 

2<fhe signs on the entries R II and R.L depend on the reference directions used for the incident and reflected 
electric field vectors. The treatment here is consistent with that in Fig. 5-47, but others are in common 
use; see [35]. 
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quite apparent that geometrical optics is incapable of correctly predicting a nonzero 
field in the shadow region. However, geometrical optics may be extended to include 
a class of rays, called diffracted rays [5, 6], that permit the calculation of fields in 
the shadow region of a scatterer. Diffracted rays are produced, for example, when 
a ray strikes an edge, a vertex, or is incident tangentially to a curve surface as 
illustrated in Fig. 12-8. It is these rays that account for a nonzero field in the shadow 
region. In addition, they also modify the geometrical optics field in the illuminated 
region. It is the purpose of this section to examine in some detail one type of dif
fracted ray, the wedge diffracted ray of Fig. 12-8a. 

Consider the wedge diffraction situation shown in Fig. 12-8a. Geometrical optics 
would predict a sharp discontinuity in the field at a shadow boundary as shown in 
Fig. 12-9. Since physical phenomena in nature are not perfectly discontinuous, it is 
apparent that geometrical optics by itself constitutes an incomplete treatment of 
problems such as those in Fig. 12-8. It will be shown that the wedge diffracted rays 
will make the total electric field continuous across the shadow boundary in Fig. 
12-8a. 

Because diffraction is a local phenomena at high frequencies, the value of the 
field of a diffracted ray is proportional to the field value of the incident ray at the 
point of diffraction multiplied by a coefficient called the diffraction coefficient. That 
is, the diffraction coefficient is determined largely by the local properties of the field 
and the boundary in the immediate neighborhood of the point of diffraction. Since 
it is only the local conditions near the point of diffraction that are important, the 
diffracted ray amplitude may be determined from the solution of the appropriate 
boundary value problem having these local properties. Such a problem is called a 
canonical problem and wedge diffraction is one such canonical problem. Wedge 
diffraction is perhaps the most important canonical problem in the extension of 
geometrical optics as originally proposed by Joseph Keller in 1953. Keller's theory 
is known as the geometrical theory of diffraction, or GTD [5-7]. 

Through the use of geometrical optics and the solution to a number of canonical 
problems, such a those in Fig. 12-8, we can construct solutions to more complex 
problems via the principle of superposition. Let us now consider the canonical prob
lem of wedge diffraction. To start, we will consider scalar diffraction by an infinitely 
conducting and infinitesimally thin half-plane sheet as shown in Fig. 12-10. The half
plane is a wedge of zero included angle. To calculate the field in the region z > 0, 
we will use Huygens' principle in two dimensions. Thus, each point on the primary 
wavefront along z = 0 is considered to be a new source for a secondary cylindrical 
wave, the envelope of these secondary cylindrical waves being the secondary wave
front. Thus, 

I 

I Magnitude of i geometrical optics field 

----111.0 
0.5 

__ L______ I 

o 1r 2n: 

(12-26) 

Figure U-9 Magnitude of the 
geometrical optics field near either 
a reflected field shadow boundary 
(€fJ+ = €fJ + €fJ' = 'IT) or an incident 
field shadow boundary 
(€fJ- = €fJ - €fJ' = 'IT). 
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Figure 12-10 Plane wave 
diffraction by a conducting half
plane. 

where dE is the electric field at P due to a magnetic line source parallel to the 
y-axis in the z = 0 plane, or 

dE :::; C1 e-j (3[e+8(x)] dx 
v'e + 8(x) 

(12-27) 

where C1 is a constant. If (e + 8) » A and e » 8, we may write for the contribution 
to E(P) from those two-dimensional Huygens' sources between x = a and x = XO 

E(P) = -.S. e~j(3t ro e-j (38(x) dx 
W Ja. (12-28) 

We will consider the contribution from Xo to 00 later. When 8« e, we can follow 
the same reasoning as in (1-84) to show that.e + 8 = e + x 2/U. Making the sub
stitutions y = 2/ Ae and u = ')'X gives 

(12-29) 

If the upper limit in (12-29) is allowed to go to infinity, the integral will be in the 
standard form of a Fresnel integral (7, 8]. The Fresnel integral may be easily eval
uated on a computer or from a graph known as Cornu's spiral, which is shown in 
Fig. 12-11a. A vector drawn from the origin to any point on the curve represents 
the magnitude of a Fresnel integral with lower limit zero and upper limit Uo ' As Uo 

approaches infinity, the tip of the vector will circle the point (!,!) an infinite number 
of times, which suggests that the contribution to the value of the integral comes 
primarily between the limits zero and Uo provided Uo > 1.26. For this reason, we 
can argue that allowing ')'xo ~ 00 in (12-29) has little effect on the value of the 
integral. Thus, 

(12-30) 

The value of the integral in (12-30) can be represented by a vector drawn from any 
point on the Cornu spiral to the point (!,!) (e.g., see Prob. 12.3-2). 
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Line length is proportional to field. al. b l • 1m 
and CI correspond to positive values of a. At 
II the direct field and diffracted fields are 
in-phase. 0.5 

Note: The value of the relative field is 0.5 
at the shadow boundary corresponding 
to line dl • 

Re 

A vector drawn from the origin to any point on 
the curve represents the magnitude of the Fresnel 
integral and the negative of its phase. 
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a_ 

Figure 12-11 (a) Use of the Cornu spiral in evaluating the Fresnel integral as a function of 
the parameter a. (b) Relative magnitude of the diffracted field in the vicinity of a shadow 
boundary. Refer to Fig. 12-10 for values of a. 

If the lower limit in (12-30) is allowed to go to minus infinity, E(P) will equal the 
field strength without the half-plane present [8]. Thus, 

E(P)la=-oo = C1 ~(1 - j)e-j
{3( = Eoe-j

{3( (12-31) 

Solving for C1 and substituting into (12-30) give the value of E(P) in terms of the 
free-space field Eo: 

(12-32) 
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where for this approximate analysis to hold, it is necessary that e » A and the point 
x = a not be far removed from the z-axis so that the assumption e » S holds. A 
more exact (and complicated) analysis of this problem is possible, but it has not 
been presented here for we wish simply to show how the Fresnel integral arises 
naturally in the study of wedge diffraction. 

Equation (12-32) and the Cornu spiral make it possible to visualize the variation 
of the electric field as the point a moves along the x-axis, causing the observation 
point to change from the lit region to the shadow region. The corresponding plot 
of the relative electric field in the vicinity of the shadow boundary is shown in Fig. 
12-11b. We note that on the shadow boundary the value of the relative field is! and 
in the lit region the value of the field oscillates about the value of unity. This oscil
lation can be interpreted as being caused by interference between the diffracted 
field and the direct field. Since there is no direct field in the shadow region, we 
observe that no such oscillation occurs. Unfortunately, it is not convenient to ex
plicitly distinguish between the direct and diffracted field in (12-32). In many ap
plications of diffraction theory, it is essential that we be able to mathematically 
distinguish between the direct and diffracted fields, as well as the reflected field that 
we have yet to consider. 

Referring to Fig. 12-12, we can identify two shadow boundaries: the incident or 
direct field shadow boundary and the reflected field shadow boundary. These two 
shadow boundaries serve to divide space into three regions where region I contains 
direct and diffracted rays as well as reflected rays, region II direct and diffiacted 
rays but no reflected rays, and region III only diffracted rays. 
. For a field in anyone of the three regions, let us write E(p, 4» as consisting of a 
reflected field vT(p, 4> + 4>') and an incident field vi(p, 4> - 4> '). Thus, 

E(p, 4» = ±VT(p, 4> + 4>') + vi(p, 4> - 4>') (12-33) 

The choice of sign depends on the polarization of the incident field. If the electric 
field is perpendicular (parallel) to the diffracting edge, the plus (minus) sign is used. 
The field E at the point P must be a solution to the scalar wave equation with the 
appropriate boundary conditions. The boundary value problem depicted in Fig. 
12-12 was first solved by Sommerfeld in 1896. We will first consider his solution. To 
do so, we must examine (12-33) more fully. 

The first term in (12-33) gives the reflected fields, whereas the term vier, 4> - 4>') 
represents the incident field. If the ground plane were infinite in extent, the reflected 
field term would simply be the geometrical optics reflected field. However, in the 
case of the half-plane in Fig. 12-12, the reflected field will consist of two parts: 

, , 
Reflected field', 

shadow boundary " 

II 
/ 

/ 

/ Incident field 
// shadow boundary 

ill 

Conducting 
half-plane 

ill 

p (p, ip) 

Figure 12·12 Diffraction by a 
conducting half-plane showing the 
location of shadow boundaries. 
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namely, a geometrical optics reflected field and a diffracted field. Both parts of the 
reflected field will appear to originate from an image source behind the half-plane. 
Similarly, the incident field can be thought to consist of two parts: a geometrical 
optics incident field and a diffracted field. Thus, for the reflected field, 

±vr(p, cp + cp') = ±[V;(p, cp + cp') + VB(p, cp + cp')] (12-34) 

and for the incident field, 

vi(p, cp - cp') = v!(p, cp - cp') + vk(p, cp - cp') (12-35) 

where v* denotes the geometrical optics field and VB the diffracted field. Thus, 
(12-33) may be thought of as being composed of four parts. Each of the terms on 
the right-hand side of (12-34) and (12-35) satisfies the wave equation individually 
except at the reflected field and incident field shadow boundaries, respectively. 
However, the sum of v ~ and VB makes vr continuous across the reflected field shadow 
boundary and thus vr satisfies the wave equation there. (Similar comments apply to 
Vi.) But, neither vr nor Vi alone satisfies the boundary conditions at the wedge. 
However, the sum of vr and Vi in (12-33) does satisfy the boundary conditions as 
well as the wave equation. 

From simple geometrical considerations, we can see that for reflected geometrical 
optics rays, all points on a constant phase wavefront are given by 

o < cp < 7T - cp' in region I (12-36) 

where the phase reference is taken to be at the edge of the half-plane in Fig. 12-13 
since we are using a cylindrical coordinate system whose origin is on the edge of 

';; = cos [1r- (1/1 + I/I~l 

';; = -cos (1/1 + I/I~ Figure 12-13 Geometry for the 
reflected field wavefront from a 
conducting half-plane. 
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the wedge. By similar considerations for direct incident rays, points on a constant 
phase wavefront are given by 

o < cp < 7T + cp' in regions I and II (12-37) 

For other values of cp, 

(12-38) 

In other words, v * is zero in regions II and III for reflected rays and is zero in region 
III for direct or incident rays. It is the diffracted field that compensates for this 
discontinuity in the geometrical optics field as shown in Fig. 12-14. We see in Fig. 
12-140 that for cp > 255°, the total field is just the diffracted field and the total field 
is continuous across the incident field shadow boundary at cp = 255°, where the 
value of the diffracted field is 0.5. For 105° < cp < 255°, the total field oscillates due 
to the interference between the incident field and the diffracted field. At cp = 105°, 
the diffracted field again rises to 0.5 and the total field is continuous across the field 
shadow boundary. For cp < 105°, the total field oscillates almost between zero and 
2 due mainly to the standing wave produced in region I by the incident and reflected 
fields and the fact that the field is observed at a constant distance (p = 3A) from 
the edge of the half-plane, requiring the observation point to sweep through the 
standing wave field. The field is normal to the half-plane at cp = 0 and is nonzero 
there. Figure 12-14b shows a time domain representation of the total electric field 
in the vicinity of the edge of the half-plane when a sinusoidal plane wave is incident 
at cp' = 75°. Since the presentation is essentially a "snap shot" in time, the almost 
white areas indicate zero field at an instant of time. (See Fig. 11-21 and associated 
text.) Note evidence of the reflection and shadow boundaries, the weak field when 
cp> 255°, and the interference pattern when cp < 105°. In the interference pattern 
for cp < 105° there is a standing wave in directions both normal and tangential to 
the half plane since cp' =1= 90°. 

Mathematical expressions for the diffracted field VB have been a subject of con
siderable research in the past several decades in an effort to improve on the early 
classical work of Sommerfeld [9]. For the half-plane problem of Fig. 12-12, Som
merfeld obtained an expression for the diffracted field due to an incident plane 
wave in terms of the Fresnel integral. This expression is3 

VB(P, cpo!:.) = _ei('JT/4) [2. ei13pco.cp± cos cpo!:. (00 ei'T2 dT (12-39) 
~-:;; 2 ~ 

where 

(12-40) 

and 

a=1+coscpo!:. (12-41) 

We note that this solution is in a form somewhat similar to that of (12-32). The 
mathematical details of deriving the above are beyond the scope of this text. 

Sommerfeld's work was more general than that of just a half-plane. He also con-

3Note that in (12-39), ~e are really writing two equations, one for vB(r, <1>+) and the other for 
v~(r, <1>-). The use of the notation <I>± is for convenience and the reader should keep in mind that 
wherever it appears there are two separate equations implied, one associated with the reflected field and 
one associated with the incident field. 



12.2 Wedge Diffraction Theory 559 

2.5 

.~ 2.0 

.~ 
] 1.5 

~ ,g 1.0 
'" 
] 
ILo 0.5 

45.0 90.0 135.0 

tp' = 75° 
P =3'A, 
Plane wave incidence 

180.0 225.0 270.0 

tp, degrees 

(a) Diffraction by a half-plane (frequency domain). 

315.0 360.0 
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Sinusoidal plane wave incident at tp' = 75°. 

Figure 12-14 Diffraction by a half-plane. The incident field is polarized perpendicular to 
the edge of the half-plane. Refer to Figs. 12-12 and 12-13. 

sidered the more general case of a plane wave illuminating a conducting wedge of 
interior angle (2 - n)7T, where 0 < n:5 2.4 For this case, he obtained an asymptotic 
evaluation of a contour integral representation for the diffracted field that is given 
by . 

+ e-j (fJp+7r/4) (lin) sin( 7Tln) 
VB(P, cfJ-) = Y27T{3p cos(7Tln) - cos(cfJ±ln) (12-42) 

4Refer forward to Fig. 12-15. 
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Unfortunately, this asymptotic form yields infinite fields in the immediate vicinity 
of the shadow boundary [10]. The region near a shadow boundary is usually referred 
to as a transition region. Equation (12-42) is only valid outside a transition region 
where the condition 

( 
<p +)2 

{3p cos ~ - cos -;- »1 (12-43) 

is satisfied. This condition is always met if the quantity (3p(l + cos <p Z:) is large, 
which means that the observation point at P(p, <p, z) must be at a large electrical 
distance from the diffracting edge. Nevertheless, (12-42) is a useful one if the ob
servation point is not near a shadow bOundary and the above conditions are met. 

In 1938, Pauli [11] improved on the work of Sommerfeld by obtaining a series 
form for Sommerfeld's contour integral solution. Pauli's result is given by 

( Z:) _ e sm 1T n 0/ j(3 cos <I>± -j.,2 2 j( '1T14) • ( / ) I '" Z: I l~ 
VB p, <p - ~ r= (/ ) ("'Z:/) cos -2 . e P e dT nV1T cos 7Tn - cos 0/ n ~ 

+ [higher-order terms] (12-44) 

This expression is far more accurate, particularly near the shadow boundaries, than 
(12-42) while being only slightly more difficult to evaluate. It is valid for 0 < n ~ 
2. In the case of the half-plane (n = 2), the higher-order terms are identically zero 
and Pauli's result in (12-44) reduces to that of Sommerfeld in (12-39). Pauli's ex
pression was the first practical formulation of Sommerfeld's original solution that 
included a finite observation distance. 

Sample Wedge Diffraction Calculations 

The use of Eqs. (12-39), (12-42), and (12-44) is best illustrated by an example. Let us calculate 
the diffracted field in Fig. 12-14 for cp = 250°. Using (12-39), we obtain 

vB(3, cp -) = (-9.146 - j9.146)(0.0436) 

. (0.997 + jO.0717)(0.359 - jO.620) 

= -0.397 + jO.0760 

vB(3, cp+) = (-0.418 - j0.418)(-0.954) 

. (-0.964 + jO.264)( -0.0237 + jO.0820) 

= 0.0345 - jO.0335 

Thus, the exact Sommerfeld solution gives for the diffracted field magnitude 
1-0.3625 + jO.04351 = 0.365, which agrees with Fig. 12-14. Using (12-42), we should obtain 
the same result for the half-plane case since Pauli's equation reduces to Sommerfeld's. Thus, 

vB(3, cp-) = (0.798 + jO.798)(-11.46)(0.0436) 

· (0.997 + jO.0717)(0.359 - jO.620) 

= -0.397 + jO.0760 

vB(3, cp+) = (0.798 + jO.798)(0.524) 

· (0.954)(-0.964 + jO.264) 

· (-0.0237 + jO.0820) 

= 0.0345 - jO.0335 

and the diffracted field magnitude is once again 0.365. We note that since cp = 250° is near 
the incident field shadow boundary, vB(3, cp-) is the major cOIltributor to the diffracted field 
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and VB( , cV), which is associated with the reflected field shadow boundary, makes only a 
minor c tribution. Both (12-39) and (12-44) would go to infinity precisely at the shadow 
boundary 5° (or 4> = 105°). For this reason, we have elected to use 4> = 250° in this 
example. Finally, let us use the asymptotic form in (12-42). Thus, 

vB(3, 4>-) = (0.065 - jO.065)(-1l.46) 

= -0.745 + jO.745 

vB(3, 4>+) = (0.065 - jO.065)(0.524) 

= 0.034 - jO.034 

and the magnitude of the diffracted field alone exceeds unity or that of the incident field. 
This result is in error because the condition in (12-43) has been violated. The result would 
be only 10% in error at p = lOA if 4> = 255° ::!:: 12°, at 20A if 4> = 255° ::!:: 5°, at 30A if 
4> = 255° ::!:: 4°, and at 100A if 4> = 255° ::!:: 3°. However, no matter how large p is, the asymptotic 
form will be singular right at the shadow boundary. 

Starting in 1953, it was Keller [5, 6] who systematically developed the geometrical 
theory of diffraction, or GTD as it is often referred to. In his work, he has called 
the quantities D( cfJ +) and D( cfJ -) diffraction coefficients, where 

-jf3p 

[v~(p, cfJ-) + v'B(p, cfJ+)] = [D(cfJ-) + D(cfJ+)] eyp (12-45) 

and used the asymptotic expression of Sommerfeld in (12-42) to calculate the dif
fracted field due to plane wave incidence. The postulates of Keller's theory are: 

1. The diffracted field propagates along ray paths that include points on the 
boundary surface. These ray paths obey the principle of Fermat, known also 
as the principle of shortest optical path. 

2. Diffraction, like reflection and transmission, is a local phenomenon at high 
frequencies. That is, it depends only on the nature of the boundary surface 
and the incident field in the immediate neighborhood of the point of diffrac
tion. 

3. A diffracted wave propagates along its ray path so that: 
a. power is conserved in a tube of rays, and 
b. phase delay equals the wave number times the distance along the ray path. 

A consequence of the second postulate is that the diffracted fields caused by the 
edge of the infinite wedge in Fig. 12-13, for example, appear to be cylindrical wave 
fields that originate at the wedge edge. This is consistent with the (p) -112 dependence 
in (12-45). 

The simple ray formulation of Keller's geometrical theory of diffraction is re
stricted to the calculation of fields in regions of space that exclude transition regions 
adjacent to shadow boundaries, caustics, and focal points. To calculate the field at 
such points, additions and modifications to the geometrical theory of diffraction are 
required. Further, if the incident field is not a plane wave, but a cylindrical or spher
ical wave, GID must be modified to accept these incident fields as well. These 
various modifications will be considered in later sections. 

12.3 TIlE RAY·FIXED COORDINATE SYSTEM 

In the previous section, we considered the scalar diffracted field due to a plane wave 
normally incident (i.e., traveling in the negative p-direction) on a perfectly con-
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ducting infinite wedge whose edge was along the z-axis. Such a coordinate system 
is said to be an edge-fixed coordinate system. On the other hand, the obliquely 
incident and diffracted rays associated with the point Q in Fig. 12-15 are more 
conveniently described in terms of spherical coordinates centered at Q. Such a co
ordinate system is said to be ray-fixed [1]. Let the position of the source of the 
incident ray be defined by the spherical coordinates (s', 'Y~, cp '), and the observation 
point by the coordinates (s, 'Yo, cp) as indicated in Fig. 12-15. Note that the point Q 
is a unique point on the edge for a given source location and observation point. 

The plane containing the incident ray and the edge of the wedge will be referred 
to as the plane of incidence, whereas that plane containing the diffracted ray and 
the edge of the wedge will be referred to as the plane of diffraction. The unit vector 
s' is in the direction of incidence and the unit vector s in the direction of diffraction. 
It is then apparent that the unit vectors:Y~ and 4»' are parallel and perpendicular, 
respectively, to the plane of incidence, and that the unit vectors:Y 0 and cj, are parallel 
and perpendicular, respectively, to the plane of diffraction as shown in Fig. 12-16. 
'Y~ and 'Yo are angles less than 'TT12 meas.ured from the edge to the incident and 
diffracted rays, respectively, whereas:y ~ and :Yo are the implied unit vectors. Further, 
cp' and cp are angles measured from one face of the wedge to the plane of incidence 
and diffraction, respectively, whereas 4»' and 4» are the implied unit vectors. Note 
that cp' and cp are measured from the same face of the wedge. 

Let us write a symbolic expression for the diffracted field in matrix form as 

(12-46) 

where [Ed] and [E'l are column matrices consisting of the scalar components of the 
diffracted and incident fields respectively, [D] is a square matrix of the appropriate 
scalar diffraction coefficients, and p is the distance from the wedge edge to the 
observation point, and A(p) is a spreading factor. Now if the edge-fixed coordinate 

x 

z 
Observation point 

es 

A 

. s'=i~ x +' 
s =.yo x. 

ro = r~ 

k-~~----------Y 

Y 

s' 
Source point 

FigUre U-15 Geometry for three
dimensional wedge diffraction 
problem. 
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Edge Figure U-16 Ray-fixed coordinate system. 

system is used, it is clear that [Ed] will have, in general, three scalar components 
E~, E~, and E~ and [D] will be a 3 x 3 matrix. It can be shown that in such a 
situation seven of the nine terms in [D] are nonvanishing. However, when the 
ray-fixed coordinate system is used, there is no (radial) component of the diffracted 
field in the direction of the diffracted ray tube since the incident field is not allowed 
to have a component in the direction of the incident ray tube. It follows that there 
are then only two possible components of the diffracted field, E~ and E~, and only 
two components of the incident field, E~, and E~,. Clearly, [D] is then a 2 x 2 
matrix. In this case, [D] has nonvanishing terms on the main diagonal. Thus, for 
plane wave incidence in the ray-fixed system, (12-46) can be written as 

[E~(S)] = [-D II 
E~(s) 0 

o ] [E!,(Q) ]A(S)e-j /3>" 

-Dol. E~'(Q) 
(12-47) 

where the scalar diffraction coefficients DII and Dol. are momentarily undefined and 
will be given in the following section. 

It is apparent that the use of the ray-fixed coordinate system instead of the edge
fixed system reduces the diffraction matrix from a 3 x 3 matrix with seven nonvan
ishing terms to a 2 x 2 matrix with but two nonvanishing terms. Thus, the ray-fixed 
system is the natural coordinate system to be used for wedge diffraction and the 
importance of using it can hardly be overemphasized. 

We have chosen to use the notation DII in association with E~'(Q) and Dol. in 
association with E~,(Q) not because E~, and E~, are parallel and perpendicular, 
respectively, to the diffracting edge (which they are at normal incidence when 
y~ = 90°), but because E~, and E~, are parallel and perpendicular, respectively, to 
the plane of incidence as shown in Fig. 12-16. 

Since E~, and E~, are parallel and perpendicular, respectively, to the plane of 
incidence, we will let E~, be written as E1I and E~, as E1. Similarly, E~(s) and 
E~(s) are parallel and perpendicular, respectively, to the plane of diffraction as 
shown in Fig. 12-16. Thus, we let E~ be written as E1I and E~ as E1. With these 
notational changes, (12-47) may be rewritten as 

[E~ (S)] = [-DII 0] [E11 (Q)]A(S)e-j /3>" (12-48) 
Eol.(s) 0 -Dol. E1 (Q) 
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We will use this notation throughout the remainder ofthe chapter, keeping in mind 
that when the II and 1. symbols are associated with E i

, reference to the plane of 
incidence is implied. When the II and 1. symbols are associated with Ed, reference 
to the plane of diffraction is implied. 

12.4 A UNIFORM mEORY OF WEDGE DIFFRACTION 

The modem version of GTD can be divided into the two basic canonical problems 
of wedge diffraction and curved surface diffraction plus the lesser but more complex 
problems of vertex diffraction, tip diffraction, and other higher-order phenomena. 
In the application of wedge diffraction to antenna problems, the important features 
of antennas are modeled by perfectly conducting wedges. For example, the sectoral 
hom antenna can be modeled by two half-planes as shown in Fig. 12-18 for the 
purpose of analyzing the E-plane pattern [10]. In such a problem, however, it is 
necessary to use cylindrical wave diffraction coefficients instead of plane wave dif
fraction coefficients as in Sec. 12.2. The first use of cylindrical wave diffraction in 
the treatment of antenna problems, such as in Sec. 12.5, was by Rudduck [10] who 
used Pauli's formulation together with the principle of reciprocity to calculate the 
necessary cylindIjcal wave diffraction. Problems involving spherical wave diffraction 
are also common. 

In Sec. 12.2, some early developments in the study of diffraction by a conducting 
wedge were presented. We saw that although some of the formulas presented are 
certainly useful for some engineering calculations, they are limited in their accuracy 
in a transition (shadow boundary) region [e.g., (12-42)], or when the observation 
point is near (r < A) the diffracting edge [e.g., (12-44)]. It would obviously be useful 
and convenient if there were available to us a theory of wedge diffraction having 
the property that it could accurately predict the diffracted field in such places as the 
transition regions or near the diffracting edge without the necessity for considering 
each type of incident field separately. Such a theory is available and is known as a 
uniform theory of wedge diffraction because it applies in all situations consistent 
with the postulates of the geometrical theory of diffraction given in Sec. 12.2. It is 
the purpose of this section to present the important results in this theory, known as 
UID, which is based on the numerous works of Kouyoumjian and Pathak [12-14]. 

In 1967, Kouyoumjian and co-workers obtained a generalized version of Pauli's 
result [i.e., (12-44)] with the resultant diffraction function VB expressed as 
vB(L, cfJ±), where L is a distance parameter more general than just the distance p 
used in Sec. 12.2, whereas cfJ ± retains the meaning used previously. In their work, 
the distance parameter is given by 

L= 

s sin2 'Yo 

p'p 

p + p' 

s's sin2 'Yo 

s + s' 

for plane waves 

for cylindrical waves (12-49) 

for conical and spherical waves. 

We note immediately that L is dependent on the type of incident wave and the 
angle of incidence 'Y~ (which equals the angle of reflection 'Yo) as well as the distances 
involved. The distance parameter L in (12-49) can be found by imposing the con
dition that the total field, which is the sum of the geometrical-optics field and the 
diffracted field, be continuous at shadow or reflection boundaries. 
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When the work of Kouyoumjian and co-workers is expressed in terms of the scalar 
diffraction coefficients DII and D1. where . 

(12-50) 

(12-51) 

we have (without proof) [12, 14] 

DII (L, 4>, 4>') = 2 ~ ~.fJ.' , 
1. n v L.7Tp sm 'Yo 

_e-i (7T/4) 

X [cot( 7T + ~n- 4>') ) F[f3La + (4) - 4>')] 

+ cot(7T- (~n- 4>'))F[f3La-(4) - 4>')] (12-52) 

=+= {cot(7T+ (~n+ 4>'))F[f3La+(4) + 4>')] 

+ cot(7T - (~n+ 4>'))F[f3La-(4) + 4>')]}] 

where, if the argument of F is represented by X, 

(12-53) 

Again, we see that a Fresnel integral appears in the expression for the diffraction 
coefficient. The factor F(X) may be regarded as a correction factor to be used in 
the transition regions of the shadow and reflection boundaries. Outside of the tran
sition regions where the argument of F exceeds about 3, the magnitude of F is 
approximately equal to 1 as Fig. 12-17 shows. Even within a given transition region, 
usually only one of the four terms in (12-52) is significantly different from unity. 
The transition function that is significantly different from unity goes to zero at the 
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Figure 12-17 Magnitude and phase of the transition function F({3La), where a = a+ or a-. 
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same rate that its cotangent multiplier goes to infinity. Thus the transition function 
prevents the singularity in (12-42) from occurring in (12-52) (see Prob. 12.4-7). 

The argument of the transition function, which is X = f3La~( cfJ ± cfJ '), may be 
calculated for a known value of f3L if a~ as a function of (cfJ ± cfJ') is known. To 
determine a+(cfJ ± cfJ') and a-(cfJ ± cfJ'), we use 

a~( cfJ ± cfJ') = 2 cosz[ 2n7TN~ -2 (cfJ ± cfJ ') ] (12-54) 

in which N~ are the integers that most nearly satisfy the four equations 

27TnN+ - (cfJ ± cfJ') = 7T (12-55) 

and 

(12-56) 

We note that N+ and N- may each have two separate values in a given problem. 
For exterior wedge diffraction where 1 < n ~ 2, N+ = 0 or 1 but N- = -1, 0 or 1. 
The factor a~( <P ± <p') may be interpreted physically as a measure of the angular 
separation between the field point and a shadow or reflection boundary. 

Now that we have all the necessary relationships to calculate D 1\ and Dol' we 
repeat (12-47) in the format of UID as 

[EJI (S)] = [-DII 0] [Ell (Q)]A(S)e-j/i< (12-57) 
Eis) 0 -Dol E~ (Q) 

where the spatial attenuation factor A(s) is defined as 

Vs· 

1 
1 

for plane, cylindrical, and conical wave incidence 

A(s) = [ S' ]112 
s(s' + s) 

for spherical wave incidence 

(12-58) 

It should also be mentioned that, since diffraction concepts apply to acoustical prob
lems, the diffraction coefficients"D II and Dol in (12-57) are sometimes written D sand 
Dh , respectively, which correspond to the acoustic soft and hard boundary condi
tions [14]. Software code based upon (12-52) for UTD is available in the public 
domain (see Appendix G.5) and in the previous edition of this text. 

Sample UTD Calculation 

The use of (12-49) to (12-58) is best illustrated by an example. Suppose we wish to calculate 
the diffracted field in Fig. 12-14 when 4> = 250°. We have in this case: 4> + 4>' = 325°; 
4> - 4>' = 175°; L = 3'\; f3L = 6'7T; n = 2. Thus, from (12-54) to (12-56) 

a+(4) + 4>') = 2 cos2(197S), where N+ = 1 

a+(4) - 4>') = 2 cos2(87S), where N+ = 0 

a-( 4> + 4>') = 2 cos2(162S), where N- = 0 

a-( 4> - 4>') = 2 cos2(87S), where N- = 0 
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From Fig. 12-17, using the respective values of a+ and a- above, we obtain 

F(6'1T'· 1.819) = 0.999 + jO.0146 

F(6'1T'·0.0038) = 0.318 + jO.216 

F(6'1T' . 1.819) = 0.999 + jO.0146 

F(6'1T' . 0.0038) = 0.318 + jO.216 

Using (12-52) and (12-58), we obtain 

From (12-57), 

or 

DiL, cp, cp') = -0.628 + j 0.0735 

A(s)e-i '& = 0.577 

Ef(s) = -0.363 + jO.0424 

IEf(s)I = 0.365 

which agrees with Fig. 12-14. It is worth noting that when the four correction factors F above 
are multiplied by their associated cotangent factor, it is the fourth term above that is much 
larger than the others. As mentioned earlier, usually just one of the terms in (12-52) turns 
out to be large, even close to a shadow boundary. Equation (12-52) will not exhibit a singular 
behavior at a shadow boundary as was the case in Sec. 12.2 with (12-39) and (12-42). 

If the field point is not close to a shadow or reflection boundary and C/>' =1= 0 or 
n'lT' (grazing incidence), the scalar diffraction coefficients D II and D 1. reduce to Kel
ler's diffraction coefficients [see (12-42) and (12-53)] that may be written as 

e-j
(Tr/4) sin(l7ln) [ 1 

DII (c/>, c/>'; 'Y~) = ~ ;z=n,fJ.. ,. ',1..,1.. , 
1. n v L.l7p sm 'Yo 17 0/ - 0/ cos - - cos --'----'--

n n (12-59) 

'IT' 1 cp + 1> ,] 
cos -;; - cos n 

This expression is valid for all four types of incident waves given in (12-49), which 
is important because the diffraction coefficient should be independent of the edge 
illumination away from shadow and reflection boundaries. However, from Sec. 12.2, 
we know that (12-59) will become singular as a shadow or reflection boundary is 
approached. 

Grazing incidence, where C/>' = 0 or nl7, is a special case that must be considered 
separately. In this case, D II = 0, and the expression for E1 must be multiplied by a 
,factor of~. If we consider grazing incidence to be the limit of oblique incidence, we 
can see how the need for the factor of ~ arises, because at grazing incidence the 
incident and reflected fields merge. When they merge, one-half of the total field 
propagating along the face of the wedge toward the edge is the incident field and 
the other half is the reflected field. The merged field is then regarded as being the 
"incident" field, but it is too large by a factor of 2 and the factor of ~ becomes 
necessary. That is, (12-57) requires the use of the free-space incident field and not 
the merged field. 

The uniform theory of wedge diffraction described in this section permits us to 
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consider diffraction problems wherein both the source and observation points are 
quite close to the diffracting edge (Le., a wavelength or even less). It also permits 
us to consider any type of TEM incident field. A more general expression for L, 
valid for an arbitrary wavefront incident on the straight edge of a wedge, appears 
in the literature [13, 14]. 

Unlike the edge diffraction formulas presented in Sec. 12.2, (12-52) is valid in the 
transition regions of the incident field shadow boundary and the reflected field 
shadow boundary. Equation (12-52) cannot be used to calculate the field at a caustic 
of the diffracted ray. This does not conflict with the concept of a uniform theory of 
wedge diffraction because geometrical optics itself is incapable of determining the 
field at a caustic. The field at a caustic may, however, be found through the use of 
a supplementary solution in the form of an integral representation of the field. The 
equivalent sources in the integral representation are determined from a suitable 
high-frequency approximation such as geometrical optics or the geometrical theory 
of diffraction. The calculation of the field at a caustic by such methods will be 
considered in Sec. 12.9. 

12.5 E-PLANE ANALYSIS OF HORN ANTENNAS 

To illustrate the application of the uniform theory of diffraction presented in the 
previous section, consider the E-plane hom antenna shown in Fig. 12-18a. In this 
section, we use the model shown in Fig. 12-18b to compute the complete E-plane 
pattern of the hom antenna. The model is simple and therefore particularly well-

PE Direct ray 

~ 
Q2(y=-il) 

-;.:-.,.. 
(b) 2 Diffracted 

ray from Q2 

Figure 12-18 Diffraction by a hom antenna. (a) E-plane sectoral hom. (b) Model of 
E-plane sectoral hom. (c) Neglected rays. 
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suited to use as a first example of the application of UTD. The model has only three 
sources of radiation and is two-dimensional in nature (i.e., infinite in the 
±x-directions), which in the E-plane well-represents a three-dimensional horn an
tenna. 

The equations applicable to the analysis are as follows. Note that the angle 
{ (0 ~ { ~ 271') is used instead of () (0 ~ () ~ 71') so that positions in the yz-plane 
may be defined unambiguously. In the far field, we have (in the yz-plane) 

r1 = r - a sin { 

r2 = r + a sin { 

r3 = r + PE cos { cos {E 

(12-60) 

(12-61) 

(12-62) 

where r1 and r2 are distances to the far-field observation point P(r, () from diffracting 
edges 1 and 2, respectively, and r3 is the distance from the line source to the far
field observation point as shown in Fig. 12-18b. Thus, the incident field along the 
direct ray can be expressed by 

-jf3r3 -jf3r 
o e e or.> r Y E'(P) = -- "" -- e'"PECOS.COS'E vr; Vr ' (12-63) 

and 

(12-64) 

Note that in applying UTD, we do not replace the conducting surfaces with equiv
alent currents radiating in free space as in the preceding chapters of this book. 
Instead, the conducting surfaces are retained. As a consequence, for example, 
Ei(P) = 0 when { > {E' 

The edge diffracted field at P(r, () from a diffraction point Q1 on the "top" edge 
may be written as 

1 -j{3rl 1 -j{3r 

Ef(P) = 2 E~(Ql)DiL. 4>. 4>') evr;- = 2 E~DiL, 4>, 4>') eyr,. ej{3asin l , 

and 

71' 
- - ~ (~ 71' + (E 

2 

Ef(P) = 0, 
371' 

71' + {E < «"2 

(12-65) 

(12-66) 

Similarly, the diffracted field at P(r, () from a diffraction point Q2 on the "bottom" 
edge may be written 

(12-67) 

and 

(12-68) 
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where 

. . e-jfjpE 

E~(Ql) = E~(Q2) = ~ r
VPE 

(12-69) 

Thus, the total field at an observation point Per, () may be written as the scalar sum. 

E(P) = Ei(P) + Et(P) + E~(P) (12-70) 

In the above equations, scalar D1. denotes the diffraction coefficient at the point 
of diffraction Qm for the case where the incident electric field is normal to the edge. 
The diffraction coefficient at Qm depends on the geometry of the incident and dif
fracted rays at Qm and is most accurately given by (12-49) and (12-52). Here, of 
course, we consider the incident field to be cylindrical and use the cylindrical wave 
form for the distance parameter L. Ei(Qm) is the incident field that is perpendicular 
to both the edge and incident ray. 

At first glance, the factor of ~ in (12-65) and (12-67) might appear to be incorrect. 
However, in this problem, the rays from the line source are incident at a grazing 
angle with the surface of the hom walls and therefore deserve special consideration. 
Grazing incidence, where cp' = 0 or mr, requires that D 1. in (12-57) be multiplied 
by a factor of ~ as discussed in the preceding section below (12-59). 

Figure 12-19 shows results calculated with the model shown in Fig. 12-18b and 
also experimental data. The agreement between the calculated results without using 
double diffractions (dashed curve) and the experimental results is seen to be very 
good. Note that there is a discontinuity in the calculated results when, = 900 (or 
2700

). This discontinuity may be removed simply by including rays that diffract from 
Q2 (or Ql) and travel across the hom aperture to Ql (or Q2) and are diffracted a 
second time as indicated in Fig. 12-18c. 

Also shown in Fig. 12-18c are several other rays that have not been included in 
the calculated results because in this problem they provide a relatively weak nu
merical contribution. Strictly speaking, those rays shown in Fig. 12-18c that do not 
involve double diffractions should be included in the analysis. These are the two 
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Figure 12-19 Calculated and experimental E-plane patterns of an E-plane sectoral hom. 
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rays that experience a reflection after undergoing diffraction at Q2 (or Qh which 
are not shown). Of the two doubly diffracted rays shown, here only the one from 
Q2 to Ql is important because it compensates for the shadowing of Q2 when t> 90°. 
There is no similar compensation needed in the case of the other doubly diffracted 
ray that goes from Q2 to the "top" wall and back to Q2' 

In conclusion, we have used a simple model (i.e., Fig. 12-18b) to calculate the 
E-plane pattern of hom antennas with good results. Strictly speaking, we should 
have included some of the rays in Fig. 12-18c, but did not do so for the sake of 
simplicity without a loss of accuracy: It is a fundamental fact that in applying UTD 
(or GTD), one must be careful to identify and include all rays that arise in the 
problem. In the hom problem here, we were able to omit some of the rays only 
because they were not in or near a transition region and also because the rays in 
Fig. 12-18b are one or more orders of magnitude stronger than those in Fig. 12-18c. 

U.6 CYLINDRICAL PARABOLIC ANTENNA 

As a second example of the application of UTD, we consider the cylindrical para
bolic antenna shown in Fig. 12-20. We use the aperture integration procedure given 
in Chap. 7 to obtain the pattern in and near the main beam, but use UTD to compute 
the pattern everywhere else. As in the study of the hom antenna in the previous 
section, the model here is two-dimensional. We consider only the diffractions that 
occur at the edges of the parabolic surface and ignore any higher-order rays asso
ciated with the curved surface (e.g., see Sec. 12.11). 

First, let us consider the equation for obtaining the main beam and first few side 
lobes. From Sec. 7.1, we may write for the far field EA obtained by aperture inte
gration 

(12-71) 

Figure 12·20 Cylindrical parabolic 
antenna geometry. 
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where Ff(fJs) is the pattern of the electric line source current r that serves as the 
feed for the cylindrical parabolic reflector antenna. (If the line source pattern is 
isotropic, Ff(Os) = 1.) Equation (12-71) is a two-dimensional specialization of the 
equations in Sec. 7.1. 

Equation (12-71) can, of course, give us the pattern for 90°;:::: C;:::: -90°. However, 
since we must perform the aperture integration anew for each value of C, it is more 
efficient in the computational sense to use (12-71) for Co ;:::: C;:::: -Co, where Co is the 
angular extent of the main beam and the first side lobe or two, and then to use 
UTD for the remainder of the pattern. Clearly, we do not use aperture integration 
and UID simultaneously in the same angular sector. 

For the UTD model of the antenna, the following equations apply. For the singly 
diffracted field from Qb we have at the far-field observation point per, () 

and elsewhere 

Et(P) = 0, 

e-j /3rl 

Et(P) = Ell (Q1)D II (L, cp, cp') ~ c 
. v r1 

-j/3r 

= Ell (Q1)DII (L, cp, cp') e
Vr 

ej
{3a sin l 

(12-72) 

(12-73) 

where (12-60) has been used in (12-73). Similarly, the diffracted field at per, C) from 
Q2 may be written 

and elsewhere 

e-j /3r2 

E~(P) = E\I (Q2)DII (L, C/>, c/>') ~ c 
vr2 
-jf3r 

= Ei (Q )D (L -I.. -1..') _e _ e-j{3aSinl 
II 2 II ,0/, 0/ Vr 

where (12-61) has been used in (12-75). In both (12-73) and (12-75), 

. . e-j/3Po 

Eil (Q1) = Eil (Q2) = ~ r- Ff(Oo) 
vpo 

The total field at an observation point per, () may be written as either 

E(P) = Ei(P) + EA(P) 

or 

E(P) = Ei(P) + Et(P) + E~(P) 

depending on the angle C as mentioned earlier. 

(12-74) 

(12-75) 

(12-76) 

(12-77) 

(12-78) 

Figure 12-21 shows a calculated pattern for a cylindrical parabolic reflector having 
a lOA aperture (i.e., 2a = lOA) and a focallength-to-diameter ratio of 0.5. The 
electric line source that models the feed has a pattern of Ff(Os) = cos2 Os for Os ;:::: 
90° and Ff(Os) = 0 in the forward half-space where Os < 90°. We note that the pattern 
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Figure U-21 Calculated H
plane pattern of a cylindrical 
parabolic rl!fiector with D = 10'\ 
having a focal-Iength-to
diameter ratio of 0.5. Angle " degrees 

has a small discontinuity at l = 90° (and 270°) and this discontinuity can be removed 
by including double diffracted rays between Ql and Q2 as was done for the hom in 
the previous section. We also note that there is a small discontinuity at about l = 
127° (and 233°) that is a result of the shadowing of Q2 (or Ql when l"'" 233°). The 
relatively high level of the pattern in the vicinity of l = 120° is due to the spillover 
caused by the feed pattern. 

It is interesting to note that for the chosen feed pattern of cos2 fJ., the aperture 
electric field distribution is almost that of a cosine on a pedestal with a -IS-dB edge 
illumination as shown in Fig. 12-22. Referring to Table 4-2, we see that such a 
distribution should produce a pattern with a side-lobe level of -22 dB. Examination 
of the pattern in Fig. 12-21 shows that indeed the side-lobe level is -22 dB. Thus, 
the pattern in the forward half-space could be we~I represented by a line source, as 
discussed in Chap. 4, once the aperture field distribution is known. 

In this section, we have examined the H-plane pattern of a cylindrical parabolic 
antenna (i.e., an electric line source was used to model the feed). We could also 
analyze the E-plane pattern when a magnetic line source is used to model the feed. 
This is left as an exercise for the student. 
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Figure U-22 Aperture distribution 
for the parabola of Fig. 12-21 with a 
feed pattern of cos2 Os. 
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12.7 RADIATION BY A SLOT 
ON A FINITE GROUND PLANE 

To illustrate further the application of the uniform theory of diffraction, consider 
the situation in Fig. 12-23 where a radiating slot is asymmetrically located along the 
x-axis of the rectangular plate. We desire pattern information in both principal 
planes to determine the amount of ripple in the pattern caused by edge diffraction. 
In general, the edges denoted Ql and Q2 will be illuminated unequally unless d1 = 
d2 and thus the pattern in the xz-plane will not be symmetrical about the z-axis. 

The geometry of the problem to be investigated, as depicted in Fig. 12-23, is a 
narrow aperture (or slot) with length T on a finite ground plane of dimensions A 
and B. The narrow slot has an electric field polarized in the x-direction and has a 
cosine-distribution in the y-direction. The length of the slot is taken to be one-half 
wavelength at the operating frequency. 

For radiation in the xz-plane above the ground plane, the problem is represented, 
to a first degree approximation, by an infinitely long slot. According to UID, 
there exist two edge-diffracted rays originating from edge points Ql and Q2 due 
to the finiteness of the ground plane. Therefore, for a far-field observation point 
per, (), <p = 0) in the region of interest, the total field is the sum of the contributions 
from the direct ray and two edge-diffracted rays as shown in Fig. 12-24. Doubly 
diffracted rays exist but are small compared to the singly diffracted rays shown in 
Fig. 12-24 and are not included in the present analysis. 

For radiation in the yz-plane above the ground plane, a sampling of N + 1 ideal 
sources with cosine distribution is performed. There exist no first-order edge
diffracted rays because the incident ray is zero in the yz-plane. A geometry of 
five samplings is shown in Fig. 12-25. The end sources are of zero amplitUde since 
tangential E is zero at the ends of the slot. 

First,let us consider the radiation pattern in the xz-plane. The direct ray from 
the narrow slot at an observation point per, e, <p = 0) is 

The edge-diffracted ray from Ql at per, e, <p = 0) becomes 

Figure 12-23 Geometry of a slot on a 
rectangular conducting plate. 

(12-79) 

(12-80) 
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Diffracted ray Diffracted ray 
from Q2 z Direct ray from Q, 

Figure 12-24 Direct and diffracted rays 
contributing to the xz-plane pattern. 

with 
-j{3iJl 

E~(Ql) = iEo ~ IT = iE~(Ql) 
vd1 

The edge-diffracted ray from Q2 at per, 8, cp = 0) yields 

with 

A 1 . e-j {3r2 

E~(P) = 0 2 E~(Q2)DiL, cp, cp') y,:; 

-j{3iJ2 

E~(Q2) = iEo ~ IT = iE~(Q2) 
vd2 

(12-81) 

(12-82) 

(12-83) 

The total field at an observation point per, 8, cp = 0) then becomes (in the sym
metrical case) 

E(P) = Ei(P) + Et(P) + E~(P) (12-84) 

The parameters r, r10 d10 r2, and d2 are shown in Fig. 12-24. The parameter Eo 
represents the magnitude of the electric field at the narrow slot in the xz-plane. 
E~(Qm) is that component of the incident field which is perpendicular to both thl! 
edge and the incident ray. To first order DII is zero. However, there is a small amount 
of diffraction that does take place and this is called the slope diffraction (see Prob. 
12.7-1). The addition of slope diffraction to the diffracted field ensures that not only 
is the total field continuous across a shadow boundary, but also the derivative of 
the total field is continuous. 

z P(r,9,¢/) 

.... ------y Figure 12-25 Direct rays from the weighted 

I ~ T ~ I sources representing the slot contribution to the 
~ .. ----B > yz-plane pattern. See Fig. 12-23. 
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For the slot problem of Fig. 12-23, the radiation in the yz-plane may be analyzed 
in the region above the ground plane, to a first degree approximation, by an array 
of dipole sources with a cosine-distributed amplitude across the array. Let the total 
number of dipoles in the array be N + 1; then the separation between dipoles is 

T 
s =-

N 
(12-85) 

The total field at an observation point P(r, 0, 4> = 7T/2) then becomes 

NI2 () A m7T . . 
E(P) = 6Eo sin(90° - 0) L: cos - e,n{3s 8m II 

n=-NI2 T 
(12-86) 

In Fig. 12-25 is shown the geometry of the yz-plane with five dipoles (N = 4) in the 
array. 

Figure 12-26 shows the far-field pattern results in the xz- and yz-planes at both 1 
and 3 GHz. The ground plane is 61 X 61 em but the slot is taken to be one-half 
wavelength at each frequency and diffraction in the yz-plane has been assumed to 
be negligible, and under this assumption the pattern in the yz-plane is the same at 
each frequency as indicated in Fig. 12-26. However, due to diffraction, the two 
patterns in the xz-plane are different, the "ripple" in the patterns being the result 
of the diffracted energy. Since the slot is located symmetrically on the ground plane, 
we see that the pattern is symmetric about the z-axis. For completeness, the slope 
diffraction contribution to the yz-plane pattern at 1 and 3 GHz is also shown. Slope 
diffraction is proportional to the spatial derivative of the incident field with respect 
to the direction that is normal to both the incident ray and the edge at Q (see Prob. 
12.7-1). In contrast, the edge diffraction we have considered thus far is proportional 
to the incident field at Q. In the problem considered in this section, the incident 
field at Q3 and Q4 in Fig. 12-23 is zero. However, the derivative of the incident field 
with respect to the normal (z in this case) is not zero at either Q3 or Q4. 

Although an experimental comparison is not shown here, such comparisons have 
been made with excellent results [14], even though diffraction from the four corners 
or vertices of the ground plane has been neglected. We know from experimental 
measurements that vertex diffraction is generally much weaker than wedge diffrac-

xz-plane pattern 
--30Hz 
----10Hz 

z 

Figure 12-26 Far-field patterns in both principal planes at 1 and 3 GHz. 
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tion. Thus, the total far field is given to a good approximation by (12-84). In the 
problem considered here, vertex diffraction is weak in the xz- and yz-planes and 
somewhat stronger in the cf> = 450 and cf> = 1350 planes. 

u.s RADIATION BY A MONOPOLE 
ON A FINITE GROUND PLANE 

As another application of the uniform theory of diffraction and also as an example 
of a problem with a caustic, consider the two situations depicted in Fig. 12-27. First, 
consider the situation in Fig. 12-27 a of a )./4 monopole on a square plate and suppose 
we wish to obtain the pattern in the xz-plane. For purposes of far-field calculation 
and conceptual simplicity, a suitable approximation to the )./4 monopole is the ideal 
dipole of Chap. 1. We will consider the ideal dipole to be resting on the surface of 
the ground plane. Thus, following the development of the previous section for the 
slot, we have for the direct ray from the ideal dipole at per, (), cf> = 0) 

-j{3r 
• A e 

E'(P) = 9Eo - sin () 
r 

(12-87) 

which now must obviously be considered a spherical wave. The edge-diffracted ray 
from Ql at per, (), cf> = 0) appears to emanate from a single point and is therefore 

(12-88) 

with 

-j/3dl 

E~(Ql) = zEo e d
1 

= zE~(Ql) (12-89) 

Similarly, the edge-diffracted ray from Q2 at per, (), cf> = 0) is 

A 1 . e-j {3r2 

E~(P) = 9 2- E~(Q2)DiL, c/J, c/J')Wz--
r2 

(12-90) 

with E~(Q2) given by (12-89) since the source is located at the center of the ground 
plane. Diffraction from the sides containing Q3 and Q4 does not contribute to the 
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Figure 12-27 Monopole on a finite ground plane. 
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Figure U-28 Radiation pattern of an ideal monopole on a circular ground plane 6A in 

diameter. The calculated curve by Lopez [15] is for a 6A X 6A square ground plane. 

far field in the xz-plane since the monopole is positioned at the center of the ground 

plane and the diffracted fields from these two sides will cancel one another. As in 

the case of the slot of the previous section, we neglect diffraction from the four 

comers or vertices of the ground plane. The corresponding pattern for a 6A square 

ground plane is given in Fig. 12-28 (dashed curve). 

If we now consider the geometry of Fig. 12-27b, we note that in the xz-plane, the 

diffracted radiation will also appear (due to Fermat's principle) to come from two 

points that are called stationary points. We note also that the z-axis is a caustic in 

this problem because all rays from the circular edge of the ground plane intersect 

along the z-axis. Therefore, although we can expect to use the two stationary points 

to calculate the diffracted field contribution to the pattern in regions not near the 

caustic [15], we can likewise expect the "two-point approximation" to be increas

ingly in error as the observation point P moves nearer the caustic. Figure 12-28 

shows that indeed this is the case since the measured and two-point calculated 

patterns diverge as both (J ~ 0 and (J ~ 'IT, which is also a caustic. The apparent 

difficulty in the vicinity of the caustic can be overcome, as suggested in Fig. 12-28, 

by the use of a fictitious equivalent edge current. As will be seen in the next section, 

the so-called equivalent current is not a physical current at all, but rather a math

ematical artifice for predicting the correct diffracted field at or near a caustic. 

U.9 EQUIVALENT CURRENT CONCEPTS 

In the previous section, we saw that, in the treatment of the circular ground plane, 

we could obtain the diffracted field using ordinary wedge diffraction theory if the 
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point of observation was not near a caustic. In essence, we treated the problem as 
a two-dimensional one with the diffraction taken as that from an infinite two
dimensional wedge, whereas in fact we had a finite edge that was not straight, but 
curved. 

To properly treat the diffraction by a curved edge or finite wedge (i.e., finite 
length of the edge), it is necessary to consider the concept of equivalent currents 
[16]. As we shall see, the strengths (i.e., amplitude and phase) of these so-called 
equivalent currents will be determined by the canonical problem of wedge 
diffraction. 

Consider the wedge of Fig. 12-15 to be of finite extent, -el2 :s; z(Q) :s; el2. To 
start, we assume the currents are the same as those on an infinite wedge. Let us 
determine the current flowing on the edge of the infinite wedge that would produce 
the scattered field predicted by wedge diffraction analysis. Thus, we specify an in
finite line source whose current is determined by the diffraction coefficient. If the 
z-directed line source is an electric current, it can be shown in a manner similar to 
that used in Secs. 1.5 and 10.13.2, that the solution to the scalar wave equation 
is [17] 

'" = !; H 0 (2)({3p) 

and therefore that the z-component of the electric field is 

E
z 

= -{32r HO(2)({3p) 
4W8 

(12-91) 

(12-92) 

where Ie denotes an electric current. If the argument of the Hankel function 
H 0 (2)({3p) is large, then using the asymptotic representation of the Hankel function, 
we obtain 

(12-93) 

We note that (12-93) represents an outward traveling wave in the cylindrical coor
dinate system with the proper p-ll2 dependence for a two-dimensional problem. If 
instead the line source is a magnetic current 1m

, then we have 

{3 ej(-tTI4) . 
Hz = -- 1m e-J{3p 

TJ 2v'2Tr{3p 
(12-94) 

Since we are considering a two-dimensional problem, we can also apply wedge 
diffraction theory to obtain the diffracted field from the edge for the two orthogonal 
polarizations. Thus, 

-j{3p 

Ez = DII (L, cp, cp')E~ eyp (12-95) 

and 
-j{3p 

Hz = D.L(L, cp, cp')H~ eyp (12-96) 

where DII and D.L are given in Sec. 12.4. Usually, however, we find that the use of 
equivalent currents involves the calculation of diffracted fields in regions away from 
an incident field or a reflected field shadow boundary or their associated transition 
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regions. Thus, the asymptotic form in (12-59) for arbitrary incidence angle 'Yo is 

usually sufficient. 
From (12-93) with (12-95) and also (12-94) with (12-96), we can solve for the 

electric and magnetic currents of an infinite line source that will produce the same 

far fields predicted using the diffraction coefficients. Thus,s 

r = ~~ E~DII ( cp, cp'; ~)Y2'7T/3 ej(-rr/4) (12-97) 

and 

r = 2~11 H~D.L( cP, cP'; ~)Y2'7T/3 eK•
r/4

) (12-98) 

We note that (12-97) and (12-98) give the equivalent currents r and 1m
, but they 

are numerically different for each value of cP and cP'. The fact that these currents 

are different for different observation points (Le., values of cP) serves to emphasize 

the fact that these equivalent currents are not true currents, but fictitious currents 

that simply aid us in calculating diffracted fields. 
Considering Fig. 12-15 with the ray incident normally on the edge ('Yo = '7T12), we 

have, respectively, for the far-zone diffracted fields 

. . () Jll2 
Ee = JWJJ.- sm e-j /3r le(z ')ei/3Z' cos (J dz' 

(J 4'7Tr -l12 Z 
(12-99) 

and 

(12-100) 

As in Chap. 4, we see that since the currents are constant with respect to z', (12-99) 

and (12-100) reduce to results in the general form of sin(x)lx with respect to the 

O-coordinate. 
For the case of nonnormal incidence (Le., 'Yo *" '7T/2), we can proceed in the same 

manner and show that 

(12-101) 

and 

1m = 2~11 H~D.L( cP, cP'; 'Yo)Y2'7T/3ei(7r/4)ei/3f cos "Yo (12-102) 

which includes the phase term to account for the traveling-wave-type current due 

to the oblique angle of incidence. In obtaining (12-101) and (12-102), we have 

neglected the effects of the terminations at z = ± l12. If the effect of the termination 

could be specified, an alternative equivalent current could be composed of the cur

rents given above plus a reflected current due to the termination. These reflection 

effects would be expected to be of most concern in the backscatter direction, rather 

~ote that we denote the diffraction coefficient to be a function of L, 4>, and 4>' to imply the Fresnel 

integral form of the uniform theory in (12-52) and use 4>, 4>', and 'Yo when the asymptotic form in (12-59) 

is intended. 
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than in the direction of the bistatic scattered field. Even so, as the edge becomes 
long in terms of the wavelength, termination effects diminish. In addition, usually 
the above currents find their application in the angular region near the plane normal 
to the edge, further diminishing any possible termination effects. 

When we obtain equivalent currents, we invoke the postulate of diffraction theory 
that diffraction is a local phenomena. For curved edges, we stretch this postulate 
even further than for the straight edge. That is, we assume that each point on a 
curved edge acts as an incremental section of an infinite straight edge and thereby 
determine the equivalent current. Thus, for example, the equivalent current that 
would enable us to calculate the diffracted field at the caustic of the problem in Fig. 
12-27b would be [14] 

r = -(~ x s') . EiD.L( 4>, 4>'; ~)n e-j
(7T/4) (12-103) 

where we have used the result of (12-98) and the fact that (~ X s') gives us the unit 
vector perpendicular to the ray from the sources to the edge. The use of (12-103) 
gives the calculated results in Fig. 12-28, which agree with experimental measure
ments in the caustic region. 

If, on the other hand, the source in Fig. 12-27b were a magnetic dipole, then the 
required equivalent current would be [14] 

r = - ~ ~ Ei DII (4), 4>'; ~)n e-j(7T/4) (12-104) 

For an arbitrary polarization of the incident wave, both electric and magnetic 
currents are necessary to obtain the total diffracted field. Such a situation would 
occur, for example, in the calculation of the fields at or near the rear axis (caustic 
region) of a circular parabolic reflector antenna. At the rim of the parabolic dish, 
the polarization of the field incident from the feed is generally neither perpendicular 
nor parallel to the edge. Thus, both electric and magnetic equivalent currents at the 
rim would be required to obtain the total diffracted field in the rear axial region. 

U.IO A MULTIPLE DIFFRACTION FORMULATION 

In the previous two sections, we considered radiating elements on infinitely thin 
ground planes (Le., n = 2). If, instead, the ground plane were "thick" such that one 
side could be represented by two 90° wedges as shown in Fig. 12-29, then it would 

Magnetic/ 
line source 

Figure 12·29 Magnetic line source exciting surface rays 
on a half-plane of finite thickness. 



582 Chapter 12 CEM for Antennas: High-Frequency Methods 

have been necessary to consider the multiple diffractions that occur between the 
two closely spaced edges. In such a situation, some of the energy diffracted by one 
edge is, in tum, diffracted by the other, giving rise to second-order diffraction or 
double diffracted rays. Clearly, some of these double diffracted rays give rise to still 
higher-order multiple diffractions. 

If, to reasonably approximate the total diffracted energy, it is necessary to include 
doubly diffracted rays, then it is usually simplest to include them in the same manner 
used to account for the first-order diffraction in the previous two sections. On the 
other hand, if it is necessary to account for diffractions higher than second-order, it 
is advantageous to use a procedure known as the method of self-consistency. 

Briefly, the method of self-consistency incorporates all the diffracted rays (i.e., 
single as well as all higher-order multiple ones) into a total (or net) diffracted field 
from each diffracting edge. Thus, each of these total edge diffracted fields is excited 
by a surface ray. Between the two diffracting edges there are, therefore, two surface 
rays traveling in opposite directions. The amplitudes and phases of these two surface 
rays are treated as unknowns. To solve for the two u~nowns, two equations are 
generated by applying single diffraction conditions at each of the two diffracting 
edges. . 

To illustrate, consider Fig. 12-29. The coefficients C1 and C3 are the unknown 
amplitudes (i.e., magnitude and phase) of the two surface rays on the surface abo 
The coefficients C2 and C4 are known once C1 and C3 are known. Thus, we may 
write the following equations. At edge a, 

and at edge b, 

C3 = C1Rab + V3 

and knowing C1 and C3 , we have 

C2 = TbaC3 + V2 

C4 = TabC1 + V4 

(12-105) 

(12-106) 

(12-107) 

(12-108) 

where Rand T are reflection and transmission coefficients, respectively, and V is 
the direct source contribution to the corresponding surface ray. 

Equations (12-105) and (12-106) may be written in matrix form as 

(12-109) 

or compactly as 

[Z][C] = [V] (12-110) 

where [Z] is taken to be a coupling matrix and [V] is the excitation matrix. The 
elements of the coupling matrix specify the interactions between the two surface 
rays. In general, two surface rays can couple only if they travel on the same or 
adjacent faces of a polygon as shown in Fig. 12-30. This, in general, leads to a sparse 
[Z] matrix. 

For the situation in Fig. 12-29, the reflection and transmission coefficients are 

(12-111) 
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'Magnetic line 
source 

C2tla 'I fe, 
Cs t 1.,;. d~ ______ ---.;....IC • tC6 

---+- -+--
C7 Cs 

Figure 12-30 Magnetic line source exciting 
surface rays on an infinite four-sided polygon 
cylinder. 

where cp + = cp - = 0 and 'Yo = 90°, and 

e-j /3Pab 1 
Tab = ~ ~ -2 DiL, cp, cp') 

VPab 
(12-112) 

where cp + = 27T - 7T/2, cp - = 0, and 'Yo = 90°. For Tab, cp + is 27T less the interior 
wedge angle of 7T/2. In both cases, the distance parameter L used is that for cylin
drical waves. For the special situation depicted in Fig. 12-29, Rab = Rba and Tab = 
Tba• This is not true in general. For example, it would not be true for the situation 
depicted in Fig. 12-31. 

For the two excitation matrix elements, we have 

(12-113) 

(12-114) 

where Psa is the distance from the line source to edge a and Psb is the distance from 
the line source to edge b. If the line source did not directly illuminate, say, edge b, 
then V3 would be zero. Here, we have considered only the TE case. A consideration 
of the TM case requires a knowledge of slope diffraction (see Sec. 12.7). 

As stated earlier, it may be sufficient in many problems to only take into account 
second-order diffraction, thereby neglecting all higher-order multiply-diffracted 
rays. An example of a situation where the method of self-consistency greatly sim
plifies the amount of work required for solution is suggested by Fig. 12-29. It is 
possible and practical to approximate the curved surface of Fig. 12-29a with a poly
gon such as that in Fig. 12-31b. For an accurate approximation to the curved sur
faces, the edges in Fig. 12-31b may be sufficiently close together that higher-order 
mUltiple diffractions should be taken into account. The easiest way of doing that is 
via the method of self-consistency. However, the self-consistent field method only 
works well provided an edge is not in the transition region of a diffraction from 
another edge. This is a possibility if adjacent edges of the polygon are closely aligned 
and this limits the degree to which the curved surface may be approximated. 

o 
(a) Curved surface. 

o 
(b) Polygon approximation. 

Figure 12-31 Polygon approximation 
of a curved surface cylinder. 
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12.11 DIFFRACTION BY CURVED SURFACES 

In previous sections, we saw how a perfectly conducting wedge diffracts energy into 
the shadow region. Curved surfaces can also diffract energy. That is, when an in
cident ray strikes a smooth, convex-curved perfectly conducting surface at grazing 
incidence, a part of its energy is diffracted into the shadow region as illustrated by 
Fig. 12-32. 

In Fig. 12-32, the incident plane wave undergoes diffraction at the shadow bound
ary at point Ql that is a point of tangency for the incident ray. At this point, a 
portion of the energy is trapped, resulting in a wave that propagates on the surface 
of the scatterer, shedding energy by radiation in directions tangent to the surface 
(e.g., point Q2) as it progresses around the curved surface. 

This wave that propagates along the surface in the shadow region is known as a 
creeping wave. The creeping wave can be described by an attachment (diffraction) 
coefficient at the point of capture, a launching (diffraction) coefficient at the point 
of radiation, an attenuation factor to account for the rate of radiation, and a de
scription of the path on the scatterer transversed by the creeping wave in order to 
account for phase delay and total attenuation. Thus, the creeping wave field ECW(s") 
along the path s", in the case of a two-dimensional problem, can be written as 

ECW(s") = E i(Ql)DS(Ql)G(S") e-h(s")ds" (12-115) 

where 

ECW(s") = creeping wave field along s" 
DS(Ql) = the surface diffraction coefficient (attachment coefficient) at 

point A 

o 

'Y(s") = a(s") + j{3(s") = creeping wave propagation factor 
s" = arc length along the creeping wave path 

G(s") = the ray divergence factor determined by the geometry of the ray 

1 dT/(QI) 

hI 

~------

Top view (source at 0) 

\ 

b1 wavefront~ 

Dluminated ./ 
/. 

Caustic ~././ - Shadow boundary 
A ~, 
Rl A '<', 

11 ,./ ,~, P. A 

~ ____ '~, R2 Shadow 

region 

Surface ray'\' region 
Ql s .. 

~~Q2 
~ Diffracting surface 

Side view 

Figure 12-32 Diffraction by a smooth convex surface. 
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Table 12-1 Diffraction and Attenuation Coefficients for a Convex Cylindrical Surface 

Airy Function 
Case (Ds)2 a and its Zeros 

EI/ 
p~3 e-j7T/12 !l... ej7T/6 ({3pg) 113 q = 2.33811 

'Tt'1/2 2516 {31!6 (Ai'( _q»2 Pg 2 A;( -q) = 0.7012 

E.L 
p!/3 e - j7Ti12 

q ej7T/6 ({3pg ) 113 q = 1.01879 
'Tt'1!2 2516 {31!6(q) (Ai( _q»2 Pg 2 Ai( -q) = 0.5356 

As already stated, the surface ray sheds energy tangentially as it propagates along 
a geodesic on the curved surface, with the result that energy is continuously lost, 
resulting in attenuation. As in geometrical optics, we assume that energy in the flux 
tube between adjacent rays is conserved, which gives the two-dimensional geomet
rical optics spreading factor as 

G(s") = (12-116) 

where d1J(s") is the transverse dimension of the surface ray tube as shown in Fig. 
12-32. For a plane wave at normal incidence, G(s") is unity. 

Keller and Levy [21,22] have given the first-order terms in the expressions for 
the curved surface diffraction coefficients and attenuation constants. Kouyoumjian 
[14] gives higher-order terms and uses the notation of a soft surface for the case 
where E is tangential to the surface and hard surface for the case where E is normal 
to the surface. To be consistent with our earlier notation, we will use the perpen
dicular and parallel notation of earlier parts of this chapter. 

At point Qz, there will be a second surface diffraction coefficient DS(Q2) that will 
account for the tangential detachment (launch) of a ray from the surface toward 
the observation point at a distance e from point Qz. Thus, we can write for the 
creeping wave field shed at Qz and observed at the observation point P 

d (Q) Qz -j{3f 
gW(P) = E i(Ql)DS(Ql)DS(Qz) d~(Q:) e-fQl

a (s")ds"e-j
{J(Q2-Ql) eve (12-117) 

For a circular cylinder, the diffraction coefficients and attenuation constants for 
the asymptotic approximation to the exact solution are given by the quantities in 
Table 12-1, where Pg is the radius of curvature along a geodesic. For a normally 
incident plane wave on a circular cylinder, Pg = a. Ai( -x) is the Airy function [7,14]. 
The creeping wave surface field is more accurately represented by a series of modes, 
but only the first such mode is given in Table 12-1 since the higher-order modes are 
not numerically significant for the circular cylinder treated here. 

Creeping Wave on a Circular Cylinder 

Consider the two-dimensional problem of calculating the radar echo width of a right circular 
cylinder normal to the axis of the cylinder. The echo width lTw is the two-dimensional coun
terpart to the three-dimensional echo area or radar cross section. lTw is defined to be 

. 1£'12 

lTw = hm 2'Tt'f l-i l2 (12-118) 
t_oo E 

where f is the range to the target. 
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Let the cylinder be of radius a and centered about the z-axis as in Fig. 12-33. Assume the 

incident wave is given by 

(~D = e+j~e (12-119) 

The two-dimensional geometrical optics field reflected in the backscatter direction may be 

found from (12-21) and (12-24) to be 

(Ell) = (Ell) [R] fa (12-120) 

E~ E~ ~2i 

where e » a and where R is given by (12-25). Applying the echo width definition above 

gives 

(12-121) 

Next, the effects of creeping waves around the cylinder are included. At the attachment 

point, write 

and at the detachment point, write 

ECW(Q2) = Ei(Ql)Ds(Ql) e-j~7Ttle-f; ads" = Ei(Ql)Ds(Ql) e-j~7Ttle-a7Ttl (12-123) 

G(s") is unity since there is no transverse spreading of the rays on the surface ofthe cylinder. 

When ECW(Q2) is multiplied by the detachment coefficient D(Q2), we have the radiated 

creeping wave field. By a reciprocity argument, we can see that for the circular cylinder, the 

launching and attachment coefficients are the same. Thus in the following expression for the 

radiated field in the backscatter direction, the surface diffraction coefficient is squared: 

(12-124) 

We must consider the fact that there are attachment points at both the top and bottom of 

the cylinder requiring us to double the creeping wave field strength. Thus, the total back

scattered field is 

, 
E' 

(12-125) 

Figure 12-33 Backscatter from a circular 

cylinder. 
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(12-126) 

1 (
2)112. 12 

Uw = 7Ta "+e j2fJa + 2(Dil,.lY -a e-""aR·~e-J/3"" ~ 7Ta2 

fJa-~ 

(12-127) 

Expressions for D and a can be obtained from Table 12-1 with Pc = a. 

For the problem considered in the above example, the exact result for the echo 
width for both principal polarizations appears in Fig. 12-34a. The echo width is 
normalized with respect to 7rll just as the sphere echo area was normalized with 
respect to its specular contribution. Note that the creeping wave contribution to the 
echo width for the cylinder is quite visible for the perpendicular polarization and 
does not appear for the parallel polarization. This is due to the tangential electric 
field boundary condition that tends to short out the creeping wave contribution in 
the parallel case but not the perpendicular case. 

The above GTD-based expression in (12-127) for the echo width of a circular 
cylinder cannot be expected to reproduce the curves in Fig. 12-34a, which are based 
on the exact eigenfunction solution, when the diameter is on the order of the wave
length or less. This, of course, is because GTD is an asymptotic theory valid most 
when the wavelength is small compared to the scatterer. In Fig. 12-34a, the wave
length is not small compared to the scatterer. Results using (12-127) are shown in 
Fig. 12-34b. The differences between the results from (12-127) and the exact solution 
are apparent. As a point of fact, there is no theoretical reason to expect them to 
agree. Interestingly, most of the error in attempting to reproduce Fig. 12-34a with 
(12-127) arises from the geometrical optics term and not the creeping wave term. 

To improve the accuracy of the geometrical optics contribution, it is necessary to 
include correction terms [23] (see Prob. 12.11-1). The application of correction 
terms to the geometrical optics contribution is shown in Fig. 12-34c, and the im
provement over Fig. 12-34b is substantial. In fact, the agreement between Fig. 12-
34a and Fig. 12-34c when f3a > 2 (i.e., a > Al3) is surprisingly good for a high
frequency method in a lower portion of the intermediate frequency region. In this 
region, one would normally employ the method of moments or MoM (see Sec. 
10.13.2) to produce results such as those in Fig. 12-34a. 

The concept of a creeping wave is valuable in that it helps one visualize the 
physical process involved in diffraction by curved surfaces. For example, the ReS 
of a sphere as a function of the sphere radius is presented in Fig. 12-7. We can 
interpret the oscillatory feature of the curve as being caused by two creeping waves 
traveling around the sphere in opposite directions. A similar explanation applies to 
the cylinder in Fig. 12-34. Depending on the electrical size of the sphere or cylinder, 
these two creeping waves tend to either constructively or destructively interfere 
with each other, causing the ReS to oscillate about the value contributed by the 
specular scattering. As the sphere or cylinder becomes larger, the amount of oscil
lation decreases, which may be attributed to the decreasing amplitudes of the two 
creeping waves due to the product a times the total path length s". In the backscatter 
case, as the radius becomes large, a becomes small, but the product as" becomes 
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Figure 12-34 Echo width of an infinitely long circular cylinder calculated by three 
methods. 
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Figure 12-35 Mutual impedance Z12 between two Al2 dipoles in the deep shadow region of 
each other compared to Z12 without cylinder present. 

large, causing the creeping wave to become small compared to the specular contri
bution as evidenced by Figs. 12-7 and 12-34. 

In the case of backscatter for the cylinder or sphere, the creeping wave travels a 
1800 geodesic path. A 1800 path is not the only path of possible interest. Consider 
Fig. 12-35 that shows the mutual coupling between two half-wave dipoles on op
posite sides of a circular cylinder [24]. The coupling with the cylinder present can 
be approximately calculated by the creeping wave formulation in this section. A 
more robust UTD formulation can be found in [25]. 

12.12 EXTENSION OF MOMENT MEmOD 
USING THE GTD 

In Chap. 10, we saw how the MoM could be applied to many antenna and scattering 
problems where the antenna or scatterer was not excessively large in terms of the 
wavelength. In this chapter, we have seen how geometrical optics and GTD can be 
applied to problems that are large in terms of wavelength. The purpose of this 
section is to show how the class of problems solvable by moment methods can be 
enlarged by incorporating GTD into the moment method solution [26]. In studying 
this section, the student will have an opportunity to test his or her understanding 
of the fundamental concepts developed in Chap. 10 and the previous sections of 
this chapter. 

Recall from Chap. 10 the elements of the generalized impedance matrix can be 
given in inner product notation as 

(12-128) 

This states that the Zmnth element of the impedance matrix is found by reacting the 
mth test function (weight function) with the electric field from the nth basis function. 
Similarly, the mth element in the generalized voltage matrix is found by reacting 
the mth test function with the incident field. 
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In a strictly moment method formulation of a given problem, all material bodies 
are removed and replaced with equivalent currents radiating in free space. Thus, 
when one reacts the mth test function with the field from the nth basis function, it 
is only that field which directly arrives at the mth test function via the shortest free
space path that one needs to consider since it is the only possible field. However, 
suppose there exists in a given situation a portion of the structure that is not rep
resented by equivalent currents (i.e., a material body remains as shown in Fig. 12-
36). In this case, the calculation of the impedance matrix elements is more complex 
but not unduly so. Let these new impedance matrix elements be denoted Z:"w In 
terms of (12-128), the reaction of J m with En may be interpreted to mean the re
action of the test source with not only the field from the true source arriving at the 
test source directly, but also the reaction of the test source with fields from the true 
source that arrive by other means as suggested by Fig. 12-36 .. Therefore, one can 
write 

(12-129) 

where a may be set to unity and b = b(m, n) is different for each m and n. The 
quantity bEn also represents the field due to In> but arriving at the mth observation 
point or region due to a physical process, such as a geometrical optics or diffraction 
mechanism, which is not accounted for in that portion of the problem formulated 
by the moment method. Thus, 

(12-130) 

or 

(12-131) 

where the superscript g denotes that Z~ is an additional term added to, in general, 
each impedance matrix element due to a physical process g that redirects energy 
from the nth basis current function to the location of the mth test source. 

As implied by Fig. 12-36, there is also a modification of the usual generalized 
voltage matrix terms. That is, 

v:,. = (Jm , Ei + CEi) (12-132) 

where Ei is the incident field arriving directly at region m and CEi is that field from 
the source redirected to region m by a physical process g. We note that c = c(m) is 
different for each m: 

E=O=Hr:".i 
L-.r--JI I 

I 't ~! Js 

I I 

n~ : 
I I 
I I 
I I 

1_....' 

Material body 
replaced by equivalent 
currents in localized 
free space 

E,H 

Material structure 
not characterized 
by equivalent 
currents 

(12-133) 

Figure 12-36 A source 
radiating in free space with 
one scatterer replaced by an 
equivalent current and the 
other remaining as a material j 

body. 
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or 

v,:. = Vm + V~ (12-134) 

As a direct consequence of the foregoing discussion, we have 

[Z'][/'] = [V'] (12-135) 

and its solution as 

[/'] = [Z']-l[V'] (12-136) 

where [/'] is the current on, for example, an antenna operating in the presence of 
scattering mechanisms that may be accounted for by either geometrical optics tech
niques or GTD. 

Initially, to combine the method of moments and GTD into a hybrid technique, 
consider the problem of a monopole near a perfectly conducting wedge as shown 
in Fig. 12-37. If we describe the monopole on an infinite ground plane strictly by 
the moment method matrix representation given in (10-43), then for the monopole 
near the conducting wedge, we utilize (12-135), where in (12-131) the term Z~n is 
obtained by considering that energy radiated by the nth basis function on the mon
opole that is diffracted by the wedge to the mth observation point or region. In the 
work here, we employ pulse basis functions and point-matching where the testing 
functions are delta functions. However, the choice of basis and testing functions is 
not restricted to these functions. 

To calculate Z~, we compute the electric field from the nth pulse basis function 
incident on the edge of the wedge at the stationary point. Taking that component 
of the electric field perpendicular to the edge and to the direction of propagation 
of the incident field, we then compute the energy diffracted to the observation point 
at the center of the mth segment on the monopole. The component of this field 
tangential to segment m is the term Z~n of (12-131) since we are employing delta
weighting functions. To compute the diffracted field, we use the formulation in Sec. 
12.4 for the case of spherical wave incidence. 

Shown in Fig. 12-38a is a calculated curve for the input resistance of a quarter
wavelength monopole a distance d from the edge of a perfectly conducting wedge 
(see Fig. 12-37). We note that the resistance oscillates about the value for a quarter
wavelength monopole on an infinite ground plane and also the amount of variation 
is relatively small, being only a few ohms. A similar curve is shown in Fig. 12-38b 
for the input reactance. Data for both curves were obtained directly from (12-136) 
without the need for any apriori knowledge of the current distribution or terminal 
current value. 

2a~~ 

T 
h a 

Figure 12-37 Monopole on a conducting 
wedge. 
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Figure 12-38 Input impedance of a monopole on a conducting wedge as a function of the 
distance d from the edge as shown in Fig. 12-37. 

Thus far, the discussion has centered on the calculation of input impedance. Ob
viously if one can accurately compute the input impedance, then quite accurate far
field information can readily be obtained also. For example, in the case of a mon
opole near a single wedge, as in Fig. 12-37, there may be as many as three 
contributors to the far field. First, there is direct source radiation except in the 
shadow region. Second, there is the reflected field, which is most conveniently ac
counted for by using the image in the horizontal surface. Third, there is the dif
fracted field that contributes in all regions and, of course, is the only source of 
radiation in the shadow region. A typical far-field pattern is shown in Fig. 12-39. 
Note that for a = 90°, the field does not go to zero as would be the case if the 
ground plane was infinite in extent. 

If we wish to investigate a circular ground plane as in Fig. 12-40, we must use the 
equivalent edge currents described in Sec. 12.9. Thus, we replace the edge of the 
disk with an equivalent magnetic current M given by 

M = -2E()e-j(w/4)Dl.(L, <1>, <1>')0 (12-137) 
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Figure 12·39 Normalized far-field 
pattern of a quarter-wave 
monopole on a conducting wedge 
as shown in Fig. 12-37. 

This equivalent magnetic current is used to calculate the field at the segment at s 
due to the current at s' as indicated in Fig. 12-40. Note that an equivalent magnetic 
ring current must be calculated for each choice of sand s'. 

It is useful for us to break up the equivalent magnetic ring current of Fig. 12-40 
into differential elements dc' so that the observation point is in the far field of each 
element even though it may be in the near field of the total ring current. 

The electric field in a plane perpendicular to an element dc' is given by 

dE M dc' (jW 1) _1'''_ =-- -+- e ... 
z 417' cr r2 

where r = (a2 + Z2)1f2. Letting dc' = a d", where", is the azimuth angle, taking only 
the z-component at the monopole, and integrating over the range'" = 0 to '" = 217' 
yields 

The value for Ez is the term Z~ that is added to the impedance element obtained 
for a monopole on an infinite ground plane. This process gives the modified imped-

T 
h 

L Figure 12-40 Segmented monopole 
encircled by a magnetic ring current for 
analysis of a monopole on a circular 
ground plane. 
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ance element needed, Z;",., to calculate the modified currents (and hence input 
impedance) of a monopole on the finite circular ground plane. 

Figures 12-41a and 12-41b show a comparison between calculations made with 
the equivalent magnetic ring current and measurements for a monopole of length 
O.224A and radius O.OO3A on a circular ground plane for varying radius. It is apparent 
that the correct variation is accurately predicted for both the real and imaginary 
parts of the input impedance. For the input resistance, the agreement between the 
measurements and the theory is excellent. For the input reactance, the agreement 
is very good, but there is a slight shift in the calculated curve when compared to the 
measurements. The amount of this shift is sufficiently small that it can be attributed 
to the usual problems associated with modeling the region in proximity to the driv
ing point. 

Next, consider the situation shown in Fig. 12-42 where a monopole of height h is 
a distance d1 away from a vertical conducting step. To properly determine the 
Z~ term in (12-131), it is necessary to determine all the various combinations of 
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Figure 12-41 Theoretical and experimental input impedance of a monopole of radius 
0.003'\ at the center of a circular disk as shown in Fig. 12-40. 
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Figure 12-42 Monopole near a 
conducting step showing the 
partial use of images. 

reflections that can occur for rays emanating from the monopole and reflecting back 
to it as well as the diffraction from the top edge of the step. Since the vertical wall 
is at a right angle to the lower horizontal surface, there will be no diffraction from 
the interior wedge and all the reflections can most conveniently be accounted for 
by imaging the monopole into the horizontal ground plane and then imaging the 
resulting dipole into the plane of the vertical wall. 

Shown in Fig. 12-42 are two example situations that depict the utilization of the 
images. If we consider the uppermost segment of the monopole to be the source 
segment, one set of rays shows the use of the image in the horizontal surface to 
calculate reflected-diffracted energy reaching the segments of the monopole. The 
other set of rays shows the use of the image in the vertical wall to calculate singly 
reflected energy. In the calculated results that follow, all combinations of singly 
reflected, doubly reflected, diffracted, diffracted-reflected, reflected-diffracted, 
and reflected-diffracted-reflected rays are taken into account. All rays that involve 
combinations of double (or higher-order) diffractions are negligible. 

Figure 12-43 shows the calculated input impedance for a quarter-wavelength 
monopole a quarter-wavelength away from a vertical wall whose height is d2 > 
O.2SA. As d2 increases, the impedance oscillates about the value for the case where 
d2 = 00. The results of Figs. 12-43a and 12-43b show that as the diffracting edge 
recedes from the vicinity of the monopole, its effect on the input impedance rapidly 
diminishes. Although we have not shown results for the case where the step height 
is less than the height of the monopole, the same method could be used to inves
tigate such situations. 

In combining moment methods with GTD, we have proceeded from the philo
sophical viewpoint of extending the method of moments via GTD. In so doing, we 
have shown that modifying the impedance matrix to account for diffraction effects 
(or geometrical optics effects) enables one to accurately treat a larger class of prob
lems than could be treated by moments methods alone. An alternative interpreta
tion of the hybrid method is also possible. That is, the procedure employed can be 
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Figure U-43 Input impedance of a quarter-wave monopole as a function of step height for 
the geometry of Fig. 12-42. 

viewed as using GTD to obtain an approximation to the exact Green's function 
needed. Other hybrid methods are discussed in [27]. 

Although this hybrid method possesses many of the advantages inherent in both 
the moments method (MM) and GTD, it also has some of the limitations peculiar 
to each. For example, as in the usual moment method, one can treat arbitrary con
figurations of wire antennas (or slot antennas), taking into account lumped loading, 
finite conductivity, and so forth, and obtain accurate impedance data and current 
distributions. Naturally, one still must take the usual precaution of using a sufficient 
number of basis functions to assure convergence. On the other hand, as in the usual 
GTD problem, one must take care that the antenna is not too close to a source of 
diffraction (e.g., d > 0.2"-). 
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12.13 PHYSICAL OPTICS 

In Sec. 12.1, we calculated the scattered field from the sphere by geometrical optics. 
Often, we can calculate these same scattered fields by physical optics. The concept 
of physical optics can be considered to be somewhat more general than geometrical 
optics since the equations obtained from physical optics for the scattered field from 
a conducting body often reduce to the equations of geometrical optics in the high
frequency limit. In fact, it is assumed in physical optics that the field at the surface 
of the scattering body is the geometrical optics surface field. This implies that, at 
each point on the illuminated side of the scatterer, the scattering takes place as if 
there were an infinite tangent plane at that point, while over the shadowed regions 
of the scatterer the field at the surface is zero [2]. 

For a perfectly conducting body, the assumed physical optics surface current is 

JPO = {
n x H total 

o 
in the illuminated region 

in the shadowed region 
(12-140) 

where n is a unit normal vector outward from the surface of interest as shown in 
Fig. 12-44. 

From image theory, the tangential components of H at a perfect conductor are 
just twice those from the same source when the conducting scatterer is replaced by 
equivalent currents in free space. Thus, the physical optics current is given by 

Jpo = 2(n x Hi) 

From Chap. 1, we know that in the far field 

ES = -jwA 

(12-141) 

(12-142) 

having neglected any radial terms. For the purposes of simplification, let ",represent 
the free-space Green's function as in (1-56). Then 

ES = -jwp. I I J", ds' (12-143) 

Using the curl E equation, we can write for HS 

L 

(12-144) 

Figure 12-44 Physical optics 
current on a conducting 
scatterer. 
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Since the del operation is in the unprimed coordinate system and the integration is 
in the primed coordinate system, we can write 

HS = I I (V X 11/1) ds' (12-145) 

Since V x 11/1 = VI/I X 1 + I/IV X 1 using (C-16), and the last term on the right is 
zero, 

H S = I I (VI/I X 1) ds' 

Since R = r - r . r', as in (1-96), we can express V 1/1 in the far field as 

VI/I = -r 1 + j{3r e-if3rej{~i .• , 
417"r2 

giving 

HS = e-i /3r II (J x i) 1 +j{3r eif3i .• , ds' 
417"1.2 

which is approximately equal to 

HS = j{3 e-if3r II (1 X r) eif3i·., ds' 
417"r 

(12-146) 

(12-147) 

(12-148) 

(12-149) 

since {3r » 1 and r = R in the denominator. It should be noted that this expression 
for the scattered field is frequency-dependent in contrast to the geometrical optics 
expression that is frequency-independent. It might, therefore, be intuitively inferred 
that physical optics provides a more accurate approximation to the scattered field. 
Although this may be so in certain cases, a general conclusion cannot be reached 
since necessary and sufficient conditions for the valid application of physical optics 
are not known [2]. It is fortunate for the engineer that physical optics works in many 
practical problems, even though in some problems prior justification of its appli
cation would be difficult to make. 

Next, let us develop a general expression for the radar cross section using our 
expression in (12-149) for H S

• Writing the radar cross-section definition as 

_ . 21HsI2 
U - ~~ 417"r IHil2 (12-150) 

and inserting the physical optics current 1 = 20 X Hi gives 

( 
{3 )211 121 II if3i·.' 12 

U = ~ 417"r2 417" Hi «20 X Hi) X r) ~ ds' (12-151) 

which reduces to 

(12-152) 

Using the vector identity (C-8), we can write 

(0 X Hi) X r = (r . O)Hi - (r· Hi)O (12-153) 
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At this point, consider the backscattered or monostatic radar cross section where 
(12-153) reduces to (i· n)Hi and the phase of Hi is eifJi.r' on the illuminated surface. 
Thus, 

u = :~ II I (i . n)eI2fJt.r' ds'I2 (12-154) 

Next, take i = 2 for the purpose of monostatic illustration (Le., the radar is on 
+z axis), giving us a final result of 

u = :~ II I (2 . n)el2fJi
.
r
' ds'I2 (12-155) 

where the factor of 2 in the exponent represents the phase advance of the back
scattered field relative to the origin due to the two-way path. 

Res of a Sphere by PhYSical Optics 

Here we apply the result in (12-155) to obtain the physical optics expression for the mono
static RCS of a sphere and compare it to the result obtained by geometrical optics. First, we 
note that from Fig. 12-45 

a - f' 
i . Ii = cos (J' = -

a 
(12-156) 

where f' is the distance from the reference plane to the spherical surface, and that an ele
ment of sudace area is a2 sin (J' d(J' dcl>' on the spherical sudace. Since a - f' = a cos (J' and 
df' = a sin (J' d(J', we find that on the projected area of the sphere onto the reference plane 
is ds' = a2 sin (J' d(J' dcfJ' = a dcfJ' df'. Noting that i· r' = (a - f'), substituting into our 
general expression for monostatic RCS, and pedorming the cfJ integration, we obtain 

. cr.P = :~ 121T ej2pa La e-J2pt
' (a - f') dff (12-157) 

Pedorming the remaining integration yields 

41T I e
Jzpa 

[ 1 - e-
JZpa

] 12 
cr.p ::: A? 21T j2{3 a - j2{3 (12-158) 

which can be put in the form 

u = 41T I~ [(1 + L)ej2pa _ L] 12 
sp A? J2 2{3a 2{3a (12-159) 

-----(-z) 

Figure 12-4S Physical optics 
scattering by a sphere. 

-", 
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The terms associated with the exponential ef2fja are due to the front face (i.e., specular) 
reflection, whereas the right-most term U/2{3a) is due to the contribution from the artificially 
imposed discontinuity in the current at the 8 = 17/2 location on the sphere (i.e., shadow 
boundary). Since this discontinuity is nonphysical, so too is the right-most term UI2{3a) and 
we must disregard it. Thus, 

u = -rrr?1~ (1 + ...L)ei2fja I
2 

_ 7TQ2 (12-160) 
J 2{3a fja .... '" 

We see then that the radar cross section of the sphere obtained via physical optics reduces 
to the geometrical optics result of (12-23) in the high-frequency limit. 

The fact that we have had to eliminate the right-most term (j/2{3a) in (12-159) is not a 
peculiarity of the sphere, but is common to any problem employing physical optics where a 
nonphysical discontinuity in current gives rise to an erroneous contribution to the scattered 
field that can be numerically significant when compared to the geometrical optics contribu
tion. 

The second term in (12-160) may be taken to be the second term in a high-frequency 
asymptotic expansion of the scattered field. Such an expansion is in inverse powers of the 
frequency and is known as a Luneburg-Kline expansion [1]. The Luneburg-Kline expansion 
satisfies the wave equation and is a formal way of showing the correspondence between optics 
and electromagnetics in the high-frequency limit. The leading term in the Luneburg-Kline 
expansion is, in fact, the geometrical optics term that is also the first term in (12-160). 

Physical optics is more useful to us than just finding radar cross sections. For 
example, if we wish to find the far-field pattern of a parabolic reflector antenna, 
physical optics is one way of doing so. In fact, it is probably the easiest way of 
finding the radiated field on the forward axis of the reflector antenna. In directions 
other than on the forward axis of the reflector antenna, physical optics provides us 
with a nonzero estimate of the radiation pattern. This should be contrasted with 
geometrical optics that can only provide information in a specular direction (see 
Fig. 12-46), but does so in a straightforward manner. Figure 12-46 shows a ray 
normally incident on a fiat plate and the reflected or scattered field coming back 
only in one direction, whereas the figure indicates that the physical optics current 
produces a scattered field in all directions for the same incident field. 

In summary, physical optics is an approximate high-frequency method of consid
erable usefulness that can be expected to provide an accurate representation of the 
scattered field arising from a surface where the postulated physical optics current is 
reasonably close to the true current distribution. We recall from the discussion at 
the beginning of this section that the physical optics current will be a reasonable 
representation of the true current if the field at the scatterer surface is correctly 
given by the geometrical optics surface field. 

An example of a situation where the geometrical optics surface field does not 
give us the true current is in the vicinity of an edge (where a plane tangent to the 

Geometrical optics Physical optics 

j23'-~-1iJJ 
Figure 12-46 Geometrical optics 
compared to physical optics. 
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Figure 12-47 TE and TM physical optics scattering by a strip of width a. 

surface is not defined). Consider Fig. 12-47 that shows f3uw for an infinite strip when 
physical optics is used compared to an exact solution [2]. Both TE (E perpendicular 
to the edges) and TM (E parallel to the edges) are shown. As the backscatter angle 
9 moves away from the normal to the strip (9 = 0°), the difference between physical 
optics and the correct' solution for the two polarizations becomes increasingly larger. 
This difference may be eliminated by adding to the physical optics current an ad
ditional current to account for each edge. This is the subject of Sec. 12.15. Before 
doing this, it is necessary to consider the principle of stationary phase in the next 
section. 

12.14 METHOD OF STATIONARY PHASE 

As we have seen many times earlier in this book, integrals describing radiation have 
integrands that consist of an amplitude function times a phase function. In many 
cases, an asymptotic evaluation is possible if the amplitude function is slowly varying 
and the exponential function is rapidly varying. 

Consider the integral 

(12-161) 

in which f(x) and 'Y(x) are real functions. If f(x) is slowly varying and f3'Y(x) is a 
rapidly varying function over the interval of integration due to f3 being large, the 
major contribution from the integral comes from the point or points of stationary 
phase [22]. A point of stationary phase is defined as a point where the first derivative 
of the phase function 'Y vanishes: 

d'Y = 0 
dx ' 

at x = Xo (12-162) 

To expand the phase function in a Taylor series about the point of stationary phase, 
write 

(12-163) 
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where 'Y~ and 'Y~ represent the derivatives of 'Y with respect to x, evaluated at Xo' 

Now 'Y~ is zero by definition [see (12-162)], and in the neighborhood of the point 
of stationary phase the quantity (x - xo ) is small so that the high-order terms (i.e., 
order 3 and higher) indicated in (12-163) may be neglected. If there is one and only 
one stationary point Xo in the interval from a to b, and Xo is not near either a or b, 
(12~161) thus becomes 

(12-164) 

where 8 represents a small number. Thus, the range of integration has been reduced 
to a small neighborhood about the point of stationary phase. If f(x) is slowly varying, 
it may be approximated by f(xo) over this small interval. Thus, (12-164) becomes 

10 = f(xo)ei(3-yo f~DO ej(3(JC-JCo)2-Y~/2 dx = f(xo)e j(3-yo f~DO ej(3r?--Y~/2 dz (12-165) 

where (x - xo ) = z. For convenience, the limits of integration have been changed 
again, this time to infinity. This introduces a little error if the chief contribution to 
the integral comes from the neighborhood of the point of stationary phase. In other 
regions, the rapid phase variations cause the contribution from one half-period to 
be nearly canceled by that from the next half-period if the amplitude f(x) is constant 
or varies slowly. 

Now consider the integral 

f
DO ejaz2 dz = fDO (cos az2 + j sin az2) dz = G ej(1T14)sgn(a) (12-166) 

-DO -DO ,,~ 

where 

{ 
1 if a>O 

sgn(a) = -1 if a < 0 

If we use (12-166) to evaluate (12-165), the stationary phase approximation is 

(12-167) 

If two or more points of stationary phase exist in the interval of integration 
(a to b) and there is no coupling between them, the total value of the integral is 
obtained by summing the contributions from each such point as given in (12-167). 

Equation (12-167) is not valid if the second derivative of the phase function van
ishes at the point of stationary phase. In this event, 'Y~ = 0 and it is necessary to 
retain the third-order term in the Taylor series in (12-163). 

Equation (12-167) also becomes invalid if one of the limits of integration, a or b, 
is close to the point of stationary phase Xo' In this event, however, it is possible to 
express the integral in the form of a Fresnel integral as discussed later. A problem 
also arises if there exist two or more stationary points close together in the range 
of integration. 

To obtain the endpoint contribution, it is best to write (12-161) as 

1 = f~DO f(x)e j(3-y(JC) dx - fb
DO 

f(x)ei(3-y(JC) dx - f~a f( -x)ei(3-Y(-JC) dx (12-168) 
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or 

(12-169) 

The evaluation of 10 has been done in (12-167). Ib' for instance, can be evaluated 
via integration by parts (see Prob. 12.14-1) by allowing the wave number to be 
complex and to have a small amount of loss (i.e., small a) so that the contribution 
to the integral by the upper limit at infinity vanishes, and then letting the wave 
number be approximated by f3, as before. Thus, 

I ~ -.!. f(b) ei(3'Y(b) 
b jf3 y(b) 

(12-170) 

A similar expression can be found for La. Equation (12-170) is valid when b is not 
near (or coupled) to XO' When the stationary point is coupled to the endpoint, we 
have [22] 

2 
Ib ~ U( -El)lo + Et/(b)ej(3'Y(b)+j,l- f3li'(b)1 F:(v) (12-171) 

where i'(b) :1= 0, El = sgn(b - xo), v = 21~b)IIY'(b)l, U = unit step function, 

and F:(v) is the Fresnel integral. 
There also are formulas for the stationary phase evaluation of double integrals 

[2]. However, (12-167) and (12-170) are sufficient to develop the physical theory of 
diffraction in the next section. 

Echo Width of a Circular Cylinder 

Consider the radar echo width of an infinite circular cylinder about the z-axis (see Fig. 12-48). 
We employ (12-167) to do this; (12-170) is used in the next section. Starting with the two
dimensional counterpart to (12-167), write for "'in the cylindrical system: 

y 

'" = -4~; H~2)({3p) == -4~; 2j e-j~IP-P'1 
J J '7I'{3lp - p'l 

(12-172) 

To distant 

p~\ob~ervatiOn 
~ __ pomts 

.~ 
x 

J =Zl.I1 e-jPlP-p'I = 20 x Hi Figure 12-48 Geometry for 
radiation by a circular cylinder. 
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where Ip - p'l = p - p' cos(<p - <p') and the asymptotic or large argument approximation 
for the Hankel function, H~2)({3p), of the second kind and zeroth order has been used. For 
amplitude purposes in the far field, Ip - p'l = p. Thus, similar to (12-168), we obtain 

V.I. = A.!.. !!i [ 112 + j{3p] -jPIP-P'1 
'I' P 4' ,fJ. 3/2 e j 1T,.. P 

(12-173) 

In the far field, the! is insignificant compared to {3p, Thus, 

H' = J j f (J x P)[j L]e-jP,P-P" dc' 81T{3 pl/2 (12-174) 

where dc' is an incremental element on a circumferential line of the cylinder, dc' = adc/>'. 
Applying the definition of echo width (see Sec. 12.11) and taking J = 2fi X Hi give 

U w = ~ l~il2lf «2fi x Hi) x p)e-jPIP-P'1 dcf (12-175) 

The phase of the current on the cylinder is e+jpa 
005(4)-4>') (i.e., advanced relative to the origin 

as indicated in Fig. 12-45), Thus, 

o"w = ,all eiJ3aOO5(4)-4>')(p' o.)e-iPIP-P'1 dcT (12-176) 

Noting that (p . fi) = cos C/>' and Ip - p'l = p - a cos C/>' when p' = a and c/> = 0 yields 

I f"'/2 12 
U w = (3 e-jPp cos C/>' e+j2pa cos 4>' adc/>' 

-",/2 
(12-177) 

The integral can be evaluated in a straightforward manner by the method of stationary phase. 
Using (12-167), identify f(C/>') = a cos C/>' and y(c/>') = -20 cos c/>'. To find the stationary 
point(s) c/>o, use f(C/>') = 0 = -a sin C/>' and determine that c/>~ = 0, 1T. Due to the physical 
optics assumption of no current at c/>~ = 1T, the value of 1T is discarded, Therefore, f( c/>~) = 
a cos (0°) = a. Since y"(c/>') = 20 cos c/>', then y"(c/>~) = 20, Therefore, 

Uw = {3lae-jPP ejpa J:~ ej"'/4Sgn('Y~)12 = 1Ta (12-178) 

Thus, our stationary phase evaluation has produced the same result for the echo width as we 
obtained in Sec. 12.13 using geometrical optics. 

It is interesting to compare the treatment here for the cylinder with the treatment 
of the sphere in the previous section. In the case of the sphere, the projection of 
the currents onto a plane was integrated. This produced an integral that could be 
evaluated in closed form. Had the sphere problem been formulated in a manner 
similar to that used here for the cylinder by integrating on the actual surface, it 
would have been necessary to use stationary phase for double integrals. The single 
integral treatment is, however, sufficient for our development of PTD in the next 
section. 

12.15 PHYSICAL THEORY OF DIFFRACTION 

The physical theory of diffraction (PTD) is an extension of physical optics (PO) 
that refines the PO surface field approximation just as GID or UID refines the 
geometrical optics surface-field approximation. The original PTD formulation was 
developed by Ufimtsev [28] for surfaces with perfectly conducting edges. Ufimtsev's 
original work was done at about the same time as the ray-optical work of Keller 
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and independently of Keller. However, Ufimtsev was aware of the work of Som
merfeld [9] and Pauli [11], and used the asymptotic form in (12-42) as did Keller. 

In his work, Ufimtsev postulated that there was a nonuniform component of the 
current that would include effects not accounted for in the physical optics current, 
called the uniform current in his work (see Fig. 12-49). Ufimtsev did not actually 
find the nonuniform current for the wedge, but instead found the field due to the 
nonuniform component of the current by indirect means. (More recently, expres
sions for these nonuniform currents have been found [29,30].) He found the non
uniform current contribution to the field by subtracting the PO field from the known 
total field for the wedge. The result was the field due to what was left, that from 
the nonuniform current. To see this, write 

EfotaI = EGO + E~ (12-179) 

where 

E:ota1 = the total scattered field 

EGO = the reflected field obtained by geometrical optics 

E~ ,= the diffracted field found using the Keller diffraction coefficient 

in (12-59) 

Then write Epo for the field due to the physical optics current, as 

(12-180) 

where Eio is called the physical optics diffracted field (which is not the total dif
fracted field) and is due to the abrupt termination of the physical optics current at, 
for example, the edge of the half-plane in Fig. 12-49. Epo is the reflected field 
obtained by integration of the currents and is theoretically equal to EGo since both 
represent the reflected field, although by different means. 

Subtracting (12-180) from (12-179) or (E:otaI - Epo) yields the field due to the 
nonuniform current Enu as 

(12-181) 

The field due to the nonuniform current, when added to the field due to the uniform 
current (e.g., the specular contribution), gives the total scattered field: 

EfotaI = Eunif + Enu 

If we take EGO = Epo, it follows from (12-180) that 

EGo = Epo - Eio 

CODlducting half-plane 

(12-182) 

(12-183) 

--~ .. 00 

Figure 12-49 Conceptualization of PTD currents. Also indicated are the fields generated 
by those currents. 
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Substituting (12-183) into (12-179) gives 

(12-184) 

Next, we present expressions for the fields due to the nonuniform current. As in 
GTD, each polarization is considered separately. Thus for the nonuniform contri
bution in the two-dimensional case, the parallel and perpendicular polarizations 
(where II and.l refer to the orientation of the electric field) are 

. ei ({3p+7T/4) 

Enu = E'f' ---===-
II v'21T{3p 

. ei ({3p+ 7T/4) 

Irtu = H'g' ---===-
v'21T{3p 

(12-185) 

(12-186) 

Thus, EUU and H1u are known in terms of two simple functions f' and g', where 
f' = f - fo and g' = g - go and 

{f} 1. 1T [ 1 ] _ [ 1.] 
, g = ;;sm;; cos~ _ cos tP ~ tP' + cos~ _ cos tP: tP' 

{

fa 

fo = fa + h 
h 

o < tP' :::; 1T - tPint 

1T - tPint :::; tP' :::; 1T 

1T < tP' < 21T - tPint 

o < tP' :::; 1T - tPint 

1T - tPint :::; tP' :::; 1T 

1r < tP' < 21T - tPint 

{;:} = {~:i:~} cos tP : cos tP' 

{h} {Sin(21T - tPint - tP ')} 
gb = -sin(21T - tPint - tP 

1 x-------------------------------COS(21T - tP int - tP) + COS(21T - tP int - tP') 

(12-187) 

(12-188) 

(12-189) 

(12-190) 

(12-191) 

with tPint = (2 - n)1T, the interior wedge angle. The a subscript denotes that the A 
face is illuminated and b denotes that the B face is illuminated as in Fig. 12-50. 

Clearly, f and g correspond to the Keller GTD diffraction coefficients. Even 
though we know that f and g tend to infinity at the reflection and shadow bound
aries, f' and g' do not because the singularities in f and g are canceled by identical 
singularities in f 0 and go. The quantities f 0 and go are the PO diffraction coefficients. 

The expressions for f 0 and go are obtained from the stationary phase endpoint 
contribution in (12-170). To demonstrate this [31], consider the wedge in Fig. 12-50 
for the perpendicular (TE) case with only face A illuminated. Write for the incident 
magnetic field [see Eq. (12-37)] 

(12-192) 
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Figure 12-50 TE plane wave incidence on 
the A face of a wedge. 

The physical optics current on the illuminated face of the wedge, face A in Fig. 
12-50, is given by 

Jpo = 26 X Hilp=x',</>=o 

= 2(y X i)HieH3x' cos </>' = 2i Ho eif3x' cos </>' 
(12-193) 

The vector potential for the two-dimensional wedge is 

(12-194) 

Using the asymptotic expression of the Hankel function gives 

2Hi A LOO .,' 2j ., 
A == J.L - x eJf3x cos </> e-JI'IIPo-P I dx ' 

4j 0 1Tplpo - pll 
(12-195) 

From Fig. 12-50, note that IPo - p'l == Po - P . p' = Po - x' cos fjJ. Thus, A becomes, 
with the usual far-field approximations, 

A == J.L ~i iJ 2j (00 e-jl'lpoejf3x'{cos </>'+COS </» dx ' (12-196) 
2J 'Tt'{3po Jo 

Considering just the integral with d "'" Po - x' cos fjJ, we get 

(12-197) 

where 10 is the stationary contribution discussed in the previous section and Ib is 
the endpoint contribution in Eq. (12-170). Evaluation of 10 is not of immediate 
interest to us here and is left as an exercise for the reader. Our attention is turned 
to Ib' where 

1 1(0) . Ib = ---- eJI'IY(O) 
j{3 y'(O) 

(12-198) 
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Here, 

f(O) = 1 

'Y(X') = x' cos </>' - d 
d = {(x - X')2 + (y)2}1/2 

~ (d) = _ (x - x)' 
dx ' d 

d x - x' 
'Y'(X') = cos </>' - dx

' 
(d) = cos </>' + -d-

X 
'Y'(O) = cos </>' + - = cos </>' + cos </> 

Po 

'Y(O) = -d(O) = -Po 

Thus, the endpoint contribution to the integral is 

1 1 "" I = - - e-1"Po 
b jf3 cos rfJ' + cos rfJ 

which means that the endpoint contribution A:P is . 

Hii -1 1 
Aep = -p. e1(Jpo - -----

.L V2'1rj[3po j[3 cos </> I + cos </> 

"1 1 J" " Eep = E' e- "Po X 
.L V2'1rj[3po cos </> + cos </> I 

And finally for the magnetic field, we have 

P ( " ")H" 1 1 j" He = X x ' e- "Po 
.L Po V2'1rj[3po cos </> + cos </> I 

_ Hi 1 sin</> -JQn "-Hd " - - e " ... DZ- POZ 
V2'1rj[3po cos </> + cos </> I 

which is the postulated result given in (12-185) through (12-191). 

(12-199a) 
(12-199b) 
(12-199c) 

(12-199d) 

(12-19ge) 

(12-199f) 

(12-199g) 

(12-200) 

(12-201) 

(12-202) 

(12-203) 

Suppose that PID is to be used to calculate the results in Fig. 12-14a. First, it 
must be kept in mind that PID uses the equivalence principle, as does physical 
optics, where all conducting media are replaced with equivalent currents radiating 
in free space. This should be contrasted with GTD, where all material media are 
retained. Starting with region I (Fig. 12-12), one can write 

(12-204a) 

or 

E.otal = Ei + (Epo) + (E1 -: ~) 
= Ei + (E~ + Eio) + (E1 - Eio) 

(12-204b) 

which in terms of GTD is 

in region I (12-204c) 
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To apply PTD, (12-204a) is used, whereas the use of (12-204c) is the application of 
GTD. In the former, fields from currents are used, whereas in the latter, ray-optical 
fields are used. More specifically, to apply PTD as given in (12-204a) to the half
plane problem of Fig. 12-14, Ei is represented by (12-37), Epo by (12-167), Eio by 
(12-170), and (E~ - Eio) by (12-186). Figure 12-51 is helpful in understanding the 
PTD calculation in region I. As the reflection boundary is approached in Fig. 12-51, 
(12-171) must be used since the stationary point and endpoint become coupled. 

For region II, as in Fig. 12-51, all the quantities in (12-204b) are also present, 
except EPa that is absent outside the two transition regions. Here with PTD, Eunif 

is continuous across the reflected field shadow boundary. Enu is also continuous. 
Thus, EtotaI is continuous across the reflected field shadow boundary. (See Prob. 
12.15-2.) 

With regard to Fig. 12-51, in region III all PTD quantities in (12-204a) are present 
just as in region ·11. Moving across the incident field shadow boundary, Enu will, of 
course, be continuous. Both Ei and Eunif are also continuous and, therefore, Etotal is 
continuous. Moving deeper into the shadow region, Ei will (theoretically) be can
celed by EPa, leaving Ei-. This is not surprising because it is known from Sec. 12.2 
that Ei- gives the correct field in the deep shadow region. To calculate the field by 
PTD in region III, note from Fig. 12-51 that Epo appears in the shadow region and 
(12-170) is used in its evaluation away from the shadow boundary, just as it was 
used in region I. 

PTD, just like GTD, applies only to scattering directions lying on the cone of 
diffracted rays shown in Fig. 12-15. This restriction for PTD may be overcome by 

,RB , 
EndPoint 

. contribution , , , 

I 
I 

I 
I 

I 

ISB 

(a) Observation point in region I. 

End point ~//"qp ______ ma 
contribution / 

I 
I 

ISB 

(c) Observation point in region n, no 
stationary point. 

l\Bp ,. 
" Stationary point \ 

and end point ~ 

contribution 

Stationary 
point 

(b) Observation point in a transition region 
(e.g., near to the reflection boundary). 
Stationary point and end point are coupled. 

I~~~~mm __ ~ __ 
I 

Endpoint 
contrib)ltion 

ISB 
• p 

(d) Observation point in region ill. The incident 
field will be approximately cancelled by the 
stationary point contribution. 

Figure 12-51 The relationship between stationary phase and geometrical optics for a 
conducting wedge. 
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using incremental length diffraction coefficients (ILDC) devised by Mitzner [32]. 
The ILDCs do for PTD what equivalent currents in Sec. 12.9 do for GID [33]. 

12.16 CYLINDRICAL PARABOLIC REFLECTOR 
ANTENNA-PTD 

As a second example of the application of the PTD, consider again the cylindrical 
parabolic reflector antenna shown in Fig. 12-20. In the half-space where z is positive 
(region A in Fig. 12-52), we use aperture integration for 0 < ,< 'TT'/2. This gives the 
contribution from Eunif. The contribution from Eunif will increasingly disagree with 
the UTD result in Fig. 12-53 as ,moves from 30 to 900

• This discrepancy may be 
removed by including Enu in the calculation as Fig. 12-53 shows for the PTD case. 

To obtain the field or pattern in the deep shadow region (the shaded part of 
region C in Fig. 12-52), we cannot use the field from the aperture integration. An 
examination of the equivalence principle shows that this is so. For example, from 
an examination of the half-plane example in the previous section, we know that in 
the deep shadow region the field may be found from just Et if Ei is .canceled by 
E~o. However, if E~o is taken to be from the equivalent currents in the aperture, 
Epo gives a collimated beam in the negative z-direction that clearly cannot be can
celed by the field from the feed. However, if Ero is taken to be the field from the 
currents on the parabolic surface, it will cancel Ei in the shaded region. 

To get the field in the unshaded part of regions C and B, we need to use Eunif 

and Enu
, which means the integration over the parabolic surface itself must be done. 

Generally, it is easier to integrate over the aperture than over the parabolic surface, 
but that is not a valid option here. In obtaining the field in regions Band C, the 
need to integrate over the parabolic surface can be avoided by simply using the 
UTD diffraction coefficients in a GID model rather than the Keller coefficients in 
a PTD model, realizing that UTD gives the correct fields without the singularity at 
the incident field shadow boundary. That is to say, in this problem the simpler model 
is a GID model with UID coefficients for regions C, B, and part of A. 

Figure 12-53 shows the E-plane radiation pattern for the cylindrical parabolic 
reflector antenna of Fig. 12-20. Figure 12-53 shows a comparison of aperture inte
gration, PTD, and UID for the TE (or perpendicular) case. The agreement between 
classical aperture integration and the two asymptotic theories is excellent in the 
region of the main beam and the first few side lobes; thereafter, there is increasing 
disagreement because aperture integration does not fully account for edge diffrac
tion effects that are increasingly important at larger angles. 

'" ® 

Figure 12-52 Regions of a cylindrical parabolic 
reflector antenna (see Fig. 12-20). 
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Figure 12-54 A comparison of PTD with UTD single (1) and double (2) diffraction 
calculations for the geometry of Figure 12-20. 
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Figure 12-54a shows a comparison between UTD single diffraction, UTD double 
diffraction, and PTD for the full E-plane pattern. Aperture integration is used for 
the main beam and the first side lobe in the UTD calculations; thereafter, starting 
in the second null, UTD alone is used. With two exceptions, the agreement is quite 
good between UTD and PTD. First, in the vicinity of 90°, there is some disagreement 
since edge diffraction effects are particularly strong for this polarization and one 
edge is in the transition region of the other (see Fig. 12-18c). Note, however, that 
the pattern is near the -40-dB level. Second, there is some disagreement in and 
near the back-lobe region. This disagreement is not due to a deficiency in the dif
fraction calculations, but the inability of Eunif from the integration over the currents 
on the parabolic surface to exactly cancel Ei from the feed in the PTD calculation. 
If the feed had less taper (e.g., cos Os instead of cos2 Os), the diffracted field would 
be stronger and the incomplete cancellation of Eunif by Ei less apparent at the higher 
back-lobe level. For this geometry, disagreement in the back-lobe region is greater 
in the H-plane case than the E-plane case because the diffracted field in the former 
is weaker than in the latter, resulting in a more noticeable incomplete cancellation 
effect. 

U.t7 SUMMARY 

In this chapter on high-frequency methods, a variety of techniques have been pre
sented for predicting both the near- and far-zone fields from perfectly conducting 
bodies whose dimensions are large in terms of the wavelength. The GTD approach 
is ray-based and relatively simple when the number of rays is not large. The PTD 
approach is current-based and requires the integration of currents. Since integration 
is a smoothing process, a geometrical surface description in PTD does not have to 
be as accurate as in GTD. In both GTD and PTD, the most difficult part to calculate 
is usually the most basic part: GO in the case of GTD and PO in the case of PTD. 
An example of this is the calculation of scattering by an infinite cylinder in Sec. 
12.11 where, for small radii, the creeping wave contribution was more accurate than 
that of GO. 

The importance of the GTD method in antenna and scattering problems stems 
from the significant advantages to be gained from its use, namely (1) it is simple to 
use and yields accurate results; (2) it provides some physical insight into the radi
ation and scattering mechanisms involved; (3) it can be used to treat problems for 
which exact analytical solutions are not available. GTD is also used in acoustic 
problems such as SONAR and problems involving inhomogeneous or anistropic 
media [34]. 

The importance of the PTD method is mostly in scattering problems. An advan
tage of the PO is that it provides scattering information in directions that are not 
necessarily in the specular direction or on the cone of diffracted rays. PTD is thought 
to have played a key part in the development of the B-2 stealth bomber. 

The methods of this chapter tend to complement the intermediate frequency 
moment method techniques presented in Chap. 10 and the FD-TD technique in 
Chap. 11. And, as was seen in Sec. 12.12, the moment method can be formally 
combined with GTD into a hybrid technique that extends the class of problems to 
which moment methods can be applied. This can be done not only because both 
MoM and GTD are highly practical techniques, but also because they are inherently 
flexible in their application to analysis and design problems. Hybrid methods in
volving FD-TD are being developed. 
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PROBLEMS 

12.1-1 It can be shown [12] that the principal radii of curvature of the geometrical optics 
reflected wavefront are given by 

1 1(1 1) 1 
P1 = 2 P~ + P~ + 11 

and 

where pi and p~ are the principal radii of curvature of the incident wavefront and P1 and P2 . 
are the principal radii of curvature of the reflected wavefront. General expressions for 11 and 
h are given io the literature [12]. However, for an incident spherical wave, 

1 1 (Sin2 82 sin2 81 ) 

h2 == cos 8; -;:r- + -;:r-

1 (Sio2 82 sin2 81)2 4 
:!: cos2 8/ ~+~ Ii~ 

where 81 and 82 are the angles between the incident ray and principal directions (i.e., tangent 
unit vectors) associated with the principal radii of curvature of the surface Ii and ~, respec
tively. 

a. Show that for 81 = 80 and 82 == 90", the first equation reduces to (12-20) and the second 
to 

1 1 2 cos 80 -=-+--..::; 
P2 to ~ 

b. Without using (12-20) or the expression for P2 immediately above, show that in the 
case of plane wave illumination 

VP1P2 ==!~ 
12.1·2 An infinite elliptical paraboloid is described by the equation 

x 2 r -+-= -z 
21i 2~ 

where '1 and'2 are the principal radii of curvature at the specular point. Using geometrical 
optics, show that the radar cross section for axial incidence is 

iT = m1~ 
Actually, this result applies to any surface expressible in terms of a second-degree polyno
mial, where Ii and ~ are the principal radii of curvature at the reftection point [2, 3]. Is the 
above result valid for a cylindrical surface or flat plate? Why not? 
12.1·3 A plane wave is incident on a smooth three-dimensional conducting convex body. The 
two principal radii of curvature of the body at the specular point are Ii == SA. and ~ = lOA.. 
Write expressions for the electric and magnetic backscattered fields if the incident plane 
wave fields are 

and 
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12.2-1 A cylindrical wave is incident on a cylindrical parabolic reflector as shown. To obtain 
the diffracted field from the top edge (only) at any point in space, the edge may be analyzed 
as if a half-plane were tangent to the uppermost portion of the parabolic surface. Divide the 
space around the top edge into three separate regions and write general expressions (with 
numerical values for 4>') for the total electric field from the top edge in those three regions 
of space. In which of the three regions is the total geometrical optics field zero? 

Direction 
of main 
beam 

Ei 

12.2·2 Evaluate the following Fresnel integrals: 

a r~ e-iT2 dT . }o 

b. J: e-iT2 dT 

L
~ 

·2 c. s e-}T dT 

12.2-3 Find UB(P, 4>~), using both (12-42) and (12-44) for a 90° interior angle wedge when: 
a. 4>' = 45°, P = lOA, 4> = 220° 
b. 4>' = 45°, P = lOA, 4> = 230° 

Compare your results in (a) and (b) and explain any differences. What is u* in parts (a) 
and (b)? 
l2.2-4 Find UB(P, 4>~) for a goo interior wedge angle (both polarizations) when: 

a. 4>' = 45°, P = lOA, 4> = 90° 
b. cfJ' = 45°, p = lOA, cfJ = 138° 
c. 4>' = 45°, P = lOA, 4> = 180° 

Comment on your results and justify the formulas you used to evaluate the diffracted field 
in each case. 
12.2-5 A vertically polarized cellular antenna transmits 20 W at 860 MHZ. A receiving an
tenna is shadowed by a O.3-km-high ridge normal to a line drawn between the two antennas 
as shown. How much power is available at the terminals of the receiviDg antenna if the gain 
of the receiving antenna in the direction of the ridge is 4 dB and that of the transmitting 
antenna is 15 dB toward the ridge? As a rough approximation, assume the ridge is perfectly 
conducting. 

1,",,",,--- 4 Ian ---)~I ...... --1 Ian---l 

12.2-6 Substitute (12-34) and (12-35) into (12-33) and explain the physical significance of 
each of the four terms you obtain. 
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U.2·' Draw a sketch that illustrates the first postulate of Keller's theory. Include both a 
direct ray and a diffracted ray in your sketch. 
Uol·1 Consider a magnetic line source parallel to the edge of a half-plane as shown. In this 
situation, the diffracted field appears to originate from a magnetic line source located at the 
edge. Using the flux tube concept of Fig. 12-3, show that the diffracted field may be written 
as 

. e-j (3p 

E1(p) = -D1.E~(Q) ...;p 

where E~(Q) is the value of the incident field at the edge. 

/---- p •• p 

::::=. L c_ t ~ half-plane 

-co 

12.3·2 Repeat Prob. 12.3-1 when the magnetic line source is replaced by an electric line 
source and show that 

-j(3p 

E1,(p) = -D"Eit(Q) e...;p 

Uol·3 Consider the situation where a point source illuminates the edge of a half-plane at 
normal incidence. Unlike the previous two problems, in this case there will be spreading in 
both principal planes. Using the flux tube concept of Fig. 12-3, show that the diffracted field 
may be written as either 

or 

f*" e-jfis 
Ed(S) = -DEi (Q) ----

1. . .l:.l: S' + s Vs 

U.3-4 Show that the diffraction coefficient matrix [D] in (12-46) will generally have seven 
nonvanishing coefficients if an edge-fixed coordinate system is used rather than a ray-fixed 
system. . 
U.4·1 Derive (12-59) from (12-52) and show that (12-59) is the same as (12-42). 
12.4·2 Consider the case where a half-plane is illuminated by a plane wave and the obser
vation point is near the edge of the wedge. 

a. Show that UID reduces to the Sommerfeld-Pauli result in (12-44) and hence the UTD 
is exact. 

b. Is UTD an exact solution if the source is near the wedge edge and the observation 
point is at a very large distance? Why? 

c. If both the source and observation points are near the wedge edge, the UTD solution 
will not be exact. Why? (Although the solution may not be exact, the results may still be 
useful-see Sec. 12.12.) 
U.4-3 Show that an alternative to (12-55) would be to define N+ as the value of [(cp :t cp') 
+ 'IT]/2'ITn rounded to the nearest integer. Define a similar alternative to (12-56). 
U.4·4 Consider a wedge illuminated by either an electric or magnetic line source parallel to 
the edge and at some distance from it (p' » A). 

a. At the reflection boundary (or incident boundary), show that the diffraction coefficient 
must have a discontinuity of magnitude v' p' p/(p + p'). 
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b. Show that at the reflection boundary (or incident boundary), the UTD diffraction 
coefficient is discontinuous by an amount ±VL. What determines the sign of the disconti
nuity? The following approximation is useful: 

F(X) = [ \IiiX. - 2Xei('lT14) - ~ X 2e-i (1T14) }i(1T14+X) 

which is valid when X is small. 
c. From the results of (a) and (b), show that the total field is continuous across the 

reflection (or incident) shadow boundary. 
12.4-5 A plane wave is incident at an angle of 'Y; = 45°, cf>' = 30° on the edge of a 90° 
(n = ~) conducting wedge. 

a. Use (12-52) and Fig. 12-17 to calculate Ef at a distance s = 2A when cf> = 120°,132°, 
138°, 180°, 222°, 228°, and 260° when E~ = 1 Vim. 

b. Repeat (a) for E11 when Ell = 1 Vim. 
12.4-6 a. Use (12-36), (12-37), and (12-42) to compute the total field in Fig. 12-14a. Your 
result will differ from that in Fig. 12-14a at the reflection and shadow boundaries. Why? 

b. Recompute (a) but use (12-52) instead of (12-42). 
c. Comment on the difference between the results in (a) and (b) above. 

12.4.7 a. Using trig identities, put (12-42) into a form similar to (12-52) but without the 
transition functions, F. 

b. Comment on the purpose of the transition functions. 
12.5-1 Use the E-plane model in Fig. 12-18b and a computer program for wedge diffraction 
to verify the curves in Fig. 7-16 that were obtained by aperture integration. 
12.5-2 Explain why the rays in Fig. 12-18c make a negligible contribution to the radiation 
pattern except when ~ = 90°. 
12.5-3 Show that the doubly diffracted field from Ql in Fig. 12-18c can be written as 

1 e-ifJPE e-ifIla e-ifJr . . 
Et,2(P) = 2 ~ DlQ2)DlQl) y'2Q Y, e,fJo

sm
( 

12.5-4 Review Prob. 11.8-5. 
12.5-5 Calculate the diffracted field from the 194° interior wedge angle edge on the outside 
of the hom antenna in Fig. 11-18 that is formed by the join of the hom wall with the wave
guide. Use p = A. Assume that the electric field incident on the join is 1V/m. Compare your 
result to what you observe in Fig. 11-21d. 
12.6-1 Use a computer program for wedge diffraction to calculate the total diffracted field 
for 0 =:; ~ =:; 2'77" for the antenna of Fig. 12-20. Compare your results with Fig. 12-21. Why is 
there a difference? 
12.6-2 Draw a sketch of the "creeping wave" rays (see Sec. 12.11) on the back side of the 
parabolic reflector of Fig. 12-20. Now draw rays that originate at Ql or Q2 and reflect several 
times along the inside surface parabolic reflector. These rays are called whispering gallery 
rays. 
12.6-3 Show that the doubly diffracted ray from Ql in Fig. 12-20 can be written as 

e-ifJpo 
Et,2(P) = ~ r- f(8o)Du (Q2)D u (Ql) 

vpo 
-ifJ2a -ifJr . _e _ _ e_ eifJosinC 

y'2Q y, 
12.6-4 Derive (12~71). 
12.6-5 H the line source in Fig. 12-20 is a magnetic line source, calculate the far-field pattern. 
Your result will be similar to that in Fig. 12-21, except that the discontinuity at ~ = 90° will 
be greater and the back lobes will be about 8 dB higher. Why? 
12.6-6 Use the UTD to calculate the H-plane pattern of a 90° comer reflector antenna with 
a dipole feed. The dipole feed is O.5A from the apex of the reflector, the reflector sides are 
LOA long, and the aperture of the comer reflector is 1.414A across. 
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U.7·1 The diffracted field that is neglected in (12-86) may be written generally as [14] 

Ed ( ) _ 1... aEi(Q) ~ I U- -jfir 
SD P - 2j{3 an a4>' DII </>'=0 V~ e 

Compare the value of this slope diffracted field with the direct field in (12-86) when 8 = 90°. 
U.7-1 a. Using (12-36) and (12-37) in (12-33), show how a factor of 2 arises in E(p, 4» for 
the perpendicular polarization in the infinite ground plane case (VB = 0) when the plane 
wave has grazing incidence to the ground plane (4)' = 0). 

b. Then verify, in general, that at grazing incidence the diffracted field must be multiplied 
by!, as in (12-80) and (12-82), to obtain the correct value of the diffracted field. To do this, 
use either the asymptotic form in (12-42) or (12-59) to show that Dn -+ 0 and a factor of 2 
naturally arises in D .l! 
12.S·1 A short monopole (stub antenna) is mounted at the center of a square ground plane 
6'\ on a side as shown in Fig. 12-27a. 

a. Using the two-point approximation, show that the relative diffracted field in the region 
200° < cPt < 340° can be expressed by 

V27Tf3r tPt --th-
Ed = e-j (fjr+'II'/4) [_1 __ e-j12

'11'cos <h] 
cos Z cos Z 

where 4>2 = 2 7T - (tPt - 7T) 

b. Why must the diffracted field be zero when tPt = 270° for this problem? Use a sketch 
and physical reasoning to explain why. 

c. Calculate and plot a graph of the diffracted field for 200° < cPt < 3~. Compare your 
results with Fig. 12-28. 
12.9-1 Derive (12-97) and (12-98). 
U.9-1 Derive (12-101) and (12-102). 
U.9-3 A short monopole (stub antenna) is mounted at the center of a circular ground plane 
6'\ in diameter as shown in Fig. 12-27b. 

a. Using the equivalent concept, show that the relative diffracted field in the region 
900 :S 8:S 180° can be expressed by 

where J1 is the first-order Bessel function. Note that 

b. Calculate the diffracted field and compare with that calculated in Prob. 12.8-l. 
12.10-1 A triangular cylinder is illuminated by a line source as shown. Apply the self
consistent method to this problem by setting up (12-110) in a form similar to (12-109). Note 
that some of the matrix elements will be zero. Check your solution with that in [18]. 
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• Line source 

C4 C1 

B ;::=~.=-----.:~. ==:; A 

~ f 
e" fe, 

C 

12.11-1 a. Use the information in Table 12-1 to compute U w in (12-127). Plot U w vs. {3a for 
0.1 ::5 (3a ::5 10 for both polarizations on the same graph. 

b .. Repeat part (a) when the geometrical optics contribution (only) is multi11ied by 

[1 . 5 127]. h 11 1 db [1 . 11 353. h 
- ] 16({3a) + 512({3a)2 m t e para e case an y + ] 16({3a) - 512({3a)2 m t e 

perpendicular case [22]. Plot both results on the same graph. Compare with Fig. 12-34. 
c. Plot the parallel polarization results from (a) and (b) on one graph and the perpen

dicular polarization results on another. Comment on your results. 
12.12-1 Consider a monopole at the center of a square ground plane whose sides are Al2 
long. The monopole is to be represented using pulse basis functions and delta weighting 
functions. The four sides of the ground plane are to be accounted for using wedge diffraction. 
Diffraction by the four corners is to be ignored. Derive the necessary equations that would 
enable you to calculate Z~n in (12-131). 
12.12-2 Derive (12-137). 
12.12-3 For the problem in Fig. 12-42, show all possible ray paths that do not involve double 
( or higher-order) diffractions. 
12.12-4 A dipole of length t is located a distance d from the surface of an infinitely long 
circular cylinder of radius a. The dipole is parallel to the axis of the cylinder. Show how you 
would account for the presence of the cylinder if only the dipole is represented by the method 
of moments. 
12.13-1, Using physical optics, show that the radar cross section of a flat rectangular plate at 
normal incidence is u = 4'7T (A2/A2) where A is the area of the plate. 
12.13-2 Equation (12-155) can be converted to a different and often useful form by noting 
that (z· Ii) ds is the projection of the element of surface area ds onto the xy-plane. Thus, 
(z • Ii) ds = ds. = (ds./dt) dt where ds. is the projection of ds onto the xy-plane. Then 
(12-155) becomes 

u = - e-P(3! - dt 4'77 (LL ds.) 
,\2 0 dt 

where t is the distance from the reference plane to the surface. Use the above expression 
for the radar cross section to derive the physical optics expression for the RCS of the sphere. 
12.13-3 Show that the RCS of an infinite cone (as shown) is u = (,\2 tan4 a)/16'77 

L IC----":.J....---(-Z) 
I 
I 
I 
: Reference 
I plane 
I 
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12.13-4 Show that the RCS of a square flat plate with edges parallel to the x- and y-axes, 
and direction of incidence in the xz-plane, is 

_ 41Ta4 [Sin(~ sin (J)]2 2 
U -,\2 ~ sin (J cos (J 

where a is the length of one side. Compare the angular variation of this result with that of 
the uniformly illuminated line source in Chap. 4. 
12.13-5 Show that the RCS of a circular flat plate, or disk, in the xy-plane is 

u = t;2 (J [J1 ( 41TQ ;in (J) r 
where a in the radius of the disk and J1(x) the Bessel function of order one. Also show that 
at (J = 0°, the above expression reduces to u = (41T1,\2) A2 where A is the area of the disk 
[4]. 
12.14-1 After writing 

Ib = ('" f(x)ei/3y(x) dx = .J:. ('" f(x) j{3y'(x)ei/3Y(x) dx 
Jb J(3 Jb ;,'(x) 

integrate by parts to obtain (12-170). 
12.14-2 Show that 

1 a == -1.. f( -a) ei/3y(-a) 
- j{3 ;,'( -a) 

12.14-3 Show that (12-167) follows from (12-165) and (12-166). 
12.14-4 Interpret the discussion between (12-29) and (12-30) in terms of the concept of sta
tionary phase. 

12.15-1 Show that {~} in (12-187) can be expressed as 

12.15-2 For the half-plane case in Fig. 12-14, analytically show that at the reflection and 
shadow boundaries, the singularity in f is cancelled by the singularity in f 0 making f' in 
(12-185) continuous. 
HINT: Identify which cotangent term in Problem 12.5-1 is singular at the reflection boundary 
and which term is singular at the shadow boundary. Cancel these terms with the singularity 
in f 0 by letting cp + = 1T ± 8 at the GO reflection boundary and by letting cp - = 1T ± 8 at the 
GO shadow boundary. 
12.15-3 For the half-plane case in Fig. 12-14a show by numerical computation that f' in 
(12-185) is continuous across the reflection and shadow boundaries. Also compute separately 
f and fo at these boundaries. Use the geometry in Fig. 12-14. 
12.15-4 Evaluate 10 in (12-197). 
12.15-5 Show that (12-181) substituted into (12-182) leads to (12-179). 
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Tables of Commonly 
Used Frequencies 
(in U.S.) 

A.I RADIO FREQUENCY BANDS 

Frequency-----------+ 

3 kHz 30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz 
IVLFILF MFIHF I VHF UHFISHF EHF I 

100 km 10 km 1 km 100 m 10 m 1 m 10 em 1 em 1 mm 
~------- Wavelength 

A.2 TELEVISION CHANNEL FREQUENCIES 

VHF 

Frequency Frequency 
Channel Range Channel Range 

No. (MHz) No. (MHz) 

2 54-60 8 180-186 
3 60-66 9 186-192 
4 66-72 10 192-198 
5 76-82 11 198-204 
6 82-88 12 204-210 
7 174-180 13 210-216 
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UHF 

Frequency Frequency Frequency 
Channel Range Channel Range Channel Range 

No. (MHz) No. (MHz) No. (MHz) 

14 470-476 30 566-572 46 662-668 
15 476-482 31 572-578 47 668-674 
16 482-488 32 578-584 48 674-680 
17 488-494 33 584-590 49 680-686 
18 494-500 34 590-596 50 686-692 
19 500-506 35 596-602 51 692-698 
20 506-512 36 602-608 52 698-704 
21 512-518 37 608-614 53 704-710 
22 518-524 38 614-620 54 710-716 
23 524-530 39 620-626 55 716-722 
24 530-536 40 626-632 56 722-728 
25 536-542 41 632-638 57 728-734 
26 542-548 42 638-644 58 734-740 
27 548-554 43 644-650 59 740-746 
28 554-560 44 650-656 
29 560-566 45 656-662 69 800-806 

Note: The carrier frequency for the video portion is the lower frequency plus 1.25 MHz. The audio 
carrier frequency is the upper frequency minus 0.25 MHz. All channels have a 6-MHz bandwidth. For 
example, the Channel 2 video carrier is at 55.25 MHz and the audio carrier is at 59.75 MHz. 

A.3 MOBILE TELEPHONE BANDS 

A.4 

Cellular 
PCS 

RADAR BANDS 

-' 
World War II Band 

824-894 MHz 
1850-1990 MHz 

Designations IEEE Band Designations 

HF 3-30 MHz 
VHF 30-300 MHz 
UHF 300-1000 MHz 

L 390-1550 MHz L-band 1-2 GHz 
S 1550-3900 MHz S-band 2-4GHz 
C 3.9-6.2 GHz C-band 4-8GHz 
X 6.2-12.9 GHz X-band 8-12GHz 
Ku 12.9-18 GHz Ku-band 12-18 GHz 
K 18-26.5 GHz K-band 18-27 GHz 
Ka 26.5-40 GHz Ka-band 27-40GHz 

V-band 40-75 GHz 
W-band 75-110 GHz 
Millimeter 110-300 GHz 
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Material Data 
and Other Constants 

B.1 CONDUCTIVITIES OF GOOD CONDUCTORS 

B.2 

Conductor 

Silicon steel 
Brass 
Aluminum 
Gold 
Copper 
Silver 

WIRE DATA 

Wire Size 
AWG 

8 
9 

10 
11 
12 
13 
14 
16 
18 
20 
22 
24 
26 
28 
30 

Conductivity (S/m) 

2 X 106
. 

1.1 X 107 

3.5 X 107 

4.1 X 107 

5.7 X 107 

6.1 X 107 

Diameter in 
mm (in.) 

3.264 (0.1285) 
2.906 (0.1144) 
2.588 (0.1019) 
2.305(0.0907) 
2.053 (0.0808) 
1.828 (0.0720) 
1.628 (0.0641) 
1.291 (0.0508) 
1.024 (0.0403) 
0.812 (0.0320) 
0.644 (0.0253) 
0.511 (0.0201) 
0.405 (0.0159) 
0.321 (0.0129) 
0.255 (0.0100) 

Single Copper 
Wire Continuous 

Duty Current 
Capacity (A) 

73 

55 

41 

32 
22 
16 
11 

Copper Wire dc 
Resistance per 
Unit Length 
(nJ100 m) 

0.1952 
0.2462 
0.3103 
0.3914 
0.4935 
0.6224 
0.7849 
1.248 
1.984 
3.155 
5.017 
7.98 

12.69 
20.17 
32.06 
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B.3 DIELECTRIC CONSTANT: PERMITTIVITY 

B.4 PERMEABILITY 

B.5 VELOCITY OF LIGHT 

Bo = 8.854 X 10-12 F/m 

""" 10-9/3611" F/m 

/Lo = 1.26 X 10-6 HIm 

""" 411" X 10-7 HIm 

c = 1 layer/V /LoBo = 2.997925 X 108 mls 

B.6 INTRINSIC IMPEDANCE OF FREE SPACE 

TJo = r;:, = 376.73 n = 120'1T n V;;; 
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Vectors 

Col UNIT VECTOR REPRESENTATIONS 

i = r sin 8 cos cf> + 6 cos 8 cos cf> - cf, sin cf> (C-l) 

Y = hin 8 sin cf> + 6 cos 8 sin cf> + cf, cos cf> (C-2) 

i = r cos 8 - 6 sin 8 (C-3) 

r = i sin 8 cos cf> + Y sin 8 sin cf> + i cos 8 (C-4) 

6 = i cos 8 cos cf> + Y cos 8 sin cf> - i sin 8 (C-S) 

cf, = -i sin cf> + Y cos cf> (C-6) 

C.2 VECTOR IDENTITIES 

A X (B X C) = (A 0 C)B - (A 0 B)C (C-7) 

(A X B) x C = (C 0 A)B - (C 0 B)A (C-S) 

V 0 (V x G) = 0 (C-9) 

V x Vg = 0 (C-IO) 

V 0 Vg = V2g (C-ll) 

V(f + g) = Vf + Vg (C-12) 

V 0 (F + G) = V 0 F + V 0 G (C-13) 

V(fg) = gVf + fVg (C-14) 

V 0 (fG) = G 0 (Vf) + f(V 0 G) (C-1S) 

V X (fG) = (Vf) X G + f(V X G) (C-16) 

V X (V X G) = V(V 0 G) - V2G (C-17) 

V2G = iV2Gx + yV2Gy + iV2Gz (C-1S) 

V 0 (F X G) = Go (V x F) - F 0 (V x G) (C-19) 

625 
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F· (G X H) = G • (H X F) = H • (F X G) (C-20) 

V X (F X G) = F(V • G) - G(V • F) + (G. V)F - (F • V)G (C-21) 

V(F. G) = (F· V)G + (G· V)F + F X (V X G) + G X (V X F) (C-22) 

f f f V· G dv = * G· ds divergence theorem (C-23) 
u s 

f f (V X G) • ds = f G • dl 
s I 

C.3 VECTOR DIFFERENTIAL OPERATORS 

Rectangular Coordinates 

Vg = i ag + y ag + z ag 
ax ay az 

aGx aGy aGz 
V·G=-+-+-ax ay az 

Stokes'theorem 

(
aGz aGy) (aGx aGz) (aGy aGx) 

V X G = i ay - az + y az - ax + i ax - ay 

a2g a2g a2g 
V2g=-+-+-ax2 ay2 az2 

Spherical Coordinates 

Aag Alag A 1 ag 
Vg=r-+O--+~---ar r ao . r sin 0 acp 

1 a 2 1 a 1 aG<I> 
V· G = r2 ar (r Gr ) + r sin 0 ao (Gil sin 0) + r sin 0 acp 

(C-24) 

(C-2S) 

(C-26) 

(C-27) 

(C-28) 

(C-29) 

(C-30) 

(C-31) 

(C-32) 

(C-33) 

(C-34) 



C.3 Vector Differential Operators 627 

v X G = r _1_ [!.- (G.p sin fJ) _ aGe] 
r sin fJ afJ al/J 

A 1 [ 1 aGr a ] 
+ 9; sin fJ al/J - ar (rG.p) (C-35) 

+ cf, ! [!.- (rGe) _ aGr
] 

r ar afJ 

V 2 1 a ( 2 ag) 1 a ( . ag) 1 a
2
g 

g = r2 ar r ar +,z sin fJ afJ sm fJ afJ + r2 sin2 fJ al/J2 (C-36) 
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Trigonometric Relations 

sin( a ± (3) = sin a cos f3 ± cos a sin f3 
cos( a :!: (3) = cos a cos f3 += sin a sin f3 

sin(~ ± a) = cos a 
cos(~ :!: a) = +sin a 

sin a cos f3 = Hsin(a + (3) + sin(a - (3)] 

cos a sin f3 = Hsin(a + (3) - sin(a - (3)] 

cos a cos f3 = Hcos(a + (3) + cos(a - (3)] 

sin a sin f3 = -Hcos(a + (3) - cos(a - (3)] 

. 2 . a a 
SIna= SIn '2 cos '2 

sin2a=2sinacosa 

cos a = 2 cos2 ~ - 1 = 1 - 2 sin2 ~ 
2 2 

cos 2a = 2 cos2 a - 1 = cos2 a - sin2 a = 1 - 2 sin2 a 

cos 3a = 4 cos3 a - 3 cos a 

cos 4a = 8 cos4 a - 8 cos2 a + 1 

m 
cos rna = 2m- 1 cosm a - - 2m- 3 cosm-2 a 

1! 

m(m - 3) + 2m- 5 cosm-4 a + ... 
2! 

1 = sin2 a + cos2 a 

1 
se~ a = -- = 1 + tan2 a 

cos2 a 

(D-1) 

(D-2) 

(D-3) 

(D-4) 

(D-S) 

(D-6) 

(D-7) 

(D-8) 

(D-9) 

(D-lO) 

(D-ll) 

(D-12) 

(D-13) 

(D-14) 

(D-1S) 

(D-16) 

(D-17) 
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a3 as a7 

sina=a--+---+'" 
31 51 71 

a2 a4 a6 

cosa=l--+---+ .. · 
21 41 61 

e:!::.ja = cos a ± j sin a 

sin a 
tana=--

cos a 

(D-18) 

(D-19) 

(D-20) 

(D-21) 
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Hyperbolic Relations 

ea - e-a cr cr a7 

sinh a = = a + - + - + - + . . . (E-1) 
2 3! 5! 7! 

e" + e-" or a4 a6 

cosh a = = 1 + - + - + - + . . . (E-2) 
2 2! 4! 6! 

sinh a 1 
tanh a = -- = -- (E-3) 

cosh a coth a 

sinh(a ± jf3) = sinh a cos f3 ± j cosh a sin f3 (E-4) 

cosh(a ± jf3) = cosh a cos f3 ± j sinh a sin f3 (E-5) 

eia - e-ia 
sinh(ja) = j sin a = 2 (E-6) 

eia + e-ia 
cosh(ja) = cos a = 2 (E-7) 
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Mathematical Relations 

F.1 DIRAC DELTA FUNCTION 

The Dirac delta function (or impulse function) is zero everywhere except when the 
argument is zero. 

(F-1) 

For the zero argument case, the function is singular but in a special way: The area 
is unity, that is, 

(F-2) 

Another useful property of the Dirac delta function follows: 

(F-3) 

F.2 BINOMIAL THEOREM 

n(n - 1) 
(a + b)n = an + nan-1b + an- 2b2 

2! 
n(n-1)(n - 2) n-3b3 + a + ... 

3! 

(F-4) 

(1 ± x)n "" 1 ± nx for x « 1 (F-5) 

F.3 BESSEL FUNCTIONS 

1 f2"" 
Jo(x) = 21T 0 ejx 

cos a da (F-6) 

In(x) = ~; L2

",. ejxcosa cos(na) da 

00 ( -1 )mx2m+n 

= .*0 m!(m + n)!22m+n 

(F-7) 
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F.4 SOME USEFUL INTEGRALS 

f eCX 
sin(a + bx)eCX dx = b2 + c2 [c sin (a + bx) - b cos(a + bx)] 

fOO sin2 x dx = '1T 

-00 x 2 

S·() lX sin T d lX = -- T 
o T 

sine integral 

C·( ) loo cos T d lX =- -- T 
x T 

cosine integral 

C· () lX 1 - cos T d 
In x = T 

o T 

Cin(x) = 0.5772 + In(x) - Ci(x) 

C(x) = f: cos(~ T2}dT; 

S(x) = f: sin(~ T2) dT; 

C( -x) = -C(X)} 

S( -x) = -S(x) 

Fresnel integrals 

(F-8) 

(F-9) 

(F-IO) 

(F-ll) 

(F-12) 

(F-13) 

(F-14) 

(F-15) 

(F-16) 

(F-17a) 

(F-17b) 



AppendixG 

Computing Packages 

Most of the problems in this book can be coded easily using a commercial mathe
matics applications package. There are many of these in use and supplying files for 
them is not useful. Instead, we provide computing modules for a few important 
antenna topics. Most of them allow the student to change parameter values and 
immediately see the effect. Directions for accessing these packages are posted on 
the World Wide Web at the following address: 

www.wiley.com/college/stutzman 

G.l GENERAL ANTENNA PACKAGE: ANTENNA 
PATIERN VISUALIZATION (APV) 

This package is made available by A. Z. Elsherbeni and C. D. Taylor of the Uni
versity of Mississippi. It is a user-friendly package that presents radiation patterns 
in two- or three-dimensional views under user control. The following antennas are 
included: 

Dipoles 
Arrays 
Loops 
Comer reflectors 

The arrays portion of the package is especially valuable for investigating the influ
ence of the array geometry antenna pattern: The array variables are easy to change 
and the pattern is displayed immediately. 

G.2 ARRAY PL01TING PACKAGE: PCARRPAT 

This package provides polar pattern plots in all three principal planes for an arbi
trary array that can have elements at any locations in three dimensions and can 
have any excitations. An input file must be created in the following format: 

N NETVPE NPOINT 
PHIO (use only if NPOINT = 1) THETAO 

X V Z A ALPHA (one line for each 
element) 
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x v z A ALPHA 

where 
N = total number of elements 

NETVPE = 0 for isotropic elements 

NPOINT = 

X, V, Z, 
A = 
ALPHA = 

1 for collinear half-wave dipoles parallel 
to the z-axis 

2 for parallel half-wave dipoles parallel 
to the x-axis 

3 for collinear short dipoles parallel to 
the z-axis 

4 for parallel short dipoles parallel to 

1 

0 
= 

the x-axis 

if element phases are to be adjusted in 
the program to steer the main beam to 
direction (THETAO, PHID) 
if not 
element center locations 
amplitude of current excitation 
phase of current excitation 

G.3 WIRE, A GENERAL WIRE ANTENNA PROGRAM 

WIRE permits the user to specify arbitrary arrangements of straight wires of finite 
size, with or without lumped loads, and with arbitrary connectivity. Both antenna 
and scattering problems can be solved. Many antenna configurations can be mod
eled, including arrays. The method of moments solution approach is used, so full 
mutual coupling is accounted for. The following are available outputs: values for 
current distribution on the wires, input impedance, radiation patterns, and gain; and 
plots of current distributions and patterns. 

G.4 PARABOLIC REFLECTOR ANTENNA CODE: "PRAC" 

PRAC is a user-friendly program for analysis of reflector antennas. The main re
flector geometry as well as the desired illumination are specified by the user. The 
program returns the required feed pattern, gain, and radiation patterns, including 
cross polarization patterns. 

G.5 DIFFRACTION CODES 

The subroutine DW computes the diffraction coefficients Dl. and Du presented in 
Section 12.4 for the wedge of interior angle (2 - n)7T. The subroutine will also 
compute the slope diffraction coefficients associated with the perpendicular and 
parallel cases. The latter slope diffraction coefficient is discussed in Section 12.7. 
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To use the subroutine, it is only necessary to know the calling parameters in line 
1, which are 

DS = diffraction coefficient DII (L, </J, </J') 
DH = diffraction coefficient DiL, </J, </J') 

DPS = slope diffraction coefficient for the parallel case 
DPH = slope diffraction coefficient for the perpendicular case 

R = distance parameter L 
PH = angle </J 

PHP = angle </J' 
BO = angle 1'0 
FN = n of the interior wedge angle (2 - n)7r 

As an example of the use of subroutine DW, consider the E-plane analysis of the 
hom antenna in Section 12.5. In writing a "main program" to analyze the hom 
antenna we would call, for example, DW (X, DPER, X, X, RL, PHI, 0.0, 90.0, 2.0) 
where X is a variable not used in the program. We must supply the subroutine with 
RL and PHI, and it will return DPER. 

The user of subroutine DW may verify the statement listing by calculating the 
diffracted field in Fig. 12-14. 



AppendixH 

Bibliography 

H.t DEFINITIONS 

1. IEEE Standard Definitions of Terms for Antennas, IEEE Standard 145-1993, IEEE: 445 Hoes Lane, 
Piscataway, NJ, 1993. 

H.2 FUNDAMENTAL BOOKS 

636 

1. S. Silver, Editor, Microwave Antenna Theory and Design, MIT Radiation Laboratory Series Vol. 12, 
McGraw-Hill Book Co.: NY, 1949. Available from PPL Dept. IEEE Service Center, Piscataway, NJ 
08855-1331. 

2. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons: NY, 1981. Second 
Edition, 1997. 

3. C. A. Balanis, Antenna Theory, John Wiley & Sons: NY, 1982. Second Edition, 1997. 
4. J. D. Kraus, Antennas, Second Edition, McGraw-Hill Book Co.: NY, 1988. 
5. R. S. Elliott, Antenna Theory and Design, Prentice-Hall: Englewood Cliffs, NJ, 1981. 
6. Thomas A. Milligan, Modem Antenna Design, McGraw-Hill Book Co.: NY, 1985. 
7. R. E. Collin and F. J. Zucker, Editors, Antenna Theory Parts 1 and 2, McGraw-Hill Book Co.: NY, 

1969. 
8. E. Wolff, Antenna Analysis, John Wiley & Sons: New York, 1966, Artech House Inc.: 625 Canton 

St., Norwood, MA 02062, 1988. 
9. S. A. Schelkunoff,Advanced Antenna Theory, John Wiley & Sons: NY, 1952. 

10. S. A. Schelkunoff and H. T. Friis, Antenna Theory and Practice, John Wiley & Sons: NY, 1952. 
11. R. Chatterjee, Antenna Theory and Practice, John Wiley & Sons: NY, 1988. 
12. Kai Fong Lee, Principles of Antenna Theory, John Wiley & Sons: NY, 1984. 
13. Lamont V. Blake, Antennas, First Edition, 1966; Artech House Inc.: 625 Canton St., Norwood, MA 

02062,1987. 
14. T. S. M. Maclean, Principles of Antennas-Wire and Aperture, Cambridge Press: Cambridge, 1986. 
15. W. L. Weeks, Antenna Engineering, McGraw-Hill Book Co.: NY, 1968. 
16. E. Jordan and K. Balmain, Electromagnetic Waves and Radiating Systems, Prentice-Hall: Englewood 

Cliffs, NJ, 1950. Second edition, 1968. 
17. R. E. Collin, Antennas and Radiowave Propagation, McGraw-Hill Book Co.: NY, 1985. 
18. John Griffiths, Radio Wave Propagation and Antennas: An Introduction, Prentice-Hall International: 

Englewood Cliffs, NJ, 1987. 
19. George Monser, Antenna Design: A Practical Guide, McGraw-Hill Book Co.: NY, 1996. 
20. J. A. Kuecken, Antennas and Transmission Lines, Howard Sams: Indianapolis, 1969. 
21. B. RuH and G. A. Robertshaw, Understanding Antennas for Radar, Communications, and Avionics, 

Van Nostrand Reinhold Co.: NY, 1987. 
22. B. D. Steinberg, Principles of Aperture & Array System Design, John Wiley & Sons: NY, 1976. 
23. F. R. Connor, Antennas, Edward Arnold: London, 1989. 
24. Martin S. Smith, Introduction to Antennas, MacMillan Education Ltd: London, 1988. 
25. E. A. Laport, Radio Antenna Engineering, McGraw-Hill Book Co.: NY, 1952. 



H.5 Specialized Antenna Topics Books 637 

26. D. W. Fry and F. K. Goward, Aerials for Centimeter Wave-Lengths, Cambridge University Press: 
Cambridge, 1950. 

27. R. W. P. King and C. W. Harrison, Antennas and Waves: A modem approach, MIT Press: Cambridge, 
MA,1969. 

28. R. W. P. King, H. R. Mimno, and A. H. Wing, Transmission Lines, Antennas and Waveguides, 
McGraw-Hill: NY, 1945. 

H.3 HANDBOOKS AND GENERAL REFERENCE BOOKS 

1. R. C. Johnson, Antenna Engineering Handbook, Third Edition, McGraw-Hill Book Company: NY, 
1993. 

2. Y. T. Lo and S. W. Lee, Editors, Antenna Handbook, Van Nostrand Reinhold: NY, 1988. -
3. A. W. Rudge, K. Milne, A. D. Olver, P. Knight, editors, The Handbook of Antenna Design, Vols. I 

and II, Peregrinus: London, 1982. 
4. Richard C. Johnson, Designer Notes for Microwave Antennas, Artech House: Norwood, MA 1991. 
5. R. A. Burberry, VHF and UHF Antennas, lEE Electromagnetic Waves Series No. 35, Peter Pere

grinus Ltd.: London, 1992. 
6. R. C. Hansen, Editor, Microwave Scanning Antennas, Vol. I-Apertures Vol. II-Arrays and Vol. 

III-Frequency Scanning Arrays, Academic Press: NY 1964. Reprinted in one volume by Penninsula 
Publishing, P.O. Box 867, Los Altos, CA, 94022. 

7. P. J. B. Clarricoats, editor, Advanced Antenna Technology, Microwave Exhibitions and Publications, 
Ltd., UK, 1981. 

8. Kai Chang, editor, Handbook of Microwave and Optical Components, Vol. 1: Microwave Passive and 
Antenna Components, John Wiley & Sons, 1989. 

H.4 MEASUREMENTS BOOKS 

1. IEEE Standard Test Procedures for Antennas, IEEE Standard 149-1979, IEEE: 445 Hoes Lane, 
Piscataway, NJ 08854, 1979. 

2. Gary E. Evans, Antenna Measurement Techniques, Artech House: Norwood, MA, 1990. 
3. Dan Slater, Near-Field Antenna Measurements, Artech House: Norwood, MA, 1991. 
4. J. E. Hansen, editor, Spherical Near-Field Antenna Measurements, lEE Electromagnetic Wave Series, 

PPL Dept., IEEE Service Center Piscataway, NJ 08855-1331,1988. 

H.S SPECIALIZED ANTENNA TOPICS BOOKS 

HoS.1 Wire Antennas 

1. J. Rockway, J. Logan, D. Tam, and S. Li, The MININEC SYSTEM: Microcomputer Analysis of Wire 
Antennas, Artech House: Norwood, MA, 1988. 

2. S. T. Li, J. W. Rockway, J. C. Logan, and D. W. S. Tam, Microcomputer Tools for Communications 
Engineering, Artech House: Norwood, MA, 1983. 

3. B. K. Kolundzija, J. S. Ognjanovic, T. K. Sarkar, and R. F. Harrington, WIPL: Electromagnetic 
Modeling of Composite Wire and Plate Structures, Software and User's Manual, Artech House: Nor
wood, MA, 1995. 

4. B. D. Popovic, CAD of Wire Antennas and Related Radiating Structures, J. Wiley Research Studies 
Press Ltd.: NY, 1991. 

5. R. W. P. King, The Theory of Linear Antennas, Harvard University Press: Cambridge, MA, 1956. 
6. R. W. P. King, Tables of Antenna Characteristics, IFIlPlenum: NY, 1971. 
7. R. W. P. King and G. S. Smith, Antennas in Matter, MIT Press: Cambridge, 1981. 
8. M. L. Burrows, ELF Communications Antennas, Peregrinus, London, 1978. 
9. S. Uda and Y. Mushiake, Yagi-Uda Antenna, Saski Printing and Publishing Co., Sendai, Japan, 1954. 

10. A. E. Harper, Rhombic Antenna Design, Van Nostrand: NY, 1941. 
11. R. M. Bevensee, Handbook of Conical Antennas and Scatterers, Gordon and Breach Science: NY, 

1973. 
12. M. M. Weiner, S. P. Cruze, C. C. Li, and W. J. Wilson, Monopole Elements on Circular Ground 

Planes, Artech House: Norwood, MA, 1987. 
13. F. M. Landstorfer and R. R. Sacher, Optimization of Wire Antennas, John Wiley & Sons: NY, 1985. 



638 Appendix H Bibliography 

14. J. R. Wait, Electromagnetic Radiation from Cylindrical Structures, lEE Electromagnetic Wave Series, 
PPL Dept., IEEE Service Center, Piscataway, NJ 08855-1331, 1988. 

15. W. I. Orr, Simple, Low-Cost Wire Antennas for Radio Amateurs, Radio Publications: Wilton, cr, 
1972. 

H.S.2 Arrays 

1. N. Amitay, V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, John Wiley 
& Sons: NY, 1972. 

2. M. T. Ma, Theory and Application of Antenna Arrays, John Wiley & Sons: NY, 1974. 
3. A. Kumar, Antenna Design with Fiber Optics, Artech House: Norwood, MA, 1996. 
4. E. Brookner, Practical Phased Array Systems, Artech House: Norwood, MA, 1991. 
5. R. C. Hansen, editor, Significant Phased Array Papers, Artech House: Norwood, MA, 1964. 
6. A. A. Oliner and G. H. Knittel, Editors, Phased Array Antennas, Artech House: Norwood, MA, 

1972. 
7. M. Mikavica and A. Nesic, CAD for Linear and Planar Antenna Arrays of Various Radiating Ele

ments, Disks and Users Manual, Artech House: Norwood, MA, 1991. 
8. J. P. Scherer, LAARAN: Linear Antenna Array Analysis Software and User's Manual, Artech House: 

Norwood, MA, 1989. 
9. B. D. Steinberg, Microwave Imaging with Large Antenna Arrays, John Wiley & Sons: NY, 1983. 

10. S. Haykin, Editor, Array Signal Processing, Prentice-Hall: Englewood Cliffs, NJ, 1985. 
11. R. W. P. King, R. B. Mack, and S. S. Sandler, Arrays of Cylindrical Dipoles, Cambridge: London, 

1968. 
12. M. T. Ma and D. C. Hyovalti, A Table of Radiation Characteristics of Uniformly Spaced Optimum 

Endfire Arrays with Equal Sidelobes, National Bureau of Standards, 1965. 
13. R. C. Hansen, Phased Array Antennas, John Wiley & Sons: NY, 1997. 

H.S.3 Broadband Antennas 

1. V. Rumsey, Frequency Independent Antennas, Academic Press: NY, 1966. 
2. Y. Mushiake, Self-Complementary Antennas, Springer-Verlag, Berlin, 1996. 
3. Carl E. Smith, Log Periodic Antenna Design Handbook, Smith Electronics, Inc.: Cleveland, OH, 

1966. 
4. H. Nakano, Helical and Spiral Antennas-A Numerical Approach, John Wiley and Sons: NY, 1987. 
5. R. G. Corzine and J. A. Mosko, Four-Arm Spiral Antennas, Artech House: Norwood, MA, 1989. 

H.S.4 Traveling Wave Antennas 

1. c. H. Walter, Traveling Wave Antennas, McGraw Hill, NY, 1965; Peninsula Pub, 1990. 

H.5.S Microstrip Antennas and Printed Antennas 

1. J. R. James and P. S. Hall, editors, Handbook of Microstrip Antennas, Vols. I and II, Peter Peregrinis: 
London, 1989. 

2. I. J. Bahl and P. Bhartia, Microstrip Antennas, Artech House, Inc.: Norwood, MA, 1980. 
3. J. R. James, P. S. Hall, and C. Wood, Microstrip Antenna Theory and Design, lEE Electromagnetic 

Waves Series 12, IEEIPPL, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854, 198!. 
4. K. C. Gupta and A. Benella, editors, Microstrip Antenna Design, Artech House: Norwood, MA, 

1988. 
5. D. M. Pozar and D. H. Schaubert, editors, Microstrip Antennas: The Analysis and Design of Micro

strip Antennas and Arrays, IEEE Press, 1995. 
6. N. Herscovici, CAD of Aperture-Fed Microstrip Transmission Lines and Antennas, Artech House: 

Norwood, MA, 1996. 
7. R. A. Sainati, CAD of Microstrip Antennas for Wireless Applications, Artech House: Norwood, MA, 

1996. 
8. J.-F. Zurcher and F. Gardiol, Broadband Patch Antennas, Artech House: Norwood, MA, 1995. 



H.S Specialized Antenna Topics Books 639 

9. P. Bhartia, K. V. S. Rao, and R. S. Tomar, Millimeter-Wave Microstrip and Printed Circuit Antennas, 
Artech House: Norwood, MA, 1988. 

10. T. C. Edwards, Foundations of Microstrip Antennas, John Wiley & Sons: NY, 1981. 
11. G. Dubost, Flat Radiating Dipoles and Applications to Arrays, Research Studies Press, John Wiley: 

Chichester, 1981. 
12. A. K, Bhattacharyya, Electromagnetic Fields in Multilayered Structures: Theory and Applications, 

Artech House: Norwood, 1994. 

H.s.6 Reflector and Lens Antennas 

1. B. S. Wescott, Shaped Antenna Reflector Design, John Wiley & Sons: NY, 1983. 
2. A. W. Love, Editor, Reflector Antennas, IEEE Press: NY, 1978. 
3. W. V. T. Rusch and P. D. Potter, Analysis of Reflector Antennas, Academic Press: NY, 1970. 
4. R. Mittra, et aI., eds., Satellite Communications Antenna Technology, Elsevier, 1983. 
5. P. J. Wood, Reflector Antenna Analysis and Design, IEEIPPL, IEEE Service Center, 445 Hoes Lane, 

Piscataway, NJ 08854, 1986. 
6. C. J. Sletten, editor, Reflector and Lens Antennas, Artech House Inc.: Norwood, MA, 1988. 

Reflector and Lens Antennas: Analysis and Design Using PCs, Software and Users Manual, 
Version 20, 1991. 

7. Craig R. Scott, Modem Methods of Reflector Antenna Analysis and Design, Artech House: Norwood, 
MA,1989. 

8. Roy Levy, Structural Engineering of Microwave Antennas for Electrical, Mechanical, and Structural 
Engineers, IEEE Press, 1996. 

9. J. Brown, Microwave Lenses, John Wiley: London, 1953. 

H.s.7 Horns/Feeds 

1. P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas, IEEE Service 
Center, PPL Dept.: 445 Hoes Lane, Piscataway NJ 08854,1984. 

2. A. O. Olver, P. J. B. Clarricoats, A. A. Kisk, and L. Shafai, Microwave Horns and Feeds, IEEE 
Press, 1994. 

3. J. Uher, J. Bornemann, and U. Rosenberg, Waveguide Components for Antenna Feed Systems: 
Theory and CAD, Artech House: Norwood, MA, 1993. 

4. A. W. Love, Editor, Electromagnetic Hom Antennas, IEEE Press: NY, 1976. 

H.S.S Moment Methods 

1. R. F. Harrington, Field Compulation by Moment Methods, Macmillan: NY, 1968. 
2. M. N. O. Sadiku, Numerical Techniques in Electromagnetics, CRC Press: Boca Raton, FL, 1992. 
3. Richard C. Booton, Jr., Computational Methods for Electromagnetics and Microwaves, John Wiley: 

NY,1992. 
4. B. D. Popovic, M. B. Dragovic, and A. R. Djordjevic, Analysis and Synthesis of Wire Antennas, 

J. Wiley Research Studies Press, 1982. 
5. J. Moore and R. Pizer, editors, Moment Methods in Electromagnetics, Research Studies Press, John 

Wiley: Letchworth, England, 1984. 
6. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics, ArtechHouse: 

Norwood, MA, 1990. 
7. C. Hafner,2-DMMP: Two-Dimensional Multiple Multipole Software and User's Manual, Artech 

House: Norwood, MA, 1990. 
8. A. R. Djordjevic, M. B. Bazdar, G. M. Vitosevic, T. K. Sarkar, and R. F. Harrington, Analysis of 

Wire Antennas and Scatterers: Software and User's Manual, Artech House: Norwood, MA, 1990. 
9. E. K. Miller, L. Medgyesi-Mitschang, and E. H. Newman, Editors, Computational Electromagnetics: 

Frequency-Domain Method of Moments, IEEE Press: IEEE Service Center, Piscataway, NJ, 1991. 
10. Johnson J. H. Wang, Generalized Moment Methods in Electromagnetics, John Wiley & Sons: NY, 

1991. 
11. Robert C. Hansen, Moment Methods in Antennas and Scattering, Artech House: Norwood, MA, 

1990. 
12. R. Mittra, Editor, Computer Techniques for Electromagnetics, Pergamon Press: Oxford, 1973. 



640 Appendix H Bibliography 

H.S.9 FD-ID 

1. K. S. Kunz and R. J. Luebbers, Finite Difference Time Domain Method for Electromagnetics, CRC 
Press: Boca Raton, FL, 1993. 

2. A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method, Artech 
House: Norwood, 1995. 

H.S.I0 High Frequency Methods 

1. D. A. McNamara, J. A. G. Malherbe, and C. W. Pistorius, Introduction to the Uniform Geometrical 
Theory of Diffraction, Artech House: Norwood, MA, 1989. 

2. G. L. James, Geometrical Theory of Diffraction for Electromagnetic Waves, revised edition, PPL 
Dept. IEEE Service Center, Piscataway, NJ 08855-1331,1986. 

3. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, Englewood Cliffs, 
NJ,1973. 

4. B. S. Combleet, Microwave and Optical Ray Geometry, John Wiley & Sons, NY, 1984. 
5. E. V. Jull, Aperture Antennas and Diffraction Theory, IEEIPPL, IEEE Service Center, 445 Hoes 

Lane, Piscataway, NJ 08854, 1981. 
6. R. C. Hansen, Editor, Geometric Theory of Diffraction, IEEE Press, 1981. 
7. B. S. Combleet, Microwave Optics: The Optics of Microwave A~tenna Design, Academic Press: 

London, 1976. 
8. R. H. Clarke and J. Brown, Diffraction Theory and Antennas, John Wiley & Sons: NY, 1980. 

H.S.ll Adaptive Antennas 

1. J. E. Hudson, Adaptive Array Principles, Peter Peregrinus: Stevenage UK, 1981. 
2. R. T. Compton, Jr., Adaptive Antennas: Concepts and Performance, Prentice-Hall: Englewood Cliffs, 

NJ,1988. 
3. R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, John Wiley & Sons: New York, 

1980. 
4. A. Farina, Antenna-Based Signal Processing Techniques for Radar Systems, Artech House: Norwood, 

MA,1991. 
5. E. Nicolau and D. Zaharia, Adaptive Arrays, Elsevier, 1989. 

H.S.12 Mobile, Personal, and Satellite Communications Antennas 

1. K. Fujimoto and J. R. James, editors, Mobile Antenna Systems Handbook, Artech House: Norwood, 
MA,1989. 

2. K. Siwiak, Radiowave Propagation and Antennas for Personal Communications, Artech House, Nor
wood, 1995. 

3. Preston E. Law, Shipboard Antennas, Artech House, Norwood, MA, 1983. 
4. T. Kitsuregawa, Satellite Communication Antennas: Electrical and Mechanical Design, Artech House: 

Norwood, MA, 1989. 

H.S.13 Polarization Topics 

1. w. L. Stutzman, Polarization in Electromagnetic Systems, Artech House: Norwood, MA, 1993. 
2. H. Mott, Polarization in Antennas and Radar, John Wiley & Sons: NY, 1986. 

H.S.14 Radomes 

1. D. J. Kazakoff, Analysis of Radome Enclosed Antennas, Artech House: Norwood, MA, 1997. 
2. J. D. Walton, Jr., editor, Radome Engineering Handbook, Marcel Dekker: NY, 1981. 
3. H. L. Hirsch and D. C. Grove, Practical Simulation of Radar Antennas and Radomes, Artech House: 

Norwood, MA, 1988. 



H.5 Specialized Antenna Topics Books 641 

H.S.15 Software for General Antenna Applications 

1. L. Diaz and T. Milligan, Antenna Engineering Using Physical Optics: Practical CAD Techniques and 
Software, Artech House: Norwood, MA, 1996. 

2. D. M. Pozar, PCAAD-Personal Computer Aided Antenna Design, Antenna Design Associates: 55 
Teawaddle Hill Road, Leverett, MA 01002, 1992. 

3. D. Pozar, Antenna Design Using Personal Computers, Artech House, Norwood, MA, 1985. 
4. J. A. Kuecken, Exploring Antennas and Transmission Lines by Personal Computer, Van Nostrand 

Reinhold,1986. 

H.S.16 Small Antennas 

1. K. Hirasawa and M. Haneishi, Analysis, Design, and Measurement of Small and Low-Profile Anten
nas, Artech House: Norwood, MA, 1992. 

2. K. Fujimoto, A. Henderson, K. Kirasawa, and J. James, Small Antennas, John Wiley & Sons: NY, 
1987. 

H.S.17 Other Topics 

r-. 

1. A. Kumar and H. D. Hristov, Microwave Cavity Antennas, Artech House: Norwood, MA, 1989. 
2. Rajeswari Chatterjee, Dielectric and Dielectric-Loaded Antennas, John Wiley & Sons: NY, 1985. 
3. D. G. Kiely, Dielectric Aerials, Methuen, 1952. 
4. J. Bach Anderson, Metallic and Dielectric Antennas, Polyteknisk Forlag: Denmark, 1971. 
5. T. Macnamara, Handbook of Antennas for EMC, Artech House: Boston, 1995. 
6. D. R. Rhodes, Synthesis of Planar Antenna Sources, Clarendon Press: Oxford, 1974. 
7. F. Sporleder and H-G Unger, Waveguide Tapers, Transitions, and Couplers, lEE Electromagnetic 

Waves Series 6, PPL Dept. IEEE Service Center, Piscataway, NJ 08855-1331, 1979. 
8. G. A. Savitskii, Calculations for Antenna Installations, Amerind Pub. Co.: New Delhi, 1982. 
9. G. W. Wiskin, R. Manton, and J. Causebrook, Masts, Antennas, and Service Planning, Focal Press: 

Oxford, England, 1992. 
10. Kai Chang, Microwave Ring Circuits and Antennas, John Wiley & Sons: NY, 1996. 



Index 

642 

Absolute gain, see Gain 
Absorbing boundary condition (ABC), 

511-515 
Achievement efficiency, see Efficiency 
Active impedance, see Impedance 
Active-element pattern, 126-127, 135 
Active region, 251, 254-255, 265, 270 
Anechoic chamber, 411 
Antenna beam solid angle, 39 
Antenna factor, 423 
Antenna pattern, 33-37 
Antenna range, 411 
Antenna scattering, see Radar cross 

section of antennas 
Antenna (noise) temperature, 400-403 
Antenna under test (AUT), see Test 

antenna 
Aperture: 

antenna, 11, Chap. 7 
blockage, 346 
distribution, 350 
efficiency, see Efficiency 
effective, 78, 294-295 
illumination, 332 
receiving, 395-400 

Aperture couple microstrip antenna feed, 
213-215 

Archimedean spiral antenna, 254-257 
Array: 

arbitrarily configured, 128-129 
binomial,117-118 
circular, 128,467-469 
collinear, 107-110,461 
conformal, 87, 128 
directivity, 112-116, 120-121 
Dolph-Chebyshev, see Linear array 
factor, 88-107 
feeding of, see Feeds for arrays 
linear, see Linear array 
microstrip, 216-218 
multidimensional, 128-130, 136, 

470-471 
multifunctional, 136 
ordinary endfire, see Linear array 
parallel element, 110-112 

phased,87,130-135,471 
planar,87,128-129,470-471 
superdirective, see Superdirective 
Vivaldi, 538-542 

Axial-mode helix antenna, see Helix 
antenna 

Average active-element pattern, 126,127 
Azimuth positioner, 414 

Babinet's principle, 251 
Back lobe, 35 
Backscatter, 586 
Balanced feed: 

for reflectors, 349 
for wire antennas, 183-187 

Balun: 
half-wave, 187 
infinite, 254 
sleeve, 184 
tapered coax, 186, 257 
tapered microstrip, 186 

Bandwidth, 9,172-173,225 
Beam broadening, 131 
Beam broadening factor, 382 
Beam deviation factor (BDF), 341 
Beam efficiency, see Efficiency 
Beam forming network, see Feeds for 

arrays 
Beam switching, 134 
Beam solid angle, 39 
Beamwidth, 36 
Beamwidth between first nulls, 34, 

102 
Bessel function, 317,631-632 • 
Beverage antenna, 226, 230-231 
Biconical antenna, 240-243 
Bifin antenna, see Bow-tie antenna 
Binomial array, 117-118 
Blind scan angle, 135, 470-471 
Boundary conditions, 14 
Bow-tie antenna, 243, 259 
Brick feed, see Feeds for arrays 
Broadband antenna, 11, 225 
Broadside antenna, 36 
Butler matrix, 134 



Capacitor-plate antenna, 58 
Cardioid pattern, 93 
Carrier-to-noise ratio, 401 
Cassegrain reflector antenna, 335-338 
Caustic, 548, 584 
Cavity-backed Archimedian spiral 

antenna, 256 
Circularly polarized, 49 
Co-polarized, 398 
Collinear array, 107-110 
Collinear dipoles, 107-110, 125 
Collocation, 445 
Coma lobe, 341 
Communication links, 79-81 
Compact range, 413-414 
Complementary antenna, 250-251 
Computational electromagnetics (CEM), 

427-428 
Conductivity, 13, see App B.1 
Conformal array, see Array 
Conic section, 335 
Conical equiangular spiral antenna, 

257-258 
Conical hom antenna, 300, 354-355 
Constants, see App. B 
Contour beam, 334 
Comer reflector antenna, 196-198 
Corporate feed, see Feeds for arrays 
Corrugated conical hom, 355-356 
Cosine-tapered line source, 152-155 
Creeping wave, 486-487, 584-589 
Cross-polarization, 329-331, 338-340, 

397-98,418-419 
Cross polarization efficiency, see 

Efficiency 
Current density: 

electric, 13 
magnetic, 14 
surface, 14 

Current element, see Ideal dipole 

Delta gap, 435 
Diffraction: 

curved surface, 584-589 
reflector, 328-329, 571-573 
wedge, 552-568 

Diffraction integral, 281 
Diode phase shifter, 135 
Difference feed, 135 
Dipole: 

broadband, 172,242-244,246-249 
folded, 175-180 
full-wave, 168 
hali-wave,6,10,59-62,165-173 
ideal, 7,20-25,38-39,41,44,57, 78 

short, 45-48, 56-59, 166 
sleeve, 246-249 
straight wire, 165-173 
top-hat loaded, 58-59 
vee, 173-175 
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Dirac delta function, 18, 20,107,631 
Dielectric constant, see Permittivity 
Dielectric substrate, 215 
Direction finding, 135 
Directive gain, 42 
Directivity: 

aperture, 292-294 
definition of, 39-40 
factor, 297 
Hansen-Woodyard increased, see 

Linear array 
linear array, see Linear array 
standard, 293 
uniform line source, 149 

Directivity-beamwidth product, 297 
Directly coupled microstrip feed, 213-214 
Discone antenna, 243-245 
Dispersion, 507, 516-517 
Dolph-Chebyshev array, see Linear array 
Driving point impedance, see Impedance, 

antenna 
Dual-linear pattern method, 421-422 
Dual mode conical hom, 355 
Dual reflector, see Reflector antenna 
Duality, 68-71 
Dual polarized, 9 

Earth, 198-205, 230-231 
Eccentricity, 336 
Echo width, 585-587, 603-604 
Edge illumination, 332, 156-157, 573 
Edge taper, 332 
Effective aperture, see Aperture 
Effective isotropically radiated power 

(EIRP),80 
Effective length of an antenna, see Vector 

effective length 
Effective permeability, 74 
Efficiency: 

achievement, 295, 342, 345 
aperture, 79, 217, 295, 342 
aperture blockage, 346 
aperture taper, 294-295, 342 
beam, 296, 418 
cross polarization, 295, 346 
illumination, 295, 343 
impedance, see Impedance mismatch 

factor 
polarization, 80, 396-400 
phase-error, 295, 347 
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Efficiency: (continued) 
radiation, 42, 78, 82-83, 294, 342 
spillover, 295, 342-343 

Electrically small antenna, 11, 56-59 
Electromagnetically coupled microstrip 

feed, 213-214 
Electronic scanning, see Scanning 
Element factor, 33, 109, 282 
Element pattern, 88,107,109, 

126-127 
Elevated range, 412 
Elevation-over-azimuth positioner, 

414-415 
Elliptical polarization, 49 
Endfire antenna, 36,114-115,191-192, 

227,236 
Endfire array: 

Hansen-Woodyard, see Linear array 
ordinary, 103-105 

Equiangular spiral antenna, 
Equivalence principle, 276, 523 
Equivalent currents, 277-278, 523, 

578-581 
Equivalent radius, 173 
Expansion ratio, 253, 260 

Fan beam, 37 
Faraday rotation, 400 
Far field distance, see Field region 
Far-field range, 412 
Far-field region, see Field region 
Far zone, see Field region 
Feeds for arrays: 

brick, 134 
corporate, 133 
difference, 135 
hybrid, 134 
multiple beam, 134 
optical, 134 
parallel, 133 
series, 133 
space, 134 
sum, 135 

Feeds for reflectors, 300, 349-356 
Feed network, see Feeds for arrays 
Ferrite phase shifter, 135 
Field equivalence principle, see 

Equivalence principle 
Field probe, 422 
Field regions (zones): 

near, 23, 30 
Fresnel, 31 
far, 24, 30 
radiative near, 30 
reactive near, 30 

Finite differences, 498-499 
Focal point, 322, 335 
Focallength-to-diameter ratio (F/D), 323 
Focal plane distribution (FPD), 350, 573 
Focus-fed reflector, 327 
Folded dipole, 175-180 
Footprint, 335 
Fourier series method, 373-377 
Fourier transform, 157-159, 366-370 
Fourier transform method, 368-369 
Fraunhofer region, see Field regions, far 
Free excitation, 125 
Free space range, 411 
Frequency bands, see App. A 
Frequency-independent antenna, 250-252 
Frequency scanning, see Scanning 
Fresnel integral, 302, 554, 632 
Fresnel region, see Field regions 
Friis transmission formula, 79 
Frill generator, 436 
FD-TD, Chap. 11 
Full-wave dipole, 167 

Gtr,403 
Gain, 8, 37-43, 78,294-296,342,397,418, 

459,533 
Gain comparison method, 415-416 
Gain pattern, 395, 416 
Gain transfer method, see Gain 

comparison method 
Galerkin's method, 442 
Gap microstrip antenna feed, 215 
Geometrical optics, 276, 281, 325, 338, 

546-552 
Geometrical theory of diffraction (GTD), 

338,561 
GOI Aperture distribution method, 

325-327 
GRASP reflector code, 328, 331 
Grating lobe, 99 
Ground plane: 

imperfect, 198-205 
perfect, 63-68, 574-578 

Ground reflection range, 414 

Half-power beamwidth, 36, 103 
Half-wave dipole, 59-62, 167 
Hallen, 452-454 
Hansen-Woodyard endfire array, see 

Linear array 
Hansen-Woodyard increased directivity, 

see Linear array 
Helical antenna, see Helix antenna 
Helix antenna: 

axial mode, 231-232, 235-239 



normal mode, 231-235 
quadafilar, 235 
stub,234 

Hertzian electric dipole, see Ideal dipole 
Homogeneous media, 546 
Hom antenna, 298-316, 524-531, 568-571 
Huygen's principle, see Equivalence 

principle 
Huygen's source, 351, 553 
Hybrid mode feed, 355 
Hyperbolic relations, see App. E 

Ideal dipole, see Dipole 
Ideal Taylor line source, 386 
Impedance: 

active, 125 
antenna, 8-9,43-48 
driving point, 540-542 
input, see Impedance, antenna 
intrinsic, 22, 28 
mutual,122-125,406-409 
self, 122-123, 407 
transfer, 408 

Impedance matching, 48, 180-187, 396 
Impedance mismatch factor, 80, 180-181, 

396 
Infinite balun, 254 
Infinite bicone, 240-242 
Infinitesimal dipole, see Ideal dipole 
Integrals, 632 
Intercardinal plane, 129 
Interferometer, 131 
Inverted-F antenna, 58 
Inverted-L antenna, 58 
Invisible region, 83, 159 
Isolated element pattern, 126-127 
Isotropic antenna, 36, 43, 78 
Isotropic radiator, 8, 38, 40, 89 
Iterative sampling method, see Sampling 

method 

Johnson noise, see Nyquist noise 

Keller, J. B., 561 

Linear array: 
beam~dth, 102-103 
directivity, 112-116, 120-121 
Dolph-Chebyshev, 118-119, 
general properties, 88-128, 466-467 
Hansen-Woodyard endfire, 105-106, 

114-115,159-161,192-194,236 
main beam scanning of, 102, 
nonuniformlyexcited,116-121 
ordinary endfire, 104, 114 

unequally spaced, 108-109 
uniformly excited, 99-106 

Linear phase, 131 
Linearly polarized, 49 
Line current, see Line source 
Line source, 25-37, Chap. 4 
Loading, 461 
Log-periodic: 

antenna, 259-270, 462-465 
dipole array, 263-270 
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toothed planar antenna, 259-261 
toothed trapezoid antenna, 262-263 
toothed trapezoid wedge antenna, 262 
toothed trapezoid wedge ~re antenna, 

262-263 
toothed trapezoid wire antenna, 262 
toothed wedge antenna, 262 
zig-zag ~re antenna, 263 ~ 

Long-~re antenna, see Traveling-wave 
long wire antenna 

Loop antenna: 
circular, 205 
small,71-76 
square, 205-210 

Loop-stick antenna, 74 
Lorentz (or Lorenz) condition, 17 
Lorentz reciprocity theorem, 405-406 
Love's equivalence principle, 277 

Magnetic moment, 73 
Magnetic field integral equation, 484-486 
Magnification, 337 
Main beam, 34-35 
Main beam efficiency, see Efficiency 
Main lobe, see Main beam 
Major lobe, see Main beam 
Main beam efficiency, see Efficiency, 

beam 
Main beam solid angle, see Beam solid 

angle 
Matching techniques, 180-187 
Maximum effective aperture, 77~78 
Maxwell's equations, 12-16,495-498 
Mean-square error, 369, 374 
Measurement: 

field intensity, 422-423 
gain, 415-417, Prob. 9.6-1 
impedance, 405 
mutual impedance, 124 
pattern, 405-415 
polarization, 418-422 

Method of moments, Chap. 10 
Microstrip antenna, 10, 210-218 
Minor lobe, 35 
Mobile telephone bands, see App. A.3 
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Model tower, 415 
Monopole, 66-68, 533-537 
Monostatic radar, 403-404, 599 
Multimode hom, 355 
Multiple beam feed network, see Feeds 

for arrays 
Multifunctional array, see Array 
Mutual coupling, 121-128, 471 
Mutual impedance, see Impedance 

Near-field range, 414 
Near-field region, see Field regions 
Noise, 400-403 
Noncontacting microstrip feed, 214-215 
Normal mode helix antenna, 234 
Numerical stability, 505-506 
Nyquist noise, 401 

Obliquity factor, 282 
Omnidirectional pattern, see Pattern 
Omnidirectional antenna, 36 
One-wavelength square loop antenna, 

205-210 
Open-ended waveguide, see Waveguide 
Open-sleeve dipole, 249 
Optical feed, see Feeds for arrays 
Ordinary endfire array, see Linear array 
Orthomode transducer (OMT), 347 

Parabolic reflector antenna, 299, 322-347, 
571-573 

Parabolic cylinder antenna, 348, 571-573 
Parabolic torus antenna, 348 
Parallel dipoles, 111-112, 124 
Parallel element array, 110-112 
Parallel feed for an array, see Feeds for 

arrays 
Parasitic array, 187 
Partial gain method, 417 
Patch antenna, see Microstrip antenna 
Pattern: 

cosecant, 54 
desired, 366, 368 
difference, 135 
E-plane,24 
Gaussian, 55 
H-pattern,24 
multiplication, 107-112 
omnidirectional, 25 
polar, 24, 34 
power, 34-35 
principal plane, 24 
radiation, 8, 24-37 
sum, 135 
synthesis, Chap. 8 

Pattern factor, 33,109,366 
Pattern multiplication, see Pattern 
Peak gain, see Gain 
Pencil beam, 37 
Perfect ground plane, see Ground plane 
Permeability, 13, 74 
Permittivity,13-14 
Phase constant, 18 
Phase-error efficiency, see Efficiency 
Phased array, see Array 
Physical optics (PO) approximation, 280, 

328,597 
Physical optics/Surface current method, 

328-329 
Physical theory of diffraction (PTD): 

for reflectors, 329, 610-612 
theory, 604-608 

Planar array, 128-129 
Planar equiangular spiral antenna, 

253-254 
Plane wave, 28, 48, 151 
Pocklington's integral equation, 430-432 
Point-matching, 434, 452-453, 482-486 
Point source, see Isotropic radiator 
Polar diagram, see Pattern, polar 
Polar pattern, see Pattern, polar 
Polarization, 9, 48-52, 80, 397 
Polarization of an antenna, 51 
Polarization efficiency, see Efficiency 
Polarization mismatch, see Polarization 

efficiency 
Polarization pattern method, 419-420 
Positioner, 414-415 
Potential: 

scalar, 17 
vector, 16-17 

Potter hom, see Dual mode conical hom 
Power gain, see Gain 
Power pattern, see Pattern 
Poynting's theorem, 15 
Poynting vector, 15 
PRAC reflector code, 328, 354, see App. 

G.4 
Prime-focus reflector antenna, see Focus-

fed reflector 
Primary antenna, 327, 349 
Primary pattern, 327 
Principal half-power beamwidth, 36 
Principle of pattern multiplication, 109 
Printed antenna, 210 
Progressive phase, see Linear phase 
Projection technique, 129 
Proximity microstrip antenna feed, 215 
Pyramidal hom antenna, 298-299, 300, 

310-316 



Q, 82-83, 159 
Quarter-wave transformer, 214 

Ftadar, 3, 403-404 
Ftadar cross section, 403, 459, 599 
Ftadar cross section of antennas, 472-476 
Ftadar range equation, 404 
Ftadiansphere, 24 
Ftadiated power, 4, 23 
Ftadiation boundary condition, see 

Absorbing boundary condition 
Ftadiation efficiency, see Efficiency 
Ftadiation fields, 23 
Ftadiation intensity, 38 
Ftadiation mechanism, 4-8 
Ftadiation pattern, see Pattern 
Ftadiation resistance, 44-48, 58, 66, 74-76 
Ftadiometry,4~3 
Ftange, see Antenna range 
Ftay optics, 546-552 
Ftayleigh distance, see Field region, far 
Fteaction, 405, 445-446 
Ftealized gain, 397 
Fteceiver sensitivity, 423 
Fteciprocity, 8, 404-409 
Ftectangular aperture, see Aperture 
Ftectangular pattern, see Pattern 
Ftefiector antenna, 299, 322-348 

axisymmetric, 323 
Cassegrain, 335 
cross polarization, 346 
diffraction effects, 328-329 
dual, 335-338 
dual offset, 340 
equivalent parabolic, 337 
focus-fed, 327,329 
hom, 348 
Gregorian, 335 
multiple, 341 
offset, 334-335 
parent, 334 
parabolic-torus, 348 
shaped,337-338,348 
spherical, 348 
surface errors, 346-347 

Ftefiector, in a Yagi antenna, 189 
Ftelative gain, 43 
Ftesidual, see Weighted residual 
Ftesonant quadrafilar helix antenna, 235 
Ftesonant (quarter-wave) stub helix 

antenna, 234 
Ftipple, 377 
FtoU positioner, 415 
Ftotating source method, see Spinning 

linear method 

Fthombic antenna, 229 
Ftusch's method, 328 

Sample points, 371 
Sample values, 371 
Sampling method: 

iterative, 390 
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Woodward-Lawson, 370-372, 376-378, 
387 

Scalar hom, 356 
Scan blindness, 135, 470-471 
Scanning: 

beam switching, 134 
electronic, 134 
frequency, 133-134 
of pattern main beam, 9, 102, 130-134 

Scattering, 479,598,604-606 
Secondary antenna, 327, 349 
Secondary pattern, 327 
Sector pattern, 369-372, 374-375 
Sectoral hom antenna, 299-310, 524-531 
Self-complementary antenna, 251, 

253-254,261 
Self impedance, see Impedance 
Self scaling, 252, 255 
Separable distribution, 157, 289, 294, 

366 
Series feed of an array, see Feeds for 

arrays 
Shaped beam, 348, 366, 368-378 
Short dipole, see Dipole 
Shunt matching, 182-183 
Side lobe, 35 
Side-lobe level (SLL), 36, 100, 377 
Similar array elements, 108 
Sinuous antenna, 258 
Slant range, 412 
Sleeve antennas, 246-249 
Slice generator, 435 
Slope diffraction, 576 
Slot antenna, 251 
Slow wave, 192-194 
Small antenna, see Electrically small 

antenna 
Small loop antenna, 10,68-76 
Smart antenna, 130 
Space feed of an array, see Feeds for 

arrays 
Spherical wave, 19 
Spherical spreading loss, 326, 332 
Spillover, 343 
Spinning linear method, 420-421 
Spiral antenna, 252-259 

Archimedean, 254-257 
conical equiangular, 257-258 
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Spiral antenna (continued) 
cavity-backed Archimedean, 256 

equiangular, 253-254 
Square loop antenna: 

large, 205-210 
small, 72 

Squint, 340 
Standard directivity, see Directivity 

Standard gain antenna, 415 
Stationary phase, 601-604 
Sum feed, 135 
Superdirectivity, 82-83,106,159-161, 

371 
Supergain, 83 
Supergain ratio, 159 
Surface wave, 135, 192-194, 215, 217 

SWR, see VSWR 
Symmetric, 101 
Synthesis, Chap. 8 
System noise temperature, 401 

Tapered coax wideband balun, 257 

Tapered circular aperture, 319-231 

Tapered line source, 152-157 

Tapered rectangular aperture, 289-291 

Tapered slot antenna, see Vivaldi 

Taylor line source, 384-390 
Television channels, see App. A.2 

Test antenna, 409 
Time-delay scanning, see Scanning 

Toeplitz matrices, 455-456 
Top-hat loaded dipole antenna, see 

Capacitor-plate antenna 
Transition width, 377 
Transmission-line loaded antenna, 58-59 

Transverse electromagnetic (TEM) wave, 

see Plane wave 
Traveling wave antenna, 226 

Traveling-wave long wire antenna, 226 

Trigonometric relations, see App. D 

Umbrella-loaded monopole, 68 

Uniform line source, 32-33, 143-152 

Uniform progressive phase, see Linear 

phase 
Uniform circular aperture, 316-318 

Uniform rectangular aperture, 285-289 

Uniform theory of wedge diffraction, 

564-568 
Uniqueness theorem, 276 
Utilization factor, see Efficiency, aperture 

taper 

Validation, 457 
Vectors, see App. C 
Vector effective length, 397, 472 

Vector potential, see Potential 
Vee dipole, 173-175 
Vee, traveling-wave, 228 
Virtual focal point, 335 
Vivaldi, 538-542 
Volute antenna, 235 
VSWR, 172, 181, 396 

Wave antenna, 230-231 
Wave equation, 17-18 
Waveguide: 

open-ended circular, 354 -
open-ended rectangular, 290-291, 

293-294 
Wedge diffraction, see Diffraction, wedge 

Weighted residuals, 440-445 

Wideband, see Broadband 
Wire-grid model, 477-481 
Wireless, 3 
Wood's anomaly, 470 
Woodward-Lawson sampling method, see 

Sampling method 

Yagi-Uda antenna, 187 
Yee algorithm, 498-504 




